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Abstract: Precipitation is a critical driver of vegetation productivity and dynamics in dryland en-
vironments, especially in areas with intense livestock farming. Availability and access to accurate,
reliable, and timely rainfall data are essential for natural resources management, environmental
monitoring, and informing hydrological rainfall-runoff models. Gauged precipitation data in dry-
lands are often scarce, fragmented, and with low spatial resolution; therefore, satellite-estimated
precipitation becomes a valuable dataset for overcoming this constraint. Using statistical indices,
we compared satellite-derived precipitation data from four products (CHIRPS, GPM, TRMM, and
PERSIANN-CDR) against gauged data at different temporal scales (daily, monthly, and yearly).
Spatial correlations were calculated for GPM and CHIRPS estimates against interpolated gauged
precipitation. We then estimated NDVI response to Antecedent Accumulated Precipitation (AAP) for
1, 3, 6, 9, and 12 months of four major vegetation types typical of the region. Statistical metrics varied
with temporal scales being highest and acceptable for periods of 1 month or 1 year. At monthly scale
GPM presented the best Pearson’s Correlation Coefficient (r), Root Mean Square Error (RMSE) and
RMSE-observations standard deviation ratio (RSR) and CHIRPS resulted in lower Mean Error (ME)
and Bias. On an annual basis CHIRPS showed the best adjustment for all indicators except for r.
NDVI responses to 3 months of AAP were significant for all vegetation types in the study area. The
findings of this study show that estimated precipitation data from GPM and CHIRPS satellites are
accurate and valuable as a tool for analysing the relationships between precipitation and vegetation
in the drylands of Mendoza.

Keywords: Antecedent Accumulated Precipitation (AAP); Normalized Difference Vegetation Index
(NDVI); remote sensing; satellite estimated rainfall

1. Introduction

The vegetation dynamic in dryland systems is highly dependent on soil moisture
availability [1,2]. This moisture is driven by a variable precipitation pattern characteristic of
drylands, and knowledge of this variability over different timescales contributes to a better
forecast of the state of the vegetation [3,4]. When combined with hydrological information,
satellite-derived vegetation indices are potent indicators of dryland ecosystem status [5].
Vegetation indices represent spectral transformations by combining two or more spectral
bands to reflect vegetation characteristics regarding its state and condition. There are
several vegetation-related indices developed in research, such as NDVI (Normalized Differ-
ence Vegetation Index), EVI (Enhanced Vegetation Index), SAVI (Soil Adjusted Vegetation
Index), DVI (Difference Vegetation Index), NDII (Normalized Difference Infrared Index)
among others [6,7]. NDVI and EVI are the two most common remote sensing (satellite-
derived) indices widely used due to their simplicity. Both indices are proxy indicators for
analysing vegetation dynamics and productivity [6,8–11]. NDVI has also been used in
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the detection of thresholds for degradation [12,13], the classification and identification of
areas of intervention within river basins [14], in natural resources zoning [15], as well as to
identify and quantify the herbaceous component of the NDVI [16] and fractional vegetation
covers [17,18].

At the same time, vegetation types and above-ground net primary production have
been shown to have a direct relationship with precipitation and soil moisture, especially
in drylands. Previous studies suggest a high correlation between precipitation and NDVI
by considering inter-annual variations [3]. Furthermore, vegetation growth is susceptible
to precipitation variations and seasonality, which helps inform warning systems, avoid
overgrazing during dry periods, and adjust the stock rate [19]. Using an algorithm derived
from MODIS surface reflectance [20], photosynthetic and non-photosynthetic vegetation
fractional cover trends were defined and analysed in grasslands and savanna woodlands.
These vegetation fractions present a significant relationship with antecedent accumulated
precipitation (AAP) regarding responses and variations [21].

Lack of precipitation-gauged data or spatially and temporally sparse and fragmented
data is a barrier to sustainably understanding and managing natural pastures [8,22,23].
In areas where precipitation data present long and continuous series, these can be used
as a critical source of information for analysing vegetation growth in combination with
vegetation indices and defining management practices for livestock production. Otherwise,
satellite-derived precipitation data can be applied in areas with little observed or gauged
data, especially in developing countries [24–27] or over great extensions without a gauge
network, such as China and Australia [28].

Timely and accurate precipitation data are then core for supporting cattle grazing in
drylands and, to a greater extent, for water management, environmental monitoring such
as floods and droughts, early warning assessment, as well as inputs for rainfall-runoff
models and decision support systems [28–31]

Global scale reviews of precipitation data at different time scales, from daily to annual,
have shown inconsistencies and variability among datasets depending on the type of
sensors, data collection methods (gauged, satellite-derived, or a combination), regions,
and algorithms used to estimate precipitation data. Several satellite-derived products for
estimated precipitation have been evaluated in different regions and climate conditions
and some of them showed a good performance and an acceptable accuracy [32].

This paper aims to use remote sensing products to obtain reliable precipitation es-
timates and to determine the relationship between NDVI and AAP in natural dryland
vegetation types as a basis for decision support of cattle grazing. Methods are applied to the
drylands of Mendoza, Argentina, a fragile arid and semi-arid ecosystem facing overgrazing
and logging, which has led to increased degradation and desertification processes [33].
Tracking vegetation responses to precipitation in this region is of utmost importance for
managing the limited water resources. Here, satellite-derived precipitation data for Men-
doza using four different satellite products are compared against observed data at several
temporal scales and applied later for analysing the relationships between AAP and NDVI
at different temporal scales.

