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Environmental heterogeneity modulates the
effect of plant diversity on the spatial varia-
bility of grassland biomass

A list of authors and their affiliations appears at the end of the paper

Plant productivity varies due to environmental heterogeneity, and theory
suggests that plant diversity can reduce this variation. While there is strong
evidence of diversity effects on temporal variability of productivity, whether
this mechanism extends to variability across space remains elusive. Here we
determine the relationship between plant diversity and spatial variability of
productivity in 83 grasslands, and quantify the effect of experimentally
increased spatial heterogeneity in environmental conditions on this relation-
ship.We found that communitieswith higher plant species richness (alpha and
gamma diversity) have lower spatial variability of productivity as reduced
abundance of some species can be compensated for by increased abundance
of other species. In contrast, high species dissimilarity among local commu-
nities (beta diversity) is positively associated with spatial variability of pro-
ductivity, suggesting that changes in species composition can scale up to
affect productivity. Experimentally increased spatial environmental hetero-
geneity weakens the effect of plant alpha and gamma diversity, and reveals
that beta diversity can simultaneously decrease and increase spatial variability
of productivity. Our findings unveil the generality of the diversity-stability
theory across space, and suggest that reduced local diversity and biotic
homogenization can affect the spatial reliability of key ecosystem functions.

Understanding the mechanisms linking biodiversity with ecosystem
stability is essential to anticipate the consequences of species loss for
the sustainable delivery of critical ecosystem services1–5. Theory and
empirical tests have demonstrated that plant biodiversity can stabi-
lize the primary productivity of communities through time4, and a
variety of mechanisms have been proposed to explain this effect6.
These mechanisms range from simple statistical relationships, such
as the portfolio effect (i.e., statistical averaging of the independent
and random fluctuations in the performance or abundance of dif-
ferent species7), to niche-based models like overyielding (i.e.,
increase of the mean productivity, relative to its variance, when a
mixture exceeds the expected productivity based on
monocultures8). Previous studies, nevertheless, identified asynchro-
nous species responses to environmental fluctuations as the major

underlying mechanism9–12. That is, biodiversity buffers productivity
against environmental fluctuations, because reduced abundance of
some species can be compensated for by increased abundance of
other species10,13. Although this “insurance effect” is usually con-
sidered over time13, theory suggests that it should also apply across
space13,14, because a larger species pool will be more likely to contain
species that can grow well under different environmental conditions
in space, decreasing the variability of productivity (i.e., increasing
stability) across space13,15. Although the potential effect of biodi-
versity on the spatial variability of productivity has found some
support in experimentally assembled communities15–17 and natural
systems14, whether these results can be generalized is unknown and,
to our knowledge, support for the different potentially involved
mechanisms has not been evaluated empirically13.
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Similar to its temporal counterpart, the spatial version of the
insurance hypothesis15,18 proposes stronger effects of plant biodi-
versity in heterogeneous environments compared to homogeneous
environments18,19 (see Fig. 1). This is because the greater the number of
species present (i.e., either alpha or gamma-diversity), the higher the
probability of including the set of best-performing species under dif-
ferent environmental conditions18 (Fig. 1b). Despite these clear pre-
dictions for alpha- and gamma-diversity, the potential relationship
between the spatial turnover in species composition (i.e., beta-diver-
sity) and the spatial variability of productivity is harder to anticipate.
Following the arguments above, as spatial turnover in species com-
position can emerge from (compensatory) changes among species
under heterogeneous environmental conditions, increased beta-
diversity may reduce spatial variability of productivity (Fig. 1c). How-
ever, changes in species composition can scale up to affect aggregate
ecosystem properties, such as productivity20 (especially if different
species imply different functional traits). Under the spatial insurance
theory21, systems with high beta-diversity are expected to have high
spatial variability in productivity across different patches at a given
time, stabilizing productivity through time at larger spatial scales (that

integrate all patches)21–24. This positive effect of beta-diversity on the
spatial variability of productivity may be especially important when
patches are environmentally similar21,25,26 (see Fig. 1c). Thus, the
opposite predictions for the potential effect of beta-diversity on spa-
tial variability of productivity can be reconciled if the outcome is
context-dependent. Under low environmental heterogeneity, beta-
diversity may mainly act as a destabilizing factor, because commu-
nities with different species compositions can respond differently to
the common environment21,27. Under high environmental hetero-
geneity, in contrast, beta-diversity may act as a stabilizing factor,
because different species may perform better under different envir-
onmental conditions (Fig. 1c). Biodiversity loss at different scales5 is an
important consequence of anthropogenic activities that also impacts
the functioning of ecosystems. While biodiversity-functioning
research has predominantly focused on temporal stability of bio-
mass, less is known about spatial stability13. However, if biodiversity
can buffer environmental change and stabilize spatial ecosystem
functions and services, then biodiversity restoration and conservation
will concurrently maximize functioning and spatial reliability3 in
changing conditions.

