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Adult C57BL/6J mice have been used to study Foot-and-mouth disease virus (FMDYV) biology. In this work, two
variants of an FMDV A/Arg/01 strain exhibiting differential pathogenicity in adult mice were identified and
characterized: a non-lethal virus (AO1NL) caused mild signs of disease, whereas a lethal virus (AO1L) caused
death within 24-48 h independently of the dose used. Both viruses caused a systemic infection with pathological
changes in the exocrine pancreas. Virus AO1L reached higher viral loads in plasma and organs of inoculated
mice as well as increased replication in an ovine kidney cell line. Complete consensus sequences revealed 6 non-

synonymous changes between AO1L and A10NL genomes that might be linked to replication differences, as
suggested by in silico prediction studies. Our results highlight the biological significance of discrete genomic
variations and reinforce the usefulness of this animal model to study viral determinants of lethality.

1. Introduction

Foot-and-mouth disease (FMD) is a highly contagious viral disease
of wild and domestic cloven-hoofed animals. The disease has major
economic impact due to severe productivity losses and to the restric-
tions imposed to the trade of animals and animal products from FMD-
affected regions (Sobrino, 2004). Prevention and control of FMD is
achieved by sanitary profilaxis as well as vaccination of susceptible
animals in endemic areas.

The etiological agent of FMD is Foot-and-mouth disease virus
(FMDV), the prototype member of the genus Aphthovirus within the
Picornaviridae family. The viral particle is an icosahedron which
encloses a single-stranded positive-sense RNA of approximately 8200
nucleotides that is linked covalently to the viral protein VPg at its 5’
end. The viral genome is flanked by untranslated regions at both its 5’
and 3’ termini and encodes a polyprotein that is subjected to co-
translational cleavage to produce the 4 capsid proteins (VP4, VP2, VP3
and VP1) and 10 non-structural proteins (Lpro, 2A, 2B, 2C, 3A, 3B1,

3B2, 3B3, 3Cpro and 3Dpol) (Grubman and Baxt, 2004). Like other
RNA viruses, FMDV replication is catalyzed by an error-prone viral
RNA polymerase (3Dpol) and consequently the virus appears as a
population of different but phylogenetically-related variants known as
the viral quasispecies (Haydon et al., 2001; Domingo et al., 2003, 1980;
Sobrino et al., 1983). The virus exists as 7 immunologically different
serotypes (A, O, C, Asia, SAT1, SAT2, SAT3) and multiple subtypes that
elicit effective neutralizing antibodies that do not confer cross-protec-
tion among serotypes.

Natural FMDV infection in cattle occurs mainly via the respiratory
route by aerosolized virus and subsequent primary infection of
nasopharynx and lung, followed by a viremic phase and dissemination
to secondary replication sites (reviewed by Arzt et al., 2011). Although
many aspects of FMD in natural hosts have been studied extensively,
viral and host factors related to FMDV virulence and pathogenesis are
not completely understood. It is well known that FMDV leader
proteinase (Lpro) plays a role as a virulence factor, since viruses of
serotype A lacking this region or carrying mutations within Lpro
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display an attenuated phenotype in cell culture and show no replication
in cattle and pigs (Chinsangaram et al., 1998; Mason et al., 1997;
Diaz-San Segundo et al., 2012). Other viral proteins such as 3A or
structural proteins have also been proposed as virulence determinants
both in cell culture and in natural hosts. Indeed, Pacheco et al.
demonstrated that 3A protein of type OlCampos is relevant for
replication in cattle and in primary cell cultures of bovine origin
(Pacheco et al., 2013), and this viral protein has also been associated
with FMDV adaptation to the guinea pig (Nufiez et al., 2001). Other
authors have shown that VP1, VP2 and VP3 proteins are determinants
of FMDV pathogenesis in cattle and swine (Lohse et al., 2012; Botner
et al., 2011), and deletions of the RGD motif in VP1 (Rieder et al.,
1996) or acquisition of positive charge have been related to attenuation
in cattle and swine (Borca et al., 2012; Sa-Carvalho et al., 1997; Zhao
et al., 2003; Lawrence et al., 2016a, 2016b).

The study of FMDV virulence factors in natural hosts has a major
limitation related to the logistics and cost of experimentation with large
animals. To overcome this difficulty, several laboratory animal models
have been developed that may be useful to study particular aspects of
FMD pathogenesis and FMDV biology (Habiela et al., 2014; Skinner,
1951; Waldman and Pape, 1920). In particular, after footpad sub-
cutaneous (sc) injection or intraperitoneal (ip) inoculation the virus
causes an acute infection that can be lethal in adult C57BL/6 mice.
Subcutaneous injection produces a systemic infection with viral
dissemination to different organs (heart, lung, brain, kidney, liver,
spleen, pancreas, and thymus) that leads to death of animals at 48—72
hpi. Finally, the disease is associated with a pronounced lymphopenia
and depletion of splenic CD4" and CD8" T-lymphocytes (Salguero
et al., 2005).