2. Materials and Methods
2.1. Study Site

The province of Mendoza is located in the central west of Argentina from latitudes
32◦00′ to 37◦35′ south and longitudes 66◦30′ to 70◦35′ west. Mendoza covers an area of
150,839 km2, with the Andean range covering close to 33% of the area on the western
boundary. The plain land extends from the mountains to the east. The Andean range
heavily regulates continental and semi-arid climates, with mean annual precipitation
between 100 mm in the northwest and 600 mm in the southeast [33]. The mean summer
temperature is 24 ◦C, and the winter temperature is 6 ◦C, with a significant daily and
seasonal temperature amplitude. Mendoza subdivides into twelve areas or departments;
however, this research focuses on the Department of General Alvear, the southern sectors
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of the Departments of Santa Rosa and La Paz, and the southern and eastern parts of the
Department of San Rafael. These areas are below the 700 masl., covering about 32.700 km2

and entirely inserted in the Monte desert biome where the mean annual rainfall is 350 mm
(Figure 1).
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Two soil orders dominate in almost all areas of Mendoza, aridisols and entisols,
characterized by underdeveloped soil with low organic matter content. Aridisols present
an aridic soil moisture regime or a salinic horizon with hydromorphism. Four main
soil subgroups are found in Mendoza: typic torripsamments, typic torrifluvents, typic
torriortents and typic calciargids [34]. From a geomorphological point of view, this area
belongs to an endorheic basin filled with fluvial and wind sediments during the upper
tertiary and quaternary [35].

Bush steppes and azonal forest vegetation dominated the phytogeography region
of “Monte,” characterized by evergreen and resinous xerophyte species mainly of the
Zygophyllaceae family [36]. Recent studies using MODIS satellite images defined a func-
tional classification of five Homogeneous Vegetation Areas applying supervised image
classification considering the annual integral of NDVI in the time lapse between 2000 and
2019 as the main component [37]. These areas are: (i) Bush steppe with low land cover;
(ii) Open Bush; (iii) Forest of Prosopis flexuosa; (iv) Riparian forest; and (v) Psammophilious
Grassland of Elionurus muticus [37] (Figure 1).

Bush steppe with low land cover is a vegetation unit dominated by opened patches of
“jarilla” (Larrea divaricate). In contrast, the herbaceous stratum is dominated by Trichloris
crinita and Chloris castilloniana, both species of forage value. Open Bush corresponds to
areas dominated by bushes of “jarilla” (Larrea divaricate) with isolated trees of “Algarrobo”
(Prosopis flexuosa). These trees vary in density according to natural bushfire incidence, recur-
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rence, and regeneration conditions. The herbaceous stratum is characterized by gramineae
species of “esporobolo” (Sporobolus sp.), “pasto algodón” (Digitaria californica), “flechilla de
verano” (Aristida mendocina), “cola de zorro” (Setaria leucopila), Pappphorum caespitosum, and
Trichloris crinite. Forest of Prosopis flexuosa (“Algarrobo”) presents three well-defined strata.
Prosopis dominate the tree stratum. The bush stratum is dominated by Larrea together
with other bushes such as “chañar” (Geofroea decorticans) and “caldén” (Prosopis caldenia).
Grass of Gramineae species and broadleaved species dominate the herbaceous stratum.
Riparian forests are wooded areas adjacent to temporary streams where the tree stratum
reaches its maximum expression. The dominant genus is Prosopis, with the presence of
Tamarix. Finally, Psammophilous grassland is dominated by “paja Amarga” (Elionurus
muticus) and “olivillo” (Hyalis argentea) without trees and few bushes [38,39].

The area is devoted to cattle breeding on these four types of native bushes and
rangelands. Livestock farming is the main agricultural activity of the region, besides
irrigated agriculture near water bodies. It relies on the productivity of natural resources,
which is closely related to the monthly, annual, and seasonal precipitation. Rainfall is
irregular not only in inter-annual quantity but also in timing [40]. Productivity depends on
the type of vegetation, availability of herbaceous species with forage value, antecedents of
natural disasters such as bushfires or droughts, and management practices. Large farming
areas are necessary for livestock production due to limited water access and scarcity of
foraging resources, leading to meagre livestock production rates (0.02 to 0.05 livestock
animals per hectare) [40].

2.2. Normalized Difference Vegetation Index (NDVI) and Accumulated Antecedent Is
Precipitation (AAP)

NDVI index and AAP were correlated using Pearson’s Correlation Coefficient at
monthly timesteps. NDVI from MODIS-Terra (Moderate Resolution Imaging Spectroradio-
meter)—Vegetation Indices (MOD13Q1 V6.1). The MOD13Q Version 6.1 used in this paper
is a derived NDVI as the continuity index to the existing National Oceanic and Atmospheric
Administration-Advanced Very High-Resolution Radiometer (NOAA-AVHRR). It is gener-
ated every 16 days at 250 m (m) spatial resolution. It is a product featuring atmospherically
corrected bi-directional surface reflectance that has been masked for water, clouds, heavy
aerosols, and cloud shadows and was averaged to the timestep of the analysis [41]. NDVI
and monthly precipitation from GPM [42] were correlated over a period of 20 years (June
2000 to May 2020/240 months) considering 0 AAP (monthly) and 1, 3, 6, 9, and 12 months
of AAP. As an example, for the month of March it was considered the precipitation of
the month (0 AAP), the precipitation of February (1 AAP), the sum of precipitation of
December, January, and February (3 AAP), the sum of precipitation from September to
February (6 AAP), the sum of precipitation from June to February (9 AAP), and finally
the sum of precipitation from March to February (12 AAP). The analysis was carried out
spatially (pixel-to-pixel) in 100 points of each of the four primary vegetation types of the
area of interest (Bush steppe with low land cover; Open Bush; Forest of Prosopis flexuosa;
and Psammophilous Grassland). In summary, correlations were made at 400 points over
240 months at six different AAPs.