Fig. 1 | Conceptual figure illustrating the effect of different scales of biodi-
versity on the spatial variability of aggregate ecosystem functions. The insur-
ance hypothesis postulates that biodiversity buffers aggregate ecosystem
functions (e.g., biomass production) against environmental fluctuations, resulting
in less variation within more diverse systems. This hypothesis was originally pos-
tulated for environmental fluctuations over time, but may also apply to spatial
heterogeneity. a When environmental conditions are homogeneous, niche differ-
ences among species are non-important, and the variability of an aggregate eco-
system function is unaffected by alpha or gamma-diversity. b In contrast, in
heterogeneous environments, different environmental conditions provide an array
of niches. In this scenario, a species may be functionally insignificant under some

environmental conditions, but more abundant or functionally important under
other conditions. Thus, a highly diverse systemmay exhibit decreased variability of
an aggregated ecosystem function compared to low diversity systems. In this
scenario, a negative relationship is expectedbetween alphaor gamma-diversity and
the spatial variability of the function. c The net effect of beta-diversity on spatial
variability of an aggregated ecosystem function may be context-dependent. When
environmental heterogeneity is low, beta-diversity (that can be the result of priority
effect or other stochastic processes)may act as a destabilizing factor as it can imply
shifts in functional traits that scale up to affect community production. In contrast,
when environmental heterogeneity is high, beta-diversity may act as a stabilizing
factor because of niche complementarity.
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Here, we explore the relationship between different scales of
plant species diversity and spatial variability of productivity, mea-
sured as standing biomass, across 83 grasslandsworldwide (see Fig. 2
and Supplementary Table 1) that are part of the Nutrient Network
distributed experiment (NutNet; http://www.nutnet.org28). Using
sets of ten unmanipulated plots (25m2) arranged in blocks (250m2)
from these grasslands, we first analyzed whether local plot diversity
(alpha-diversity), larger site-scale diversity (gamma-diversity), and
among-plot variability in species composition (beta-diversity) are
associated with the spatial variability of productivity, defined as the
coefficient of variation (i.e., standard deviation/mean)13,14 of above-
ground standing biomass among plots. We also tested whether these
associations are driven by two previously proposed niche-based
mechanisms: (1) overyielding, or enhancing productivity (see ref. 29

for a temporal analog); and (2) insurance provided by spatial com-
pensation between species13. Second, we tested how the association
between different scales of diversity and spatial variability of pro-
ductivity is affected by imposed spatial environmental hetero-
geneity. For this second objective, we used a subset of 42 grasslands
that implemented a factorial nutrient addition and herbivore exclu-
sion experiment28 (see Fig. 2 and Supplementary Table 1). This
experimental approach (see “Methods”) represents a set of local
plots (25m2), with different resource supply, collectively represent-
ing a larger scale (an arrangement of 10 of those local plots resulting
in 250m2) with spatial heterogeneity in environmental conditions
(sampling methods and spatial scales are the same than for the pre-
viously described sampling; see Methods section). According to
niche dimensionality theory30,31, differences in resource supply and
associated nutrient ratios should create patcheswith different niches
and niche dimensions (i.e., different number of growth-limiting fac-
tors), increasing the spatial variability of productivity. Sites with high
species diversity may have a greater probability of including the set
of best-performing species in different patches (i.e., under different
resource availability ratios), decreasing spatial variability of
productivity32. Thus, environmental heterogeneity may increase
variability of productivity across space and, in theory, alpha, beta and
gamma-diversity may decrease this variability. We find that grass-
lands with higher alpha and gamma plant diversity have lower spatial

variability of productivity as reduced abundance of some species are
compensated for by increased abundance of other species. In con-
trast, grasslands with high beta-diversity have higher spatial varia-
bility of productivity. Furthermore, experimentally increased spatial
environmental heterogeneity weakens the effect of plant alpha and
gamma-diversity, and reveals that beta-diversity can simultaneously
decrease and increase spatial variability of productivity.