Interestingly, C57BL/6 mice proved to be adequate to detect
virulence differences among FMDV variants of the same serotype and
thus this animal model appears as a powerful tool to study viral factors
related to virulence and/or pathogenesis (Salguero et al., 2005). In fact,
in a study on the virulence of field strains that circulated in Argentina
during the 2000-2002 epizootic, we demonstrated previously that
FMDV A/Arg/00, as opposed to FMDV A/Arg/01, does not cause death
of C57BL/6 mice when inoculated ip even at doses as high as 107 pfu
per animal; these observations mirrored the pathogenic behavior of
field strains (Garcia Nunez et al., 2010; Mattion et al., 2004).

In this work, we further characterize two FMDV A/Arg/01 variants
in terms of pathogenicity in adult mice and replication in cell culture.

2. Material and methods
2.1. Viruses and cell lines

AO1INL and AO1L viruses were obtained from the National Institute
for Animal Health (SENASA, Argentina). Viruses were isolated during
the FMDV outbreak that occurred in Argentina during years 2000—
2001 and belong to serotype A/Arg/01. All experiments were con-
ducted using fourth cell passages of each FMDV in baby hamster
kidney cells (BHK-21 clone 13; ATCC CCL10). Quantification of viral
particles present in various samples were determined in BHK-21 cells
by plaque assay (pfu/ml) or alternatively the 50% tissue culture
infective dose (TCIDso) was calculated by the end point dilution
method using the formula of Reed and Muench (Reed and Muench,
1938).

Cell lines used in this study were BHK-21, PK15-C1 (ATCC, PTA-
8244), IBRS-2, MDBK (ATCC CCL22), fetal bovine kidney cells (FBK)
and ovine kidney cells (OK) (Zabal and Fondevila, 2013). Cells were
maintained at 37 °C and 5% CO, in Dulbecco's modified Eagle’s
medium (DMEM, Life Technologies, Grand Island, NY, USA) supple-
mented with 10% fetal bovine serum (FBS) and antibiotics (Gibco-
BRL/Invitrogen, Carlsbad, CA, USA).

196

Virology 509 (2017) 195-204

2.2. Mice

Eight to 10-week-old female C57BL/6J/LAE mice were purchased
from University of La Plata, Argentina. Mice were maintained under
specific pathogen-free conditions and allowed to acclimatize to the
biosafety level 4 OIE (BSL-4 OIE) animal facility at the Institute of
Virology, INTA, for 1 week prior to experiments.

Experiments with mice were performed in accordance with the
Institutional Committee for the Use and Care of Experimentation
Animals (CICUAE-INTA protocols Nos. 46/2013 and 49/2015).

2.3. Animal infection and processing of samples

Groups of mice were inoculated with AO1L or AOINL by ip injection
with 100 microliters of a viral suspension containing the indicated
amount of each virus. Mice were examined for clinical symptoms twice
daily. Animals were euthanized at a humane endpoint when showing
irreversible signs of pain or disease (hypothermia, hunched posture,
lethargy).

At different times post inoculation, mice (n=4 per experimental
group) were euthanized and organs (liver, spleen, pancreas, thymus,
lung, heart and brain) were harvested and weighed. Half of the tissues
was used for histological analysis. The other half was mechanically
disrupted and resuspended in DMEM supplemented with HEPES
25 mM pH 7.4; cell suspensions were frozen at —80 °C. Lung and heart
samples were used exclusively for histological analysis. Whole blood
samples were collected in heparinized tubes at different times post-
inoculation. Plasma was separated by centrifugation, aliquoted and
stored at -80 °C.

For cross-protection experiments, groups of mice (n=5) were
inoculated ip with AOINL (10° PFU per animal) or DMEM. Fourteen
days after first inoculation, mice were bled to determine neutralizing
antibody titers and immediately inoculated ip with a lethal dose of
AO1L virus (10* PFU per animal) (Molinari et al., 2010). Mice were
bled 24h post-AO1L infection and heparin-anticoagulated plasma
samples were stored at —80 °C for quantification of viremia. Animals
showing irreversible signs of disease at 24 h post-AO1L inoculation
were sacrificed to avoid suffering. Surviving mice were examined for
clinical symptoms daily for 7 additional days.

2.4. Histopathology

Samples from different organs were fixed in 10% buffered formalin
(pH 7.2) for histopathological studies. After fixation, samples were
dehydrated through a graded series of alcohol to xylol and embedded in
paraffin. Three micrometer-thick sections were cut and stained with
hematoxylin and eosin (H & E). Histological grading was made blindly
by an experimented pathologist.

2.5. Quantification of neutralizing antibodies

Anti-FMDV neutralizing antibodies were measured by the variable
serum-constant virus method as described by Quattrocchi et al. (2011).
Briefly, heat-inactivated sera were serially diluted and dilutions were
incubated with 100 TCIDso/well of infectious FMDV for 40 min at
37 °C. The virus-serum mixtures were transferred onto BHK-21 cell
monolayers and cytopathic effect was recorded after 48 h incubation at
37°C in a 5% CO, containing atmosphere. Titer of neutralizing
antibodies was calculated as log (1/last serum dilution that neutralizes
50% of wells).

