Non-tuberculous mycobacteria isolated at the end of the world

UnlPam X Ferrara Muñiz ${ }^{1}$, C Tortone ${ }^{2}$, S Oriani², C Garro ${ }^{3}$, S Garbaccio ${ }^{3}$, P Farace ${ }^{1}$, M Encinas ${ }^{1}$, ME Eirin ${ }^{1}$, MJ Zumárraga ${ }^{1}$
${ }^{1}$ Instituto de Agrobiotecnología y Biología Molecular (IABIMO, INTA-CONICET), Hurlingham, Buenos Aires, Argentina.
${ }^{2}$ Facultad de Veterinaria, Universidad Nacional de La Pampa, La Pampa, Argentina.

Introduction

Non-tuberculous mycobacteria (NTM) are a group of mycobacteria widely distributed in the environment (e.g. soil and water). NTM can also cause infections in different mammals, mostly in immunocompromised individuals. Moreover, they may interfere with the ante-mortem diagnosis of bovine tuberculosis (BTB) by the tuberculin skin test. In this work, two isolates of NTM species were obtained from soil of Tierra del Fuego, the only province free of BTB and brucellosis in Argentina.

Objective Isolate and identify non-tuberculous mycobacteria from soil from Tierra del Fuego province.

Materials and Methods

Samples: Two soil samples were taken from a dairy farm in Río Grande, Tierra del Fuego, with in the framework of a bovine blood sampling to perform the Interferon Gamma Release Assay (IGRA).

Culture: Soil samples were processed using the protocol described by Livanainen et al., (1997), and then inoculated in Löwenstein-Jensen and Stonebrink media
Molecular typing: One loopful of bacterial growth was suspended in $200 \mu \mathrm{~L}$ of sterile apyrogenic water contained in a 1.5 mL capped tube and then incubated at $95^{\circ} \mathrm{C}$ in a thermoblock for 40 min . It was then centrifuged 5 min at $12,000 \mathrm{rpm}$. Ten microliters of the obtained bacterial lysate was used for PCR of the heat shock protein (hsp65) (Telenti et al., 1993), the 16 S subunit of the ribosomal RNA (16S rRNA) (Kirschner et al., 1998) and the β-subunit of the RNA polymerase (rpoB) (Adekambi et al., 2003) genes. PCR products were purified and after that were sent for gene sequencing. The criterion for species identification was in concordance with the identity of at least two of these genes after BLAST comparison. The sequences have not been deposited in GeneBank. In order to assign species, $\geq 99.7 \%$ similarity to type strain sequences was required for 16 S rRNA, $\geq 97 \%$ for rpoB and $\geq 99 \%$ for hsp65 according Monteserín et al., (2016) and the consensus of the identity was provided by at least two of the three genes amplified.

The presence of esxA (ESAT-6), esxB (CFP-10) and mb3645c (EspC) genes was investigated by PCR according to Encinas et al., (2018)

Results

> Mycolicibacterium diernhoferi and Mycolicibacterium novocastrense were identified in the two isolates.
> None of esxA, esxB and mb3645c genes were detected in either M. diernhoferi or M. novocastrense.

Discussion and Conclusions

$>$ This work was preliminary. It was done with in the framework of a bovine blood sampling to perform IGRA. An experimental design to carry out a new soil sampling is required.
> Knowledge of the presence and distribution of NTM in the environment and the evaluation of the specificity of the genes used in the diagnosis of BTB can contribute to better control of the disease, especially in areas declared free of the disease.
> This is the first report of M. diernhoferi in Argentina.
> Whole genome sequencing of these strains will be performed to compare them with the reference genome of M. bovis AF2122/97 to detect antimicrobial resistance, virulence genes and other genes related to BTB diagnosis.
 $-450 \mathrm{bp}$

1- M. diernhoferi; 2- M. novocastrense; C+: M. bovis wild type C-: Negative control; M: 1 Kb DNA Ladder Promega.