Results
Global patterns of biodiversity-spatial variability of productivity
relationships
Using unmanipulated (i.e., pre-treatment) data from the 83 grass-
lands, we found that alpha (linear mixed-effects models, χ2 = 17.41;
P < 0.001) and gamma (χ2 = 5.59, P < 0.05) diversity were both
negatively associated with spatial variability of productivity (Fig. 3a,
b), whereas beta-diversity was positively associated with spatial
variability of productivity (χ2 = 9.77, P < 0.005, Fig. 3c). We found no
significant relationship between the different scales of biodiversity
and the two separate components of spatial variability (i.e., µ, the
mean plot biomass; alpha: χ2 = 0.52; beta: χ2 = 0.74; gamma:
χ2 = 0.38; all P > 0.05; Supplementary Fig. 1; and σ, the standard
deviation of plot biomass; alpha: χ2 = 0.03; gamma: χ2 = 1.29; all
P > 0.05; Supplementary Fig. 1), except for beta-diversity, that was
positively associated with σ (beta: χ2 = 4.49; P < 0.05; Supplemen-
tary Fig. 1). The patterns were consistent when modeled with type II
regression (Supplementary Fig. 2) and for different diversity indices
(Supplementary Table 2 and Supplementary Fig. 3). The patterns
also persisted after accounting for differences in site environmental
conditions, such as precipitation, temperature and seasonality
(Supplementary Tables 3 and 4). Both alpha and gamma-diversity
were negatively associatedwith species covariation, a spatial analog
of species synchrony that (inversely) measures the degree of spatial
biomass compensation between species (alpha: χ2 = 33.43,
P < 0.001; gamma: χ2 = 28.56, P < 0.001; Fig. 3d, e). Species covaria-
tion was, in turn, strongly associated with spatial variability
(χ2 = 247.83, P < 0.0001; Fig. 3g). However, we found no significant
relationship between beta-diversity and species covariation
(χ2 = 2.31, P = 0.13; Fig. 3f).

Fig. 2 | Geographic and climatic distribution of grassland sites. a Global map
showing the locations of the 83 grassland sites included in this study. All sites were
used to analyze diversity–variability relationships under ambient spatial environ-
mental heterogeneity (pre-treatment conditions). Triangles denote the 42 sites
that implemented the experimental protocol used to evaluate the effect of

increased environmental heterogeneity on diversity–variability relationships.
b The grassland sites span a wide range of mean annual productivity, mean annual
temperature (MAT), andmeanannualprecipitation (MAP). Site color key shows the
color assignment to each site, which is consistent in all figures.
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Direct and indirect effects of biodiversity on the spatial varia-
bility of productivity
To explicitly evaluate overyielding and compensatory changes
between species13 as mechanisms by which increased biodiversity
could decrease spatial variability of biomass, we constructed a Struc-
tural Equation Model (SEM). The final model showed a good fit (Fish-
er’s C = 8.82, df = 6, P = 0.2) and explained a high proportion of the
total variance of spatial variability of productivity (marginal R2 = 0.66;
conditional R2 = 0.90). Spatial variability of productivity was influ-
enced primarily (and negatively) by species covariation (Fig. 3h).
Higher alpha-diversity contributed to lower spatial variability through
lower species covariation (Fig. 3h). Higher gamma-diversity also

contributed to lower spatial variability, but this effect was mainly
because of a strong correlation with alpha-diversity (Fig. 3h). The
indirect negative effect of gamma-diversity on spatial variability
(through alpha-diversity) was partially offset by a direct positive effect
(Fig. 3h). Higher beta-diversity, in contrast, contributed to spatial
variability via two processes. First, beta-diversity positively con-
tributed to spatial variability (Fig. 3h). Second, this positive effect was
partially offset by a negative contribution of beta-diversity to spatial
variability through lower species covariation (Fig. 3h). The model did
not include pathways from any level of diversity to spatial variability
mediated by biomass production (Fig. 3h), confirming the absence of
overyielding in contributing to spatial variability seen in bivariate

Fig. 3 | The relationships between plant species diversity and spatial variability
of productivity across 83 globally distributed grasslands sites of the Nutrient
Network. Both a alpha (slope and 95% CIs = −0.026 (−0.038 to −0.015)) and
b gamma (−0.007 (−0.013 to −0.001)) diversity were negatively associated with the
spatial variability. cBeta-diversity, in contrast, waspositively associatedwith spatial
variability (1.57 (0.59 to 2.54)); d alpha (−0.06 (−0.08 to −0.04)); and e gamma
(−0.03 (−0.04 to −0.02)) diversity were negatively associated with species covar-
iation. f Beta-diversity, in contrast, was not associated with species covariation
(−1.27 (−2.92 to 0.38)). g Species covariation, in turn, was positively associated with
spatial variability of productivity (0.48 (0.44 to 0.53)). a–g Different colors repre-
sent different sites (see Fig. 2 for site color key assignment), major lines (in tur-
quoise) represent the fixed-effect linear regression slopes among sites and small
colored lines showpatternswithin sites.h Structural equationmodel (SEM) analysis
showing the direct and indirect pathways through which different scales of diver-
sity determine the spatial variability of biomass. Model fit was assessed using