2.6. Quantification of IFN-a

Interferon alpha was quantitated (pg/ml) in plasma samples with
Mouse IFN alpha Platinum ELISA kit (eBioscience, Vienna, Austria).



M. Cacciabue et al.

2.7. Plaque assays and viral growth curves

Plaque assays were performed as previously described (Garcia
Nunez et al., 2010). Monolayers of OK cells were fixed and stained at
24 hpi and the plaques were counted. The values calculated for the
number of plaque forming units per milliliter (PFU/ml) were plotted in
a logarithmic scale using GraphPad Prism 5.00 (GraphPad Software,
San Diego, CA, USA). All assays were performed in duplicate. For viral
plaque size determination, 40—60 plaques of each virus were measured
with ImageJ 1.42q software (NIH, USA) (Schneider et al., 2012).

For multiple step-growth studies, cells were infected for 30 min at a
multiplicity of infection (moi) of 0.1 and washed with PBS pH 5.6 on
ice to inactivate unabsorbed virus. After restitution of physiological pH,
cells were incubated at 37 °C in a 5% CO, atmosphere. At indicated
times post-infection, cells were lysed by three consecutive freeze-thaw
cycles and the amount of viral particles was measured by the TCID5
method as mentioned above.

2.8. Determination of viral sequences

To obtain the complete consensus sequences of AOINL and A01L,
viral RNAs were isolated from supernatants of infected cells (fourth
passage) or from spleen tissue of inoculated animals obtained at 22 hpi
using Trizol reagent (Life Technologies, Carlsbad, CA, USA) according
to the manufacturer's instructions. Complementary DNA (cDNA) was
synthesized with Superscript III reverse transcriptase (Life
Technologies, Carlsbad, CA, USA) as previously described (Garcia
Nufiez et al., 2014). Oligonucleotides covering the whole FMDV-A
genome (Mattion et al., 2004) were used to obtain the complete
sequence of both FMDV variants by automated sequencing. GenBank
accession numbers of AO1L and AOINL consensus sequences are
KY404934 and KY404935, respectively.

2.9. In silico modelling and sequence analysis

Amino acid sequences of AO1L and AOINL capsid proteins were
aligned and their secondary structure was predicted using Chimera
software (Pettersen et al., 2004). The structure of each viral protein
(VP1, 2, 3, 4) was modelled at the SWISS-MODEL Workspace (Arnold
et al., 2006) (homology method without refinement), emergent models
were assembled in silico into capsomers by structural alignment with a
serotype A FMDV template capsomer (PDB accession 1ZBE; Chimera
software). Finally, the model of each whole viral particle was assembled
at the Virus Particle Explorer (VIPERdD) server (Carrillo-Tripp et al.,
2009). Interactions between amino acids from the same or from
different capsomers were simulated through a structure-based analysis
using VIPERdb.

The electrostatic charge of the capsomers at the 2x axis was
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calculated using PROPKA software (McGuffin et al., 2015). This
program analyzes de protonation state of titratable groups within the
structure and predicts their pKa at different pH values.

The identification of titratable groups within the interpentamer 2x
axis and prediction of their pKa values at pH 6, 6.5 and 7 was
accomplished using PROPKA server. A solvent-excluded molecular
surface of each capsomer was created with Chimera embedded soft-
ware from the MSMS package (Altschul et al., 1997) and subjected to
Coulombic Surface Coloring.

The structure of 2C protein for the AO1L virus was modelled at the
Integrated Protein Structure and Function Prediction Server (McGuffin
et al, 2015); besides, 2C proteins of all FMDV serotypes (500
sequences) were retrieved from the BlastP web service (Altschul
et al., 1997) and aligned with the Cobalt align tool (Papadopoulos
and Agarwala, 2007). The obtained 2C multiple sequence aligment was
used as input for the determination of evolutionary conservation scores
of amino acids and their projection on protein 2C structure (Landau
et al., 2005; Glaser et al., 2003). Finally, multiple sequence alignments
of 2C protein of all FMDV serotypes were used to obtain sequence logos
(Schneider and Stephens, 1990; Crooks et al., 2004).

2.10. Statistical analysis

Student's t-test was used to compare mean viral titers in different
samples and mean plaque diameters. A p value < 0.05 was considered
as statistically significant.