Considering measured data, NDVI and AAP were correlated in the four ground
stations that belong to institutional networks and are operated by national organizations,
meaning they are collected following a protocol. These stations include only two vegetation
types: Open Bush (Ñacuñan and Cochicó) and Forest of Prosopis (El Goico and La Mora).
The correlation was performed according to the gauged precipitation data from 2008 to
2019 against the average of the 100 points NDVI of each vegetation type.

2.3. Gauged and Satellite Estimated Precipitation Data

A comparison of gauged and satellite data was performed to analyse the suitability of
using satellite precipitation data to estimate AAP. Precipitation gauge data were collected
from nine gauge stations (Table 1) across Mendoza or nearby (Figure 2). Two gauge stations,
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Ñacuñan and Cochicó, are operated by the Argentine Institute of Researching in Arid
Zones—IADIZA. These are automatic stations, Ventage Pro 2 type, with an integrated
sensor that combines temperature, relative humidity, precipitation by a bucket system,
solar radiation, and wind speed, all together in a unique package. The other two gauge
stations, Puesto La Mora and El Goico, are conventional stations operated by the Secretariat
of Infrastructure and Water Resources Policy in the National System of Hydrological
Information (NSHI) framework. Data from Rama Caída combine an automatic gauge
station and a conventional station operated by the Argentine Institute of Agriculture
Technology. Puesto Marfil and Navia are automatic stations operated by NSHI. Finally, two
other gauge stations, San José and Caltana, are conventional pluviometers located on local
farms operated by the owners or farm managers. Five stations (Cochicó, El Goico, Puesto La
Mora, and Ñacuñan) were used for direct comparison and validation pixel-to-point at daily
timestep; an additional station with monthly data (San Jose) was used for pixel-to-point at
monthly and yearly timestep. Finally, three additional gauge stations (Rama Caida, Navia,
and Puesto Marfil) were considered for interpolation analysis on a pixel-to-pixel basis to
represent the interest area’s border better.

Table 1. Gauge stations information.

Gauge Stations Data Availability Provider/Source Spatial Resolution Observed Precipitation

Ñacuñan * 2008-05-01/2019-08-23 IADIZA Point mm/day
Ñacuñan * 1919–2019 IADIZA Point mm/month
El Goico * 1993-01-01/2019-12-31 NSHI Point mm/day

Puesto La Mora * 1983-07-01/2020-06-30 NSHI Point mm/day
San Jose ** 1984-01/2019-03 Local farmer Point mm/month
Caltana ** 2011-01-01/2020-07-31 Local farmer Point mm/day
Cochicó * 2008-09-10/2019-08-22 IADIZA Point mm/day

Rama Caída*** 01-09-1968–today INTA Point mm/day
Puesto Marfil *** 01-11-2008/31-07-2019 NSHI Point mm/day

Navia *** 01-08-2002/31-03-2021 NSHI Point mm/day

* Pixel-to-point and Interpolation; ** Pixel-to-point and validation pixel-to-pixel; *** Used only for interpolation.

Precipitation data from remote sensing collections were gathered (12 August 2020)
through Google Earth Engine (GEE) considering four free-access sources with global
coverage (Table 2): Tropical Rainfall Measuring Mission (TRMM); Global Precipitation
Measurement (GPM); Climate Hazards Group InfraRed Precipitation with Station data
(CHIRPS); and Precipitation Estimation from Remotely Sensed Information Using Artificial
Neural Networks-Climate Data Record (PERSIANN-CDR). TRMM is a gridded precipi-
tation product built by calibrating and combining infrared and microwave precipitation
estimates from multiple satellites, including SSMI (Special Sensor Microwave Imager),
SSMIS (Special Sensor Microwave Imager Sounder), MHS (Microwave Humidity Sounder),
AMSU-B (Advanced Microwave Sounding Unit—B), and AMSR-E (Advanced Microwave
Scanning Radiometer for EOS) [43]. GPM is an international satellite mission that retrieves
precipitation estimates by applying an algorithm that inter-calibrates, interpolates, and
merges satellite and gauge data [42]. CHIRPS combines satellite imagery with in situ
station data to create gridded precipitation estimates based on infrared cold-cloud duration
observations [44]. Finally, PERSIANN-CDR uses Gridded Satellite (GridSat-B1) infrared
data that are derived from merging ISCCP B1 infrared data, along with GPCP version 2.2,
combining infrared and passive/active microwave information from multiple geostationary
earth-orbiting and low-earth-orbit satellites, and uses an artificial neural network (ANN)
model to estimate the surface precipitation rate at each pixel [45].
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Table 2. Image collections information.

Image
Collections

Data
Availability Provider/Source Spatial

Resolution
Temporal

Resolution
Estimated

Precipitation

TRMM
Daily/Monthly 1998-01-01 NASA

ee.ImageCollection(“TRMM/3B42”) 0.25 degrees 3-h mm/h

GPM
Daily/Monthly 2000-06-01

NASA
ee.ImageCollection-

(“NASA/GPM_L3/IMERG_V06”)
0.1 degrees 30 min/

3 h/daily mm/h

CHIRPS 1981-01-01
UCSB/CHG

ee.ImageCollection(“UCSB-
CHG/CHIRPS/DAILY”)

0.05 degrees Daily mm/day

PERSIANN 1983-01-01

NOAA
UC-IRVINE/CHRS
ee.ImageCollection-

(“NOAA/PERSIANN-CDR”)