Shipley’s test of d-separation (Fisher’s C = 8.82, df = 6, P =0.2). Solid blue arrows
and solid orange arrows represent significant (P ≤0.05, no multiple comparison
adjustmentsmade) positive and negative paths, respectively, and light-gray arrows
represent non-significant paths that were included in the initial model. Test of
significance of path coefficients are two-sided for a difference from0. Bidirectional
arrows represent paths that were modeled as correlated errors (i.e., bidirectional
relationships instead of causal and unidirectional relationships). Numbers next to
the arrows are averaged effect sizes as standardizedpath coefficients; arrowwidths
reflect these standardized effect sizes. For spatial variability of biomass and species
covariation, themarginal (i.e., explained by the fixed factors alone) and conditional
(i.e., explainedby both the fixed and the random factors; in parentheses) percent of
variance explained is shown below and to the right of the variable name (see
Supplementary Table 6 for non-standardized coefficient values and exact P values
of individual paths).

Article https://doi.org/10.1038/s41467-023-37395-y

Nature Communications |         (2023) 14:1809 4



relationships. After refitting the SEM using a smaller set of sites
(54 sites in which soil samples were collected to include an estimation
of spatial environmental heterogeneity), we found a positive direct
effect of edaphic spatial heterogeneity on beta-diversity but the global
model remained qualitatively unchanged (Supplementary Fig. 4).

The effect of increased environmental heterogeneity
Next, we evaluated the effect of increased environmental hetero-
geneity on the relationship between spatial variability of productivity
and species diversity using data froma subset of 42 grasslands (Fig. 2a)
that experimentally enhanced environmental heterogeneity via nutri-
ent and fencing treatments. Enhanced environmental heterogeneity
increased the spatial standard deviation and the spatial variability of
productivity, as well as beta-diversity (Supplementary Fig. 5). As
experimental manipulation implied nutrient additions inmost plots, it
also increased µ, themeanplot biomass, and decreased alpha-diversity
(Supplementary Fig. 5). However, enhanced environmental

heterogeneity did not affect species covariation or gamma-diversity
(Supplementary Fig. 5). In addition, experimentally enhanced envir-
onmental heterogeneity flattened the relationships between the three
scales of diversity and spatial variability (diversity*heterogeneity
interaction, alpha: χ2 = 23.41; beta: χ2 = 3.89; gamma: χ2 = 14.92; all
P <0.01; Fig. 4a–c; see also Supplementary Fig. 6 for analysis including
an intermediate level of heterogeneity).

Finally, using the data from the subset of grasslands that experi-
mentally enhanced environmental heterogeneity, we refitted the SEM
analysis, including experimentally increased spatial heterogeneity as a
factor. Results identified two major changes in the pathways, com-
pared to the model using data from unmanipulated (i.e., pre-treat-
ment) plots, in which increased spatial environmental heterogeneity
weakened the diversity–variability relationship for the three scales of
diversity (i.e., there were two paths that varied between pre- and post-
treatment; Fig. 4d, e). First, the negative relationship between alpha-
diversity and species covariation under ambient conditions became

Fig. 4 | Experimentally increased heterogeneity weakened the diversity-spatial
variability relationships. a Alpha-diversity (diversity*heterogeneity interaction
slopes and 95% confidence intervals: 0.0046 (0.0077 to 0.0108)). b Gamma-
diversity (0.0029 (0.0015 to 0.0043)). cBeta-diversity (−0.309 (−0.617 to −0.002)).
Different colors represent different sites (see Fig. 2 for site color key assignment),
major lines represent thefixed-effect linear regression slopes among sites and small
colored lines show patterns within sites. Comparison of SEM models with
d ambient and e experimentally increased spatial heterogeneity, using the subset of
42 sites that implemented the experimental protocol, identified twomajor changes
(red numbers; P ≤0.05 inmultigroup analysis; see Supplementary Table 7 for exact
P values) in the pathways whereby increased heterogeneity weakened the three
diversity–variability relationships: (1) the negative relationship between alpha-
diversity and species covariation under ambient conditions was neutral under
increased spatial heterogeneity; (2) the neutral relationship between beta-diversity
and species covariation under ambient conditions became negative under
increased heterogeneity.Model fit was assessed using Shipley’s test of d-separation
(ambient heterogeneity: Fisher’s C = 1.108, df = 6, P =0.981; experimentally
increased spatial heterogeneity: Fisher’s C = 3.108, df = 4, P =0.54). Solid blue