3. Results
3.1. Pathogenicity of FMDV A/Arg/01 variants

During the FMDV epizootic that occurred in years 2000—2002 in
Argentina, circulation of a virulent strain causing severe lesions in
affected animals and leading to death of calves in the field was reported
(Mattion et al., 2004). This strain was shown to belong to A/Arg/01
serotype, and its virulent phenotype could be reproduced in the
laboratory in suckling mice as well as in adult animals (Garcia Nufez
et al., 2010). Interestingly, upon inoculation of adult mice with FMDV
A/Arg/01, two viral variants displaying singular infection patterns
were detected. Specifically, 10° PFU of each virus were inoculated ip
per animal in C57BL/6J/LAE mice, and mice were monitored for signs
of disease for 7 days. Signs of disease in animals inoculated with one
variant included reduced activity and slower response to external
stimuli, which were only apparent and lasted for 2 days. Conversely,
infection with the second variant led to severe signs of disease such as
ruffled fur, humped posture and tremor, along with a more pronounced
decrease in activity and response to stimuli. As shown in Fig. 1A, mice
inoculated with the former variant remained alive after 7 days post-

10——O0—0—0—0—90— 100—9—6@—0—0—90—0—9O .
= o = A0IL = ©- AO1NL 10°-10
Ea o AOINL X 801 & A01L 10°-10°
g 60 8 ol - A01L 10410

€
2 2
£ 40] £ 401
z 2
3 20 3 20
0 L T T T 1 0 H T T 1
0 2 4 6 8 0 2 4 6 8

Days post inoculation

Days post inoculation

Fig. 1. Survival of C57BL/6/LAE adult mice after inoculation with FMDV variants. (A) Groups of eight to ten week-old mice (n=9) were inoculated intraperitoneally with 10° PFU of
AO01L or AOINL and observed for 7 days. (B) Mice (n=3) were inoculated intraperitoneally with different doses of AO1L or AO1NL and observed for 7 days. Viral inoculum is indicated in

number of PFU per animal.
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Fig. 2. Pathogenicity of AO1L and AO1NL infection in adult mice. (A) Tissue sections of pancreas (40X), spleen (200X) and thymus (200X) from inoculated mice. Tissues were harvested
at 22 hpi. Hematoxylin and eosin staining are shown. White triangles denote apoptotic cells. (B) Viral titers in plasma (n=9) and tissues (n=>5) of inoculated animals at 22 hpi. The bars
show mean viral titers and SD for each group; p values (Student's t-test) are indicated. Data are representative of two independent experiments.

inoculation (dpi), whereas 100% of animals inoculated with the latter
showed irreversible signs of disease or even died at ~24 h post-
inoculation (hpi). Thus, viral variants were termed non-lethal
(AOINL) or lethal (AO1L), respectively, according to the phenotype
exhibited in C57BL/6J/LAE mice.

In order to evaluate whether the observed phenotype was dose-
dependent, groups of mice were inoculated ip with serial dilutions of
AO01L and AOINL and monitored for 7 days. As depicted in Fig. 1B, most
mice inoculated with AO1L died within the first 48 hpi independently of
the viral dose used; mice inoculated with AO1NL remained alive even at
doses as high as 10° PFU per animal. These results suggest that lethality
of AO1L is determined by viral factors independently of the dose used.

Pathological changes in tissues of mice inoculated with 10° PFU of
FMDV variants were assessed at 22 hpi (Fig. 2A). Severe lesions were
evidenced in the exocrine pancreas of mice inoculated with AQ1L and
AO1NL, which were characterized by necrosis of 80% and 60% of acinar
cells, respectively, along with edema and mild infiltration of polymor-
phonuclear cells. Multifocal apoptosis was evident in the thymus and
apoptotic lymphocytes were present in the spleen of mice inoculated
with AO1L and AOINL, although to a lesser extent in the latter. Lastly, no
lesion was detected in liver, lungs, heart or brain of inoculated animals.

To assess viral distribution in inoculated animals, viral load was
determined in plasma and in various tissues at 22 hpi. Mice inoculated
with both variants displayed high viral titers in plasma, and viremia
was significantly higher in mice inoculated with AO1L than in animals
inoculated with AOINL (Fig. 2B). Indeed, AO1L reached consistently
higher titers in plasma than AOINL during the first 22 h of infection,
despite displaying a similar replication profile (Supplementary Fig 1).
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Viral titers in pancreas, liver and spleen were also higher in animals
inoculated with AO1L than in animals inoculated with AOINL (Fig. 2B).
Finally, only AO1L could be detected in the brain of inoculated animals,
although at a low level. These results demonstrate active viral replica-
tion of AO1L as well as AOINL viruses in mice.

As mentioned above, mice inoculated with AO1INL virus showed mild
signs of disease, which became evident after 24 hpi and lasted up to 72
hpi (Supplementary Fig 1). In order to evaluate the course of pancreatitis
caused by AO1NL infection, groups of mice were euthanized at different
times post inoculation and histopathological examination of pancreatic
tissue was carried out. Acute pancreatitis developed during the first 22
hpi and progressed subsequently to a chronic inflammation with
predominance of mononuclear cells along with a pronounced atrophy
of the tissue around 14 dpi (Table 1 and Supplementary Fig 2).