0.25 degrees Daily mm/day

2.4. Data Analysis

Observed and estimated precipitation data were analysed in the different gauge station
locations (pixel-to-point) according to each satellite product’s spatial resolution, considering
the pixel values that intersect the gauge station location. An initial assessment for data
consistency was carried out using the double-mass curve methodology. The double-mass
curve compares accumulated annual precipitation of estimated data at each station against
a reference station using linear regression, and inconsistencies are shown as changes in the
curve slope. The reference accumulated precipitation was obtained by spatially averaging
the yearly data of all stations.
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Statistical analysis was performed by considering the following indices [24,46,47]:
(i) Pearson’s correlation coefficient (r): this procedure shows the strength of the rela-

tionship between the measured and estimated precipitation data. Values of PCC closest to
1 are highly correlated.

r =
∑n

i=1
(
Gi− G

)(
Si− S

)√
∑n

i=1
(
Gi− G

)2
√

∑n
i=1
(
Si− S

)2
(1)

where G is the measured precipitation data in the gauge station, S is the estimated data
by remote sensing, n is the number of data pairs, i is individual data corresponding to
daily, monthly, or annual data, and G and S are the averages of measured and estimated
precipitation, respectively.

(ii) Mean Error (ME): this method shows the average error between measured and
gauged data. Negative values indicate an underestimation of satellite precipitation, while
positive values indicate an overestimation of satellite precipitation. Values range from −
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To analyse the accuracy of estimated precipitation spatially (pixel-to-pixel), satellite-
estimated precipitation from CHIRPS and GPM were compared against interpolated 
gauged data using the r indicator over the area of interest. Data from Rama Caída, Puesto 
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(iii) Bias: this indicator shows to what extent measured data are underestimated or
overestimated by satellite data according to the negative or positive value, respectively.
The desired value is 0; low magnitudes indicate high simulation accuracy.

Bias = ∑n
i=1 Si
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− 1 (3)

(iv) Root Mean Square Error (RMSE) and Root Mean Square Error Observation Stan-
dard Deviation Ratio (RSR): the RMSE estimates the absolute average error between mea-
sured data and satellite-estimated data. RSR incorporates the standard deviation (STD DV)
as a normalization factor. Both metrics range from 0 to
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(v) Nash–Sutcliffe Efficiency coefficient (NSEc): this index shows to what extent the
satellite estimates data are a good predictor of the measured data. Values range from −

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 21 
 

 

2.4. Data Analysis 
Observed and estimated precipitation data were analysed in the different gauge sta-

tion locations (pixel-to-point) according to each satellite product’s spatial resolution, con-
sidering the pixel values that intersect the gauge station location. An initial assessment for 
data consistency was carried out using the double-mass curve methodology. The double-
mass curve compares accumulated annual precipitation of estimated data at each station 
against a reference station using linear regression, and inconsistencies are shown as 
changes in the curve slope. The reference accumulated precipitation was obtained by spa-
tially averaging the yearly data of all stations. 

Statistical analysis was performed by considering the following indices [24,46,47]: 
(i) Pearson’s correlation coefficient (r): this procedure shows the strength of the rela-

tionship between the measured and estimated precipitation data. Values of PCC closest to 
1 are highly correlated. 𝑟 =  ∑ (𝐺𝑖 − �̅�)(𝑆𝑖 − 𝑆̅)ୀଵට∑ (𝐺𝑖 − �̅�)ୀଵ ଶ  ට∑ (𝑆𝑖 − 𝑆̅)ୀଵ ଶ (1) 

where 𝐺 is the measured precipitation data in the gauge station, 𝑆 is the estimated data 
by remote sensing, n is the number of data pairs, i is individual data corresponding to 
daily, monthly, or annual data, and �̅� and 𝑆̅ are the averages of measured and estimated 
precipitation, respectively. 

(ii) Mean Error (ME): this method shows the average error between measured and 
gauged data. Negative values indicate an underestimation of satellite precipitation, while 
positive values indicate an overestimation of satellite precipitation. Values range from -ꝏ 
to ꝏ with the desired value being 0. 𝑀𝐸 =  1𝑛  (𝑆𝑖 − 𝐺𝑖)ୀଵ  (2) 

(iii) Bias: this indicator shows to what extent measured data are underestimated or 
overestimated by satellite data according to the negative or positive value, respectively. 
The desired value is 0; low magnitudes indicate high simulation accuracy. 𝐵𝑖𝑎𝑠 = ∑ 𝑆𝑖ୀଵ∑ 𝐺𝑖ୀଵ − 1 (3) 

(iv) Root Mean Square Error (RMSE) and Root Mean Square Error Observation 
Standard Deviation Ratio (RSR): the RMSE estimates the absolute average error between 
measured data and satellite-estimated data. RSR incorporates the standard deviation (STD 
DV) as a normalization factor. Both metrics range from 0 to ꝏ with the desired value being 
0. The lower the values, the better the model’s performance. 

𝑅𝑀𝑆𝐸 =  ඨ1𝑛  (𝑆𝑖 − 𝐺𝑖)ଶୀଵ  (4) 

𝑅𝑆𝑅 =  𝑅𝑀𝑆𝐸𝑆𝑇𝐷 𝐷𝑉 (5) 

(v) Nash–Sutcliffe Efficiency coefficient (NSEc): this index shows to what extent the 
satellite estimates data are a good predictor of the measured data. Values range from −ꝏ 
to 1, being the desired value 1. 𝑁𝑆𝐸𝑐 = 1 − ∑ (𝑆𝑖 − 𝐺𝑖)ଶୀଵ∑ (𝐺𝑖 − �̅�)ଶୀଵ  (6) 

To analyse the accuracy of estimated precipitation spatially (pixel-to-pixel), satellite-
estimated precipitation from CHIRPS and GPM were compared against interpolated 
gauged data using the r indicator over the area of interest. Data from Rama Caída, Puesto 

to 1, being the desired value 1.