arrows and solid orange arrows represent significant (P ≤0.05, no multiple com-
parison adjustments made) positive and negative paths, respectively (see Supple-
mentary Table 8 for non-standardized coefficient values and exact P values of
individual paths), and light-gray arrows represent non-significant paths that were
included in the initialmodel. Tests of significance of path coefficients are two-sided
for a difference from 0. Bidirectional arrows represent paths that weremodeled as
correlated errors (i.e., bidirectional relations instead of causal and unidirectional
relations). Numbers next to the arrows are averaged effect sizes as standardized
path coefficients. Path coefficients that have been constrained (multigroup analy-
sis; P >0.05; see Supplementary Table 7 for exact P values) are the same between
the twomodels and are followed by a (C) (path coefficients are globally estimated,
but standardized coefficients differ because the variance differs between groups,
and thus the standardization). Numbers within brackets show bidirectional path
coefficients estimated for the global model (i.e., as if they were conditional). Width
of arrows reflects standardized effect sizes. The marginal (i.e., explained by the
fixed factors alone) and conditional (i.e., explained by both the fixed and the ran-
dom factors) percent varianceof endogenous variables (R2) are shownnext to them
(marginal between brackets).
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non-significant under increased heterogeneity (Fig. 4d, e). Second, the
neutral relationship between beta-diversity and species covariation
under ambient conditions became negative under increased
heterogeneity.

Discussion
Greater plant diversity is known to contribute to the decreased tem-
poral variability of community productivity through higher asyn-
chronous temporal dynamics among species in response to
environmental fluctuations (species asynchrony13). Adding to this
theory, we demonstrate that these same processes also occur through
space. Across a wide range of global grasslands, spatial variability of
site productivity declines with increasing plant diversity because of
compensatory species responses to spatial heterogeneity (i.e.,
reduced species covariation across space). An obvious alternative
explanation is that spatial environmental heterogeneity drives both
spatial variability of productivity and biodiversity, but basic commu-
nity theory predicts that more spatially variable environments should
have higher biodiversity at both site (gamma) and local (alpha) scales
due to niche-partitioning (increasing heterogeneity in environmental
conditions promote species diversity by adding different niches)33 and
spatial mass effects (sink-source dynamics in which local species
diversity can be enriched by species from the heterogeneous sur-
rounding areas)34. Thus, this explanation would predict a positive
associationbetweenbiodiversity and spatial variability of productivity,
contrary to the negative association we observed. In contrast to the
observed decline in spatial variability of productivity with increasing
alpha and gamma-diversity, greater beta-diversity was positively
associated with spatial variability of productivity. These contrasting
associations have been suggested by theoretical metacommunity
studies (i.e., the spatial insurance theory)21 that postulate that beta-
diversity plays a key role in the temporal stability of productivity at
regional scales, as it involves higher variation in temporal dynamics
among local communities (spatial asynchrony), implying high spatial
variability of productivity at a given time13,21. To our knowledge,
nevertheless, this is the first study to provide empirical evidence.
Finally, we demonstrate that spatial environmental heterogeneity,
experimentally created by the addition of multiple types and combi-
nations of nutrients and herbivore exclusions, increases (as expected)
the spatial variability of productivity but weakens the relationships
between different scales of plant diversity and this spatial variability.

The negative association of alpha and gamma-diversity with spa-
tial variability of productivity can result from a combination of
processes6. For instance, higher plant diversity often increases pro-
ductivity (overyielding35). If this increase in the mean is not compen-
sated by a proportional increase in its standard deviation, high-
diversity sites should have lower spatial variability of productivity8. In
contrast, as the effect of diversity on productivity may change along
productivity gradients (shifting from positive in low-productivity
communities to neutral or negative in high-productivity commu-
nities), diversity may decrease spatial variability by maintaining com-
munity productivity at intermediate levels (thus decreasing its
standarddeviation)14. In this study, both the bivariate relationships and
the SEM analysis showed no significant direct relationship between
diversity and themean or the standard deviation of productivity when
individually analyzed. But, when analyzing the spatial variability of
productivity as a composite variable (i.e., coefficient of variation), our
results suggest a combined effect on the two components (i.e., the
ratio between standard deviation and mean productivity is a relative
measure of variability that removes the impact of mean productivity).
Results further suggest that the main underlying mechanism by which
alpha and gamma-diversity decrease spatial variability of productivity
is by decreasing species covariation (see also Supplementary Fig. S4).
Different species can present non-correlated or negatively correlated
changes in biomass production in different patches; thus, highly

diverse systems have lower spatial variability in aggregate productiv-
ity. Our results thus highlight the importance of compensatory species
responses to environmental variation, as a general stabilizing
mechanism for ecosystem function, not only in the temporal4,23,36, but
also in the spatial dimension as recently suggested13.

The stabilizing mechanism of compensatory changes between
species, contributing tomore consistent biomass6,13 may involve shifts
in relative species abundances rather than abrupt compositional
changes (i.e., species turnover), as our results show that large changes
in species composition (i.e., high beta-diversity) are related to increa-
ses in the spatial variability of productivity. This pattern can arise
because changes in species composition and spatial variability of
productivity (or other aggregate functions) are both related to spatial
heterogeneity in environmental conditions. The SEM analysis, never-
theless, only detected an indirect path between spatial environmental
heterogeneity and spatial variability, a path thatwasmediated by beta-
diversity. This suggests that at least part of the observed relationship
between beta-diversity and spatial variability cannot be explained by
its simultaneous correlation with environmental heterogeneity.