FMDV is highly sensitive to type I interferon both in vitro
(Chinsangaram et al., 2001) and in vivo (Chinsangaram et al., 2003).
In fact, the IFN-a response is a main component of the immune
response against FMDV that controls viral replication. We hypothe-
sized that the higher viral titers observed in mice inoculated with AO1L
could be attributed to an impaired induction of the innate immune
response in these mice. To test this hypothesis, IFN-a levels in plasma
were quantified at different times post inoculation with AO1L and
AO1INL. As depicted in Fig. 3, plasma IFN-a levels displayed a similar
profile in mice infected with either virus, increasing soon after
inoculation and reaching a peak at 14 hpi. Moreover, no significant
differences were detected in IFN-a levels between groups of mice.
These results demonstrate an appropriate induction of the innate
immune response upon infection with AO1L and AO1NL viruses.
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Table 1
Histopathological course of pancreatitis in mice inoculated with AOINL.

Time after PMN MN Edema Atrophy
inoculation infiltrate® infiltrate”
14 hpi ++ ++
22 hpi +4++ +++
72 hpi +++ + ++ +
7 dpi ++ + ++
14 dpi +++ + +++
2 PMN: polymorphonuclear cells.
b MN: mononuclear cells.
104
-0~ AO1L

= -© AOINL

g 103

—

(=)

[=X

S—

© 2

s 10

=

[]

= 1

o 10

10 4+
0 20 40 60 80
hpi

Fig. 3. Quantification of IFN alpha in plasma of inoculated animals at different times
post infection. Mean and SD values are shown.

3.2. Cross-protection between FMDV variants

To evaluate whether infection with the non-lethal variant could
induce immune protection against AO1L infection, groups of mice were
inoculated firstly with AOINL virus and 14 days later they received a
lethal dose of AO1L virus. Mice were monitored for 7 additional days.
No animal showed signs of disease during the observation period, while
all mice mock-inoculated with DMEM and challenged with AO1L died
at 48 hpi (Table 2). Circulating neutralizing antibodies were detected in
mice inoculated with AOINL and not in mock-inoculated mice prior to
inoculation with AO1L. Viremia was not detectable at 24 h after AO1L
inoculation in any AO1NL inoculated mouse (Table 2). Thus, infection
with AOINL induces neutralizing antibodies that protect adult mice
from lethal AO1L infection.

3.3. Replication of FMDV variants in cell culture

To assess whether the pathogenicity differences exhibited by AO1L
and AO1NL variants could be reproduced in cell culture, replication of
both viruses in cell lines known to support FMDV was evaluated in
multiple-step growth curves. No differences became evident in replica-
tion profiles of AO1L and AO1NL variants in IBRS-2, PK15, MDBK or

Table 2
Protection against lethal infection.

Inoculation scheme

AO01NL/AO1L DMEM/AO1L
Neutralizing antibody titer” 1.69 undetectable
Viremia (TCID5,/ml)" undetectable >5.6x107
Survival® (alive/total mice) 5/5 0/5

@ Mean antibody titers were determined 14 days after first inoculation and immedi-
ately before AO1L inoculation.

b 1 day after AO1L inoculation.

¢ 7 days after AO1L inoculation.
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BHK-21 cell lines as well as in bovine fetal kidney cells (BFK). In
contrast, significantly different viral titers were detected at 24 and 48
hpi in supernatants of ovine kidney cells (OK) infected with AO1L or
AO1NL, independently of the moi used (Fig. 4A and data not shown).

To further characterize viral replication in cell culture, plaque
size and morphology of AO1L and AO1NL were evaluated at 24 hpi in
OK cells. As shown in Fig. 4B, lysis plaques displayed clear morphology
in this cell line. Moreover, consistent with our observations in
multiple-step growth curves, plaque size of AO1L was significantly
larger than that of AOINL, further suggesting differential replication
kinetics and cytopathogenicity of both viral variants in this cell line.
Together, these results indicate particular virus-host interactions
driving viral replication in the different cell lines.

3.4. Genomic differences between FMDV variants

In order to assess whether the differential virulence displayed by
both FMDV variants could be attributed to genomic changes between
them, the complete consensus sequences of AOINL and AO1L were
determined. Thirty one nucleotide changes were detected along the
complete genome between AOINL and AO1L. Of them, 25 were located
in non-coding regions (n = 2) or turned out to be synonymous changes
(n = 23). Additionally, 6 non-synonymous nucleotide changes were
detected in VP2 (C2211T and T2515C), VP1 (C3688T and A3775T) and
2C (A4579G and A5086G) coding regions. Non-synonymous changes
occurred at non-conserved positions. Of note, these non-synonymous
changes were maintained in AO1L and AO1NL consensus sequences of
spleen samples obtained at 22 hpi (Supplementary Table 1).