NSEc = 1− ∑n
i=1(Si− Gi)2

∑n
i=1
(
Gi− G

)2 (6)

To analyse the accuracy of estimated precipitation spatially (pixel-to-pixel), satellite-
estimated precipitation from CHIRPS and GPM were compared against interpolated
gauged data using the r indicator over the area of interest. Data from Rama Caída, Puesto
Marfil, Navia, Ñacuñan, Cochicó, El Goico, and La Mora (Figure 2) were used for interpo-
lating monthly precipitation (mm/month) from November 2008 to December 2018. Data
from Caltana and San José (Figure 2) were used for validating the interpolation.

(vi) Inverse Distance Weighted to a power: two interpolation analyses were carried out
using the System for Automated Geoscientific Analyses (SAGA), Version: 7.6.3, 64-bit (http:
//www.saga-gis.org, accessed on 30 June 2020) and Real Statistic Add-Ins for Microsoft

http://www.saga-gis.org
http://www.saga-gis.org
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Excel. Interpolation was run in two cell sizes, 0.05 and 0.1 degrees, corresponding to the
spatial resolutions of the satellite data from CHIRPS and GPM, respectively.

3. Results
3.1. Gauged and Estimated Precipitation Comparison

The double-mass analyses indicated the consistency of all remote-sensing products.
All satellite products showed linear behaviour without any break in the slope and with
high correlation values (r2 > 0.99) at the six gauge stations, which ensured data consistency
throughout the gathering period [48] (Figures S1–S4 in Supplementary Materials).

3.1.1. Pixel-to-Point Analysis

Indicators r, ME, Bias, RMSE, RSR, and NSEc were used to test the relation between
daily, monthly and annual gauged and estimated precipitation data. Results are presented
in Figure 3a–f for the monthly scale and Figure 4a–f for the annual scale and Tables S1–S12,
respectively. Daily r showed lower correlations (0.14 < r < 0.65) for all the locations (Table 3);
therefore, further analyses were carried out only on a monthly and annual basis.

Monthly indicators performance varied among satellite products and gauge stations.
Monthly r showed good average values for GPM and TRMM and fair average values
for CHIRPS and PERSIANN. In general, CHIRPS, TRMM and GPM performed better
compared to PERSIAN. The higher r values were found for GPM estimate precipitation at
all gauge stations (Figure 3a), ranging from 0.72 at Cochicó to 0.90 at Ñacuñan. Regarding
ME, values ranged from 31 mm/month for PERSIAN at Cochicó to 0.07 mm/month for
GPM at Caltana (Figure 3b). GPM and TRMM had very similar average ME, and they
both overestimate precipitation at around 7 mm/month, while CHIRPS underestimates
it at about 5 mm/month (Figure 3b). The most significant adjustments were found at the
Caltana gauge station for CHIRPS (ME = 0.04) and GPM (ME = 0.002). Similarly, CHIRPS,
TRMM and GPM showed better Bias values than PERSIANN and while CHIRPS underesti-
mates some stations, GPM and TRMM show consistent overestimation (Figure 3c). The
average values of NSEc showed acceptable performance for CHIRPS in all stations, mostly
acceptable for TRMM and GPM, but very poor performance for PERSIANN (Figure 3d). At
the gauge station level, the best performance of satellite estimated data was found for GPM
at Ñacuñan (NSEc = 0.75) and Caltana (NSEc = 0.68). RMSE and RSR presented acceptable
average values for CHIRPS, GPM and GPM and worse performance for PERSIANN. At all
gauge stations, CHIRPS consistently presented values of RSR between 0 and 1 (Figure 3f).
The best GPM performance occurred at Ñacuñan with the lowest RMSE (18.1) and RSR
(0.50) values (Figure 3e,f).

On an annual basis, the performance of estimated precipitation against gauged data
was variable among satellite products and gauge stations. The highest r was found in GPM
at Goico (0.92), while the worst performance was PERSIANN at Caltana (0.52) (Figure 4a).
In general, Caltana stations had the best performance with all estimated precipitation. In
addition, all satellite estimated data presented good average r values, with the GPM with
the highest score (Figure 4a). CHIRPS presented the lowest values of ME and Bias with
a negative sign (underestimation). At the same time, TRMM and GPM also performed
well when considering ME and Bias metrics but overestimated the data (Figure 4b,c). GPM
at Caltana showed the best adjustment for estimated annual data with a ME of 0.89 mm
and a Bias of 0.002. CHIRPS is the only product with a positive average NSEc value, while
the other satellite products’ performance was only acceptable in some stations (Figure 4d).
CHIRPS showed good RMSE and RSR average values compared to the other products
(Figure 4f). To integrate and compare the indicators by satellite product for the six gauge
stations, the average monthly and annual values are presented in Tables 4 and 5. Best
values are highlighted in bold.
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At monthly timestep (Table 4), GPM presented the best correlation, RMSE, and RSR.
CHIRPS resulted in lower ME and Bias, while both products showed equal accuracy ac-
cording to NSEc values. On an annual basis (Table 5), CHIRPS showed the best adjustment
for all indicators except for r. GPM correlated the best between gauged and estimated
satellite precipitation.
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Table 3. Daily Pearson’s Correlation Coefficient between gauged and satellite-estimated precipitation.