Experimentally imposed environmental heterogeneity weakened
the bivariate negative relationship between spatial variability and both
alpha and gamma-diversity on the one hand, and the bivariate positive
relationship with beta-diversity on the other hand. Our SEM model
suggests that this effect is due to a weaker relationship between alpha-
diversity and species covariation. Thus, under experimentally
increased environmental heterogeneity, biomass production of dif-
ferent species was no longer negatively correlated, i.e., they may have
more coupled responses to spatial environmental variation, disabling
the potential compensation between them. Our experimental design,
in addition to the intended increased environmental heterogeneity
(through varying combinations of nutrient additions), also led to
highermean plot biomass, and lower alpha-diversity as a consequence
of increased mean nutrient inputs37. However, these effects should
mostly affect variability rather than the relationships between diversity
and variability as observed. Our SEM analysis also suggests that, under
increased environmental heterogeneity, the weaker relationship
between beta-diversity and spatial variability resulted from an
enhanced negative contribution of beta-diversity to species covaria-
tion. Although of lower magnitude, this path was also detected using
the full set of observational sites, but it was overcome by the stronger
and positive direct path between beta-diversity and spatial variability.
If different species are able to respond differently to environmental
heterogeneity, higher dissimilarity in species composition among
communities may decrease species covariation13. As this indirect path
had a similar magnitude but opposite sign compared to the direct
positive path, the two paths canceled each other out. Our results
support theoretical work suggesting that beta-diversity acts as a
destabilizing factor, as changes in species composition can involve
shifts in functional traits that scale up to affect community
production20,21,26. At the same time, beta-diversity can also act as a
stabilizing factor, because different species may perform better under
different environmental conditions32. When environmental variability
is large enough, high contrast in environmental conditions drives
coupled biomass covariationof shared species, but species divergence
may partially offset this effect decreasing the spatial variability of
productivity (Fig. 1c).

The most likely driver of spatial heterogeneity at the spatial scale
of our study design (i.e., hundreds ofmeters) is plot-scale variability of
biotic or abiotic conditions. Spatial heterogeneity in environmental
conditions is usually the result of concurrent, superimposed gradients
occurring at multiple spatial scales, or multiple disturbances inter-
acting with each other38. Biomass production often varies in response
to this combination of coarse and fine-scale heterogeneity. Results of
studies evaluating the effect of biodiversity on ecosystem function are
often scale-dependent. For example, small-scale studies are more
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likely to be at the spatial scales at which niche-partitioning and com-
petitive exclusion operate. Large-scale studies, on the other hand, are
likely to detect the effects of site-scale factors (e.g., climate, herbivory)
that may covary with diversity, thereby reducing the ability to detect
niche-partitioning and competition39. At larger spatial scales, the
importance of alpha-diversity may decrease (niche-partitioning
becomes less important relative to extrinsic factors). Concurrently, the
importance of beta-diversity may increase (as different species are
filtered into environmental conditions where their traits most effi-
ciently convert resources into biomass)40. Thus, even among the lar-
gest patches, diversity may continue to have an additional buffering
effect on spatial variability in biomassproduction41. This natural spatial
heterogeneity (even at small-scale) also contrasts with our experi-
mentally increased heterogeneity, because our experimental land-
scape was characterized by high-contrast patches with sharp
boundaries (i.e., clearly delimited experimental plots presenting
within-plot homogeneous nutrient conditions and contrasting nutri-
ent conditions among plots). Perhaps the clearest natural analogy
takes place in some grazed systems, where a combination of abiotic
(salinity, fire frequency, nutrients, water content) and biotic variables
(grazer density, bioturbation, nutrient cycling) creates distinct patches
of contrasting plant height, biomass and composition42–44. Those
characteristics are also common features of some anthropogenic
biomes (heterogeneous landscape mosaics, combining a variety of
different land uses or land-use histories45,46) and similar to the
management-driven landscape heterogeneity implemented to restore
ecosystem complexity and diversity47–50. Thus, although the applica-
tion of spatially variable management tools (such as patch-burning,
patch-grazing, and land-use diversification) can increase spatial het-
erogeneity and restore diversity, they can potentially disrupt
biodiversity-spatial variability relations.