3.5. Structural analysis of amino acid substitutions in the FMDV
capsid

To evaluate the differential influence of amino acid changes on the
structure of AO1L and AO1NL capsids, the four structural proteins were
computationally modelled by homology with related X-ray structures and
the capsomers assembled by specific computational tools. Mutated
positions within VP2 and VP1 proteins were mapped in the three-
dimensional model of each viral particle (Fig. 5) and the impact of these
mutations on the network of interactions of each residue was analyzed. No
relevant effect on protein secondary structure or in their interaction with
other residues was predicted for mutations V189A in VP2 and S141L and
D170V in VP1. Conversely, the presence of a tyrosine instead of a
histidine residue at position 88 of VP2 in AOINL was predicted to
originate a more stable interaction with amino acid E218 located at the C-
terminus of a second VP2 molecule of the neighboring pentamer. Indeed,
residue Y88 proved lower association energy with residue E218 (-2.02 vs
—1.77 keal/mol), which in turn was originated not only by direct Y88
contribution, but also by the invariable residue E218 which presented an
improved energy compared with the same E218 residue of AO1L (-1.29 vs
—1.10 keal/mol; Supplementary Fig 3). These results suggest increased
inter-pentameric association at the 2x axis in AOINL capsids.

We further studied the influence of the capsid mutations on the
protonation state and the electrostatic charge of AO1L and AOINL
capsids across natural pH lowering, namely between pH values 7 and 6,
which simulates viral entrance to the early endosomes after receptor
recognition. To that end, the electrostatic charge of AO1L and AOINL
protomers at the 2x axis was calculated and plotted on a structural
model of each dimer. As depicted in Fig. 5B, the inter-pentameric
interface of AO1L dimers showed a progressive and remarkable shift in
its predicted protonation state upon decreasing pH values, which is
necessary for the establishment of electrostatic repulsion during capsid
subunit dissociation. On the contrary, the protonation state of AOINL
at the inter-pentameric interface was predicted to remain nearly
unchanged between pH 7 and pH 6.5; the interface did not even turn
positively charged at pH 6. Thus, AOINL dimers were predicted to be
less sensitive from neutral to mildly acidic pH changes.
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Fig. 4. Replication of FMDV variants in cell culture. (A) Cells were infected with AO1L (+) or AO1INL (O) with moi=0.1. After adsorption, virus present in supernatants was inactivated by
acidification followed by restauration of physiological pH. Virus titration in total cell lysates was performed by end-point dilution in BHK-21 cells. Cell types used are indicated over each
plot. Data are representative of at least two independent experiments performed in duplicate. (B) OK cells were infected with AO1L and AO1NL and plaque diameter was measured at 48

hpi as described in Material and methods.
3.6. Analysis of amino acid replacements in 2C protein

FMDV 2C protein is a conserved RNA binding protein with ATPase
activity (Sweeney et al., 2010). To predict the impact of amino acid
replacements within 2C on protein structure or function, substitutions
were mapped in a three-dimensional model of FMDV 2C protein.
Amino acid mutations within 2C were located in i) a flexible region
between the N-terminal RNA binding domain and the ATPase domain
(Q55R) and ii) in the C-terminal portion of the ATPase domain
(N224S) (Fig. 6A). However, mutation N224S was not located in
ATPase motifs Walker A, Walker B or C (Gorbalenya et al., 1990).

We also analyzed the frequency of these mutations in other FMDV
isolates. As shown in Fig. 6B, residue Rss, present in AO1NL virus, was
predicted to be a frequent event within FMDV. In turn, AO1L amino
acid Nyo4 corresponds to a conserved residue within all FMDV
serotypes. Of note, AO1L residue Qs5 and AOINL residue S»,, were
not detected in an alignment of 136 FMDV sequences of serotype A
(Supplementary Fig 4).

4. Discussion

Since the discovery in 1897 that foot-and-mouth disease was
caused by a viral agent (Loeffler and Frosch, 1897), scientific efforts
have focused on the development of control measures of this highly
devastating disease. The early demonstration that guinea pigs could
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reproduce FMDV infection in natural hosts provided the means to
evaluate experimental vaccines (Waldman and Pape, 1920); it also led
to the introduction of other animal models that proved to be useful to
study other singular aspects of FMDV infection (Skinner, 1951;
Salguero et al., 2005). Although viral-host interactions seem to be
different between natural hosts and animal models, the latter have
been used extensively to describe viral replication in animals and
specifically to evaluate immune responses in a simple way during the
development of prophylactic strategies against FMDV. In particular,
the adult C57BL/6 mouse model proposed by Salguero et al. allows
evaluation of susceptibility and resistance to lethal infection (Salguero
et al., 2005), thus becoming particularly useful to characterize FMDV
A/Arg/01 strains with subtle genomic differences as the ones analyzed
in the present work.