Ñacuñan Cochicó Goico Caltana La Mora

PERSIANN 0.34 0.30 0.29 0.14 0.32
CHIRPS 0.32 0.39 0.25 0.14 0.24
TRMM 0.63 0.44 0.29 0.22 0.36
GPM 0.65 0.44 0.35 0.35 0.40
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Table 4. Monthly Pearson’s Correlation Coefficient (r), Mean Error (ME), Bias, Nash–Sutcliffe Ef-
ficiency Coefficient (NSEC), Root Mean Square Error (RMSE), and RMSE-observations standard
deviation ratio (RSR) by satellite product averaged over all gauge stations.

r ME BIAS NSEC RMSE RSR

PERSIANN 0.62 15.58 0.42 −0.30 38.97 1.15
CHIRPS 0.68 −4.91 −0.12 0.39 30.23 0.78
TRMM 0.74 6.94 0.23 0.21 31.88 0.86
GPM 0.78 7.32 0.26 0.39 26.74 0.75

Table 5. Annual Pearson’s Correlation Coefficient (r), Mean Error (ME), Bias, Nash–Sutcliffe Efficiency
Coefficient (NSEC), Root Mean Square Error (RMSE), and RMSE-observations standard deviation
ratio (RSR) by satellite product averaged over all gauge stations.

r ME BIAS NSEC RMSE RSR

PERSIANN 0.73 183.97 0.51 −5.07 229.84 1.85
CHIRPS 0.72 −49.25 −0.12 0.03 120.26 0.80
TRMM 0.74 84.14 0.23 −2.64 235.61 1.54
GPM 0.79 92.91 0.27 −1.13 142.86 1.13

Finally, the average value of the statistical metrics was calculated to determine the
performance of the estimated data at each gauge station. Tables 6 and 7 present the average
statistics of the estimated data at each location at the monthly and annual levels.

Table 6. Monthly Pearson’s Correlation Coefficient (r), Mean Error (ME), Bias, Nash–Sutcliffe Ef-
ficiency Coefficient (NSEC), Root Mean Square Error (RMSE), and RMSE-observations standard
deviation ratio (RSR) by gauge station averaged over all satellite products.

r ME BIAS NSEC RMSE RSR

Ñacuñan 0.83 1.62 −0.09 0.56 23.35 0.66
Cochicó 0.67 16.87 0.68 −0.56 34.20 1.21
Goico 0.67 7.61 0.27 0.24 29.86 0.96
Caltana 0.60 6.08 0.18 −0.09 33.94 1.00
La Mora 0.79 2.91 0.08 0.54 32.02 0.67
San Jose 0.66 2.30 0.06 0.33 38.38 0.82

Table 7. Annual Pearson’s Correlation Coefficient (r), Mean Error (ME), Bias, Nash–Sutcliffe Efficiency
Coefficient (NSEC), Root Mean Square Error (RMSE), and RMSE-observations standard deviation
ratio (RSR) by gauge station averaged over all satellite products.

r ME BIAS NSEC RMSE RSR

Ñacuñan 0.88 25.03 0.07 0.05 102.08 0.71
Cochicó 0.76 202.05 0.68 −9.71 232.70 2.65
Goico 0.80 101.17 0.27 −0.03 143.46 0.96
Caltana 0.63 70.74 0.18 −1.27 151.58 1.25
La Mora 0.80 42.73 0.09 −2.29 283.40 1.44
San Jose 0.61 25.94 0.05 0.02 179.63 0.97

Ñacuñan performed better for the statistical metrics considering the average of all
satellite estimated data except for Bias, although this last value was acceptable.

3.1.2. Pixel-to-Pixel Analysis

Pearson’s Correlation Coefficient (r) was calculated for comparing and analysing the
accuracy of estimated precipitation spatially (pixel-to-pixel) against interpolated gauged
data within the interest area.
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Figures 5 and 6 present distributed values of estimated precipitation by CHIRPS
and GPM satellite and interpolated gauged data at a 0.05-degree and 0.1-degree spatial
resolution, respectively, from 2008 to 2018. Figure 7 presents the distributed r between
interpolated and estimated monthly precipitation by CHIRPS and GPM for the same period.
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Although both satellites performed well, GPM presented a better correlation between
satellite-estimated data and gauged interpolated data. For the GPM satellite, most pixels
reached a high or very high correlation (r > 0.8).

Two gauge stations within the interest area, Caltana and San José, were used to validate
and evaluate the correlation analysis’s consistency. Table 8 presents the PPC values for
estimated data from CHIRPS, interpolated, and gauged data. Table 9 presents the results of
the GPM satellite estimated precipitation.
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Caltana
CHIRPS
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Caltana Gauge 0.65 1 San José gauge 0.68 1
Caltana interpolated 0.88 0.71 San José interpolated 0.83 0.76

Table 9. Pearson’s Correlation Coefficient among monthly estimated data from GPM, interpo-
lated data, and gauged data on a pixel-to-pixel and pixel-to-point basis at Caltana and San Jose
gauge stations.

Caltana
GPM

Caltana
Gauge

San José
GPM

San José
Gauge

Caltana Gauge 0.74 1 San José gauge 0.72 1
Caltana interpolated 0.89 0.71 San José interpolated 0.83 0.77

3.2. NDVI and Accumulated Antecedent Precipitation Analysis

GPM satellite estimated precipitation was then correlated to MODIS-derived NDVI at
a monthly temporal scale from 2000 to 2020, considering monthly (0 AAP) and 1, 3, 6, 9 and
12 months AAP. The analysis was carried out in 100 points of each primary vegetation type
of the interest area. Figure 8 shows the monthly evolution of the estimated precipitation
and the NDVI for each vegetation type as the average of the points. The shape and patterns
of the NDVI curves and precipitation bar show a summer seasonal vegetation growing
and precipitation.