Large-scale human impacts on ecosystems, such as land-use
intensification, N deposition or species invasions, have been driving
biotic homogenization, including losses in beta-diversity51–54. Our
results suggest that those lossesmay lead to lower spatial variability in
ecosystem-scale processes. The spatial homogenization in species
composition may also imply higher spatial correlations in ecosystem
temporal dynamics21,23,25,55, increasing temporal variability of ecosys-
tem functions at the landscape scale21,23,56. In addition, most of the
drivers of biotic homogenization (e.g., eutrophication and trophic
simplification37) also lead to reductions in alpha-diversity (but see
ref. 57). Thus, the potential loss of species at a local scalemay still cause
increased spatial (our results) and temporal23,58 variability of ecosys-
tem function, even in this biologically homogenized scenario. Biodi-
versity is thus a necessaryprerequisite to ensuregreater stability of key
ecosystem functions in the face of an ever-expanding human footprint
on environmental heterogeneity.

Methods
To explore the relationship between different scales of plant biodi-
versity and spatial variability of productivity, we used observational
(i.e., pre-treatment) data from 83 natural and semi-natural grassland
ecosystems in 18 countries across 6 continents (see Fig. 2 and Sup-
plementary Table 1) that are part of theNutrient Network collaborative
experiment (NutNet)28. All sites are dominated by herbaceous species,
and together cover a wide range of grassland habitats that range from
alpine grassland, to prairie, pasture, shrub-steppe, savanna, and old
field. These grasslands also cover a wide range in elevation (0–4400
masl), mean annual precipitation (192 to 2566mmyr−1), mean annual
temperature (−7 to 27 °C), latitude (52 degrees S to 69 degrees N), and
aboveground productivity (0.5 to 1445 gm−2 yr−1; Fig. 2b). Study sites
contained three replicate blocks each composed of ten 5m× 5mplots
(see Supplementary Table 1 for exceptions). Here, we consider each
plot as a “patch”, and the block of 10 plots as the “larger scale”23. Thus,
each “larger scale” is composed of 10 “patches” (but see

Supplementary Table 1 for exceptions), and there are at least 3 “larger
scales” per site, for a total of 83 sites, 271 “larger scales”, and 2700
“patches”. We defined alpha-diversity as species richness at the “patch”
level, gamma-diversity as species richness at the “larger scale” level,
and beta-diversity as the dissimilarity in species composition across
the 10 “patches” within each “larger scale” (see details below).

To evaluate the effect of increased environmental heterogeneity
on the relationship between spatial variability of productivity and
species diversity, we used data from 42 of those sites (Fig. 2a) that
implemented, for at least 4 years, an experiment with three nutrient
addition treatments (nitrogen (N), phosphorus (P), potassium plus
micronutrients (Kμ)), and vertebrate herbivoreexclusion. Atmost sites
plots were arranged in three blocks, each block containing the ten
focal treatments: control (unfenced and unfertilized), +N, + P, +Kμ,
+NP, +NKμ, +PKμ, +NPKμ, fenced (unfertilized), and fenced +NPKμ.
Thus, each “larger scale”was composed of ten “patches”with different
environmental conditions, that include variations in the availability of
the most important limiting nutrients and variations in herbivory
pressure. Herewe used data from the 4th year of treatments. Nitrogen,
P, and K were applied annually to experimental plots while micro-
nutrients were applied just once, at the start of the experiment, to
avoid toxic levels from overapplication. Nutrient addition rates and
sources were: 10 gNm−2 yr−1 as timed-release urea ((NH2) 2CO), 10 g
Pm−2 yr−1 as triple-super phosphate (Ca(H2PO4) 2), 10 gKm−2 yr−1 as
potassium sulfate (K2SO4) and 100 gm−2 yr−1 of a micronutrient mix of
Fe (15%), S (14%), Mg (1.5%), Mn (2.5%), Cu (1%), Zn (1%), B (0.2%), and
Mo (0.05%). Fences were 2.1m tall and excluded aboveground, non-
climbing, vertebrate herbivores. The lower 0.9m was composed of
10mmwoven wire meshwith a 0.3m outward-facing flange stapled to
the ground to excludedigging animals. The top 1.2mwas composedof
five rows of wire. Minor variations in fence design are described in
ref. 28. Each plot was separated by at least 1.5m fromneighboring plots
(1m walkway and 0.5m within-plot buffer), which served to minimize
indirect effects of treatments in one plot on adjacent plots (for
example, nutrient leaching, shading or mycelial networks). Although
different sites started the experiment in different years, we used data
from the 4th year of treatment implementation. Thus, sites have the
same length of treatment years.

Data acquisition and calculations
The variables described in this section were calculated separately for
the pre-treatment and post-treatment (4th year of treatment imple-
mentation) sampling. Thus, we created twodatasets, onebasedonpre-
treatment (natural) conditions from 83 grasslands, and one with
increased environmental heterogeneity froma subset of 42 grasslands.