In mice, clinical outcome after FMDV infection has been related to
viral serotype and route of inoculation. Indeed, susceptibility of
C57BL/6 mice proved to be different to FMDV serotypes C, SAT-1
and A; only 33% of mice inoculated with FMDV A22 died as opposed to
100% of mice inoculated with the other FMDV serotypes (Salguero
et al.,, 2005). Moreover, no signs of disease were detected after
exposure of mice to FMDV C-S8cl by the oronasal route, whereas all
animals died within 48—72 h when inoculated subcutaneously in the
footpad and even more rapidly when FMDV was inoculated ip
(Salguero et al., 2005). In this work, the clinical outcome of inoculated
mice was very divergent ranging from a nearly asymptomatic infection
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Fig. 5. (A) Homology model of AO1L capsid. VP1 is cyan, VP2 is orange, VP3 is green and VP4 is yellow. Amplification of a capsid pentamer and localization of amino acid changes
present in AO1NL within a single protomer are shown. (B) Analysis of the protonation state of AO1L and AOINL dimers on decreasing pH between 7 and 6, as predicted by PROPKA. The
structural model of an AO1L dimer showing the amino acid substitutions present in AO1INL virus is depicted at the left.

to death within 24-48 h. The subcutaneous route of inoculation was
not evaluated; however, the differential virulence displayed by both
FMDYV variants was evidenced using a more stringent way of infection,
namely ip inoculation, and the lethal phenotype of AO1L persisted even
at doses as low as 10 PFU/mouse. Interestingly, the dramatic
differences in lethality observed for both viruses were not reproduced
in cell cultures, where AOINL and AO1L viruses showed similar
phenotypes. The only exception were OK cells, a cell line derived from

ovine kidney that had been shown previously to be more sensitive to
FMDV replication than BHK-21 cells (Zabal and Fondevila, 2013).
Consequently, OK cells appear as a powerful tool to characterize FMDV
isolates with subtle genomic differences as the ones analyzed in this
study. Taken together, these results suggest viral-related determinants
of virulence and pathogenicity that lead to different virus-host inter-
actions during AOINL and AO1L replication in the different biological
systems used.

Fig. 6. Analysis of amino acid changes within 2C protein. (A) Homology model of FMDV 2C protein. Black arrows denote mutated residues as indicated. The cyan-maroon key shows the
conservation score of each residue as determined from a multiple alignment of 500 FMDV isolates of all serotypes (see Material and Methods). (B) Sequence logos showing the
conservation of the residues of interest in 500 FMDV sequences of all serotypes. Colors denote hydrophobicity; hydrophilic residues are blue, neutral residues are green and hydrophobic

residues are black. Error bars indicate an approximate Bayesian 95% confidence interval.
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In this work, adult C57BL/6/LAE mice proved to be adequate to
discriminate closely related viruses. A systemic infection occurred in all
inoculated mice, as demonstrated by viral distribution in animal tissues
independently of the viral variant. However, AO1L reached higher
levels of viral load than AOINL both in plasma and in organs, and this
virus was detected also in the central nervous system, although at low
levels. Of note, no microscopic lesions were detected in liver, brain or
spleen, suggesting that the virus present in theses tissues mirrors the
viremia in each group of animals and does not represent local viral
replication. In turn, histopathological observation at 22 hpi revealed
that both AO1L and AOINL produced necrosis of exocrine pancreatic
cells after ip inoculation. Other authors have demonstrated that FMDV
infection of adult C57/CE mice causes pancreatic lesions that do not
affect the endocrine pancreas and lead even to death within 2—9 days
(Platt, 1959). The observations that AOINL also produced severe
pancreatic lesions and high viral loads in plasma and tissues deserve
particular attention given the only mild clinical signs developed by
inoculated animals. These animals controlled viral replication within
72 hpi; however, the acute pancreatic damage evolved to atrophy
thereafter. These results are in accordance with previous reports
showing viral replication in pancreas that caused a transient or even
chronic pancreatitis in different mouse strains (Habiela et al., 2014;
Fernandez et al., 1986).

A severe but transient lymphopenia has been documented in swine
during acute infection with FMDV, which coincides with the viremia
peak and in some cases has been related to lymphocyte infection in
vivo (Bautista et al., 2003; Diaz-San Segundo et al., 2006). Similarly,
adult mice showed a decrease in plasma lymphocyte counts and loss of
splenic CD8* lymphocytes and dendritic cells after subcutaneous or ip
FMDYV inoculation, thus mimicking the transient immunosuppression
observed in swine during acute infection (Salguero et al., 2005;
Langellotti et al., 2012). However, FMDV infection in mice elicits a
T-independent response leading to the early production of high titers of
neutralizing antibodies prior to the induction of T-dependent long
lasting immunity (Borca et al., 1986). Accordingly, in our work plasma
IFN-a levels increased as soon as 6 hpi and reached a peak at 22 hpi
both in AO1L and AO1NL inoculated mice. Furthermore, mice inocu-
lated with AOINL not only controlled infection within a few days but
also mounted a protective immune response against AO1L efficiently.
These results argue in favor of an immunocompetent state in AO1L and
AO1INL infected mice. Interestingly, AO1L outperformed AO1INL repli-
cation levels even in a similar immune context, which reinforces the
idea of viral traits implicated in the observed phenotype.