Values of r varied according to the accumulated antecedent monthly precipitation
and vegetation types. Figure 9 shows the average r variation for each vegetation type as a
function of AAP. All vegetation types showed a similar response and behaviour to AAP,
with a higher correlation between NDVI and 3 months of AAP, followed by 1 month of
AAP for Open Bush, Forest of Prosopis flexuosa, and Psammophilous grassland. It is possible
to differentiate bush steppe with low land cover from the other bush types and grassland
as the curve slope of this vegetation type is smoother between 6 and 12 months of AAP.
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Figure 9. Average Pearson’s Correlation Coefficient for Vegetation type and Accumulated
Antecedent Precipitation.

Considering ground-measured data, Figure 10 presents the correlation r for each
vegetation type and AAP for the four gauged stations: Ñacuñan (a), Cochicó (b), El Goico
(c), and La Mora (d).

Correlation values present differences among gauged stations and vegetation types.
Lower values for Bush Steppe and Psammophilous grassland could be explained since
the stations are in Open Bush and Forest of Prosopis flexuosa vegetation types. The four
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stations show a higher correlation for 3-months and 6-month AAP, except for Open Bush
at Cochicó. Stations in Forest of Prosopis flexuosa (La Mora) and Open Bush (Ñacuñan)
show similar results compared to the correlation from 100 random points and estimated
precipitation (GPM).
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4. Discussion

In the drylands of Mendoza, similarly to other dryland regions worldwide, few
precipitation gauge data stations with long continuous series allow for suitable distributed
precipitation and vegetation analysis. Satellite-estimated precipitation data are crucial and
valuable for decision-making and natural resources management. However, uncertainties
related to estimation methods and analytical approaches must be acknowledged and
quantified to have this data translated into decision-making [30].

Estimated satellite precipitation from the four satellite products CHIRPS, GPM, TRMM,
and PERSIANN are consistent throughout the gathering periods since the double-mass
curves do not present significant displacement of the line from the combined points or
changes in the curve slope and showed a straight linear behaviour with a high correlation
(See Supplementary Materials).

The indicator r was variable among temporal scales, satellites and gauge stations.
Lower r values at daily timestep can be explained by differences in how dates are assigned
to satellite products and gauge stations. While satellite products are set using UTC or GTS
time zones, automatic gauge stations from national networks retrieve mm/day calculated
from 9 am of one day to 9 am on the following day. This noise in data matching is diluted
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at monthly and yearly timesteps. Then, more robust relationships between the measured
and estimated precipitation data were found at monthly and annual scales. GPM showed
the best performance monthly, while on an annual basis, GPM, together with CHIRPS and
PERSIANN, reached high correlation values. Considering the average r, GPM presented
the best correlation values. These findings are consistent with [24] who compared seven
satellite-based products’ estimated precipitation in Burkina Faso. On a daily temporal
scale, all the products showed a low correlation (r < 0.50). These results reversed when
considering monthly and annual time steps (r > 0.80). Better performances were shown for
those satellite-based products with higher spatial resolution. Increased accuracy at monthly
and annual time-step was also found by Muhammad et al. [26] for satellite-based products,
although with variation among climate regions. Following the performance comparison
using r, the other indicators were carried out only for monthly and annual temporal scales.

ME shows the average error between measured and gauged data. One satellite product,
CHIRPS, underestimates the data, while the other three overestimate the precipitation.
CHIRPS presented the lower ME. However, on a monthly scale, the absolute magnitude of
the difference of the mean error for TRMM and GPM compared to CHIRPS is only about 2
and 2.4 mm. Other researchers also found that most satellite-based products overestimate
precipitation in South America, especially in areas with convective precipitation [32].

Bias shows to what extent measured data are underestimated or overestimated by
satellite data depending on how close to 1 the values are. CHIRPS, TRMM and GPM
showed a similar performance with magnitudes of difference from 1 of 0.22, 0.23 and
0.26, respectively.

CHIRPS and GPM presented the lowest absolute average error between measured and
satellite-estimated data according to the RMSE at both temporal scales. These two satellites
were also the best predictors of the measured data from estimates as they presented the
best values of NSEc.

Gao et al. [49] compared CHIRPS and PERSIANN CDR for estimated precipitation and
found that both PERSIANN and CHIRPS showed Correlation coefficients that were very
similar at monthly and annual temporal scales. However, in our case, CHIRPS performed
better for BIAS and RMSE. Comparing PERSIANN and CHIRPS against interpolated precip-
itation from gauged data, CHIRPS presented better statistics and metrics than PERSIANN,
probably due to its higher spatial resolution.

Toté et al. [27] found variations comparing three satellite-estimated precipitation
products in Mozambique according to the magnitude of precipitation, season, and country
region. They also found that algorithms that combine TIR and PM, such as CHIRPS, had
better statistical performance than those only based on TIR.

r was also calculated for comparing and analysing the accuracy of estimated precipita-
tion from CHIRPS and GPM in a distributed extension—pixel by pixel, against interpolated
gauged data within the interest area. Dembélé et al. [24] suggested carrying out this kind
of pixel-to-pixel analysis to estimate the accuracy of these products for spatial precipitation
patterns. GPM performed better since all the pixels reached a high or very high correlation.
These findings were validated by correlating the estimated precipitation, interpolated
precipitation, and gauged data at two gauge stations located within the interest area.

However, gridded precipitation data from interpolated gauged data vary according
to gauge station density, distribution, and evolution over time. The accuracy of gridded
and gauged data also depends on interpolation methods used, most of them based on the
distance between stations. Uncertainties arise from using gridded data and employing
estimated satellite precipitation data. Therefore, acknowledging and quantifying these
uncertainties become significant but must not be seen as barriers to using data, especially
in areas with scarce or no data [29].