We used aboveground live biomass as a surrogate measure of
primary productivity. Aboveground live biomass was estimated
destructively each year, at peak standing biomass, by clipping all
aboveground biomass of individual plants rooted within two 0.1m2

(10 cm×100 cm) quadrats at ground level. Biomass was sorted into
current (live and recently senescent material) and previous year’s
growth. For shrubs and subshrubs, all leaves and the current year’s
stemswerecollected. All biomasswasdried to a constantmassat60 °C
prior to weighing to the nearest 0.01 g. Cover of each species was
estimated non-destructively at a permanent 1m × 1m subplot within
each plot. Plant species cover was recorded to the nearest 1% for each
species in the plot. Cover was estimated independently for each spe-
cies so that the total summed cover can exceed 100% for multilayer
canopies. During pre-treatment sampling, soil samples were collected
from each plot (three 25mm diameter cores to 100mm depth);
because of missing samples, this dataset includes a subset of 54 of the
83 sites. Soils were air-dried to constant mass, weighed, and analyzed
for pH, total carbon (C in %), total N (in %), P (ppm), and K (ppm)
concentrations. C and N analyses were done at the University of Min-
nesota and the University of Nebraska via dry combustion GC analysis
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(COSTECH ESC 4010 Element Analyzer) using cross-calibrated
machines. Data also were generated on soil phosphorus, potassium,
and micronutrients, soil pH, organic matter, and texture from each
sample (A&L Analytical Laboratory, Memphis, TN, USA). Full details of
Nutrient Network methods can be found in ref. 28.

We estimated alpha, beta, and gamma-diversity separately for
each block, using the approach described in ref. 56. Alpha-diversity was
estimated as the mean plant species richness per plot across all plots
within a block, whereas gamma-diversity was estimated as the total
plant species richness within each block (i.e., block richness56). Beta-
diversity was estimated as the Jaccard Dissimilarity Index across the
ten plots within each block56; we calculated this index using the func-
tion “vegdist” from the “vegan” package59 in R and then calculated the
mean multivariate distance between the ten plots and their centroid
using the function “betadisper” (also from the “vegan” package). We
used these diversity indexes because they are all based on presence/
absence. However, we evaluated if our results still hold using other
common biodiversity indexes, such as the Shannon Entropy index,
Inverse Simpson index and the Effective Number of Species (ENS)
needed to reach the observed Probability of Interspecific Encounter
(SPIE)

60 for alpha and gamma-diversity as well as Whittaker´s multi-
plicative (i.e., alpha/gamma), additive (i.e., gamma–alpha) beta-
diversity61 and abundance-based multivariate beta-diversity (Supple-
mentary Table 2 and Supplementary Fig. 3).

Stability is a multifaceted concept62 that is commonly empirically
measured as the inverse of variability (i.e., invariability);63 the mean of
an ecosystem property or function divided by its standard deviation.
However, the term “stability” has a temporal connotation so, to avoid
confusion, we defined spatial variability as the coefficient of variation
(i.e., standard deviation divided by mean)13,14. Spatial variability of
productivity was defined for each larger scale (i.e., block) asσ/µ, where
σ is the spatial standard deviation of total live biomass, and µ is the
spatial mean among the 10 plots of each larger scale. We estimated
species covariation across space as a spatial analog of species syn-
chrony (insurance effects may emerge from asynchronous species
fluctuations10,13,22). It was measured for each block as:

Species covariation=
σ2

PS
i = 1σi

� � ð1Þ

whereσ2 is the variance in total plot live biomass, andσi is the standard
deviation of species i live biomass in a block with S species. Thus, if all
species respond equally to spatial environmental variability, species
covariation approaches 1, but if different species are capable of dif-
ferently responding to this variability, species complement each other
and species covariation approaches 0. As we do not have per-species
biomass data, we used species’ relative cover as a proxy. Cover of each
species across thewholeplotwasmultiplied by the total living biomass
for the plot36.

Data analysis
We first explored the relationship between different scales of biodi-
versity (i.e., alpha, beta and gamma-diversity) and the spatial variability
of productivity using pre-treatment data from the 83 grasslands. We
modeled these relationships with linear mixed-effects models using
the “lmer” function in the “lme4” package64 in R version 4.0.5 (R Core
Team 2021). To improve normality, spatial variability was log-
transformed before analysis. We used sites as random effects, allow-
ing the intercepts and slopes of the regression to vary between sites if
supported by model selection. We used a model-selection approach
based on minimization of BIC following ref. 65, in which we compared
models with andwithout a given random structure to determinewhich
level of variation was required in the model. In all cases, model selec-
tion retained only variation among sites in the intercept. We also

modeled these relationships using type II regression (ranged major
axis method) using the “lmodel2” package66 in R to take into account
the existence of sampling error of both predictor and response vari-
ables. As this model does not allow the inclusion of random structures
(i.e., to reflect or multi-level design), we averaged values at the site
level (i.e., instead of using three replicates per site, and to avoid