Complete consensus sequences of AO1L and AOINL variants
revealed a number of substitutions located along the genome. Of them,
2 changes were placed in the 5’ untranslated region, namely at
positions 757 and 1033 within the IRES element, which
guides translation of the viral genome in a cap-independent manner
(Grubman and Baxt, 2004). The structure of the FMDV IRES
and its interaction with cellular proteins have been studied widely
(Martinez-Salas et al., 2015). In a previous work, we interrogated the
structure of the IRES element of AOINL virus using SHAPE
(Garcia Nunez et al., 2014). In this early work, positions 757 and
1033 showed no SHAPE reactivity, indicating that they are involved in
RNA:RNA interactions. Of note, nucleotide mutations present in AO1L
virus, which occur in the basal stem of domain 3 (G;5,—A) and
near the A-rich region of domain 4(K) (C;g33—U), were not
predicted to alter the secondary structure of the IRES element
(Supplementary Fig 5), suggesting no effect in IRES translation
efficiency between AQOINL and AO1L variants. So, we decided to
concentrate on the six non-synonymous mutations occurring between
both variants.

We hypothesized that amino acid changes in VP2 and VP1
proteins could cause differential interactions between AO1INL and
AO1L capsids and the host cell, thus leading to the differential
replication observed. It is well known that FMDV may utilize a
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number of cell receptors for viral entry, including different integrins
and heparan sulfate in cell culture (Sa-Carvalho et al., 1997; Neff
et al., 1998; Baranowski et al., 2000). Viral attachment to the host
cell is followed by receptor recognition through a conserved RGD
motif located in the GH loop (Verdaguer et al., 1995; Mason et al.,
1994) within VP1 protein. In this work, we found a conserved RGD
motif in AO1L and AOINL viruses, along with mutation S141L in
AOINL variant, which occurred within the GH loop, namely at
position RGD -3. Although this amino acid change could somehow
affect receptor binding, it has been demonstrated previously that the
stability of FMDV binding to cellular integrins depends on the
leucine residues located at RGD +1 and +4 positions, which stabilize
the VP1-integrin complex thus increasing viral infectivity (Dicara
et al., 2008). So, since the RGD motif and both leucine residues are
present in AO1L and AO1NL viruses, we believe that receptor binding
of AOINL virus should not be affected. Indeed, in silico predicted
structural models of both capsids did not show relevant differences,
and neutralizing antibodies raised against AO1NL blocked replica-
tion of AO1L within 24 h in mice, meaning that the four amino acid
changes present in the capsid region of both viruses do not impair
cross-neutralization.

After endocytosis, acidification of endosomes drives capsid dis-
assembly into its pentameric subunits and release of the FMDV
genome in the cytoplasm (Baxt, 1987; Carrillo et al., 1985), where
RNA translation and replication take place in association with
endomembranes (Midgley et al., 2013). Residues located at the
interpentameric interface are involved in particle disassembly
(Martin-Acebes et al., 2010; Caridi et al., 2015). In fact, mildly acidic
pH favors protonation of histidine residues close to the interpenta-
meric interface, leading to electrostatic repulsion between capsid
subunits and promoting capsid disassembly. In this work, the
electrostatic charge of AO1L and AOINL capsids was predicted to
differ upon pH lowering, which suggests a differential sensitivity to
mildly acidic pH of both viruses. At the same time, we found a
histidine to tyrosine mutation in VP2 residue 88, located within the
interpentameric interface. This Y residue was predicted to yield a
more stable interaction with VP2 residue E218 of the neighboring
pentamer, suggesting increased capsid stability of AOINL particles.
Strikingly, in vitro determination of acid and thermal stability of both
viruses produced variable results in independent experiments, with
AO1L and AOINL variants displaying irregular responses to pH or
temperature changes (data not shown). These contrasting results
might be related to the quasispecies nature of AO1L and AOINL
viruses, which could lead to the existence of variants with different
sets of amino acid mutations and diverse stability. Additional studies
using infectious cDNA clones including different combinations of the
four capsid changes are needed to elucidate whether these mutations
indeed affect virion stability.

Mutations occurring within 2C-coding region led to amino acid
changes Q55R and N224S present in AOINL virus. Interestingly,
residue 55 within 2C of a type C FMDV had been related previously
to the magnitude of the cytopathic effect elicited by the virus in BHK-
21 cells. Specifically, cells infected with a virus bearing an R55W
mutation detached more rapidly from the monolayer, thus suggesting a
role of residue 55 in virulence (Arias et al., 2010). In turn, AO1L
residue N224 is a highly conserved amino acid located in the ATPase
domain of FMDV 2C protein. The presence of an infrequent residue
such as serine at this position might be related to the reduced
replication exhibited by AO1INL virus in mice.

In sum, we propose that the amino acid mutations found between
AO1L and AOINL viruses determine the course of viral replication in
mice thus contributing to the differential phenotypes observed.
Additional studies using mutant viruses in this highly sensitive model
are being carried out in order to establish whether lethality is
determined by a particular amino acid or rather by a combination of
all amino acid substitutions.
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