In the interest area, storms occur mainly as convection episodes during spring and
summer, influenced by the Andean range, air moisture, and thermal amplitude, among
other factors [50]. These convective storms are spatially located; therefore, satellite-gridded
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estimated precipitation data are likely to fit better than interpolated data in reflecting the
distributed precipitation.

MODIS-derived NDVI at a monthly temporal scale from 2000 to 2020 was correlated to
GPM satellite-estimated precipitation considering monthly and 1-, 3-, 6-, 9- and 12-months
AAP. This analysis in 100 points of each primary vegetation type of the interest area showed
that the highest correlation between NDVI and antecedent accumulated precipitation was
with 3 months AAP for all the vegetation types.

The evolution of NDVI as a function of APP showed little differences among vegetation
types except for bush steppe with low land cover, which presented a smoothed curve for 6-,
9- and 12-months AAP. This similarity in the curve shapes can be partly explained because
the area belongs to the same phytogeography region of “Monte” and has many typical
species of semi-arid ecosystems in common.

Considering the correlation between NDVI and AAP from individual gauge stations,
higher values were found with 3-month and 6-month AAP for the four vegetation types.
Comparing the results of correlations from estimated and measured AAP, the differences
could be partly explained by the length of the data available and that ground stations are
in two of the four vegetation types.

These arid and semi-arid bushlands share the characteristic of having most of the
root systems up to 1 m depth, which makes them more sensitive to short-term changes
in soil moisture [7]. Previous studies analysing the vegetation fractions’ dependence on
antecedent accumulated precipitation for Australia found the best response of photosyn-
thetic fraction cover for an accumulated period lower than 12 months AAP [21]. Other
researchers in arid rangelands also found a higher correlation between NDVI and AAP
between three months during summer and up to six months in winter [51]. These variations
in ecosystem productivity measured through NDVI associated with changes in AAP and
then to water availability were also found in dryland globally but more significant in
the southern hemisphere [3]. However, spatial scales of analysis and land use manage-
ment must be considered in comparing patterns of responses of vegetation to antecedent
accumulated precipitation.

For cattle grazing management based on natural vegetation, the relationship between
NDVI, biomass, and precipitation result is essential for the production’s sustainability and
avoiding overgrazing. Estimated precipitation such as satellite products was not assessed in
this region, especially considering that storms present a highly uneven spatial distribution
due to their convective nature [50]. Furthermore, for livestock farming, forage availability
is critical in decision-making in terms of managing the calves/cows ratio and when to
discharge the field. In dry areas where vegetation and animal growth are sensitive to
precipitation changes, the availability of reliable and timely precipitation data would sup-
port a decision system and develop adaptation management practices considering climate
change and variability [19]. Lack of precipitation-gauged data or having them spatially and
temporally sparse and fragmented is a barrier to sustainably managing natural resources
and production systems and building decision support systems according to environmental
conditions. Remote-sensing-estimated precipitation was successfully applied in areas with
little observed or gauged data, especially in developing countries [24–27] or over great
extensions without a dense gauge network, such as China and Australia [28].

5. Conclusions

This paper aimed to determine the relationship between NDVI and AAP in natural
dryland vegetation types as a basis for decision support in cattle grazing. In doing so and
considering the lack of reliable and continuous precipitation data, firstly, observed and
estimated precipitation data from remote sensing were compared to evaluate its suitability
and accuracy as a tool for analysing climate parameters and vegetation index in areas with
scarce gauged data, such as the drylands of Mendoza. Secondly, estimated and gauged
AAP precipitation was correlated to NDVI in four vegetation types.
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Results from correlating NDVI and AAP showed a high association between natural
vegetation productivity and precipitation. CHIRPS and GPM showed accuracy at monthly
and annual temporal scales according to the evaluated statistics and metrics, making them
valuable and reliable for considering these estimated data in models and analyses. Based
on the findings of this paper regarding the relationship between NDVI and AAP, farmers
must consider the accumulated precipitation of 3 months of AAP rather than the current or
previous month’s precipitation for livestock management.

Satellite-estimated precipitation correlated better than interpolated precipitation from
gauge stations, probably due to the convective nature of the summer storms. CHIRPS has a
higher spatial resolution given by a 0.05-degree pixel against 0.1-degree for GPM, which
confers a more significant source of information. However, GPM would better inform
early warning systems or management decisions such as forage forecasting in livestock
because of its quasi-real-time availability (two or three days) at Google Earth Engine
(GEE) image collection catalogues, compared to CHIRPS, which is available between 1 and
2 months later.

Limitations of this methodology may arise due to limited data processing capacity,
consistency of gauged precipitation data, and timely access to information. Although
the findings of this work apply to southeast Mendoza, methodologically, they can be
extrapolated to other areas with scarce or fragmented precipitation information. Free
access to the estimated precipitation dataset is an asset that becomes essential when com-
bined with NDVI data to support decision-making for livestock farmers in areas with no
gauged information.

In conclusion, estimated precipitation data from GPM and CHIRPS satellites are
accurate and valuable for analysing the relationships between precipitation and other
different factors related to vegetation growth and status, such as NDVI, natural resources
management, bushfires warnings, droughts, precipitation use efficiency, and as input for a
decision support system in drylands of Mendoza, Argentina.

Further studies considering water availability during the growing season of each
vegetation type are needed to have a deeper understanding of vegetation dynamics and to
enhance the tool for natural pasture management.
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//www.mdpi.com/article/10.3390/rs15143615/s1, Figures S1–S4 present the Double Mass Analyses
for the four satellite products at the gauge stations locations. Tables S1–S12 present the annual
and monthly statistics by gauged and satellite-estimated precipitation for Pearson’s Correlation
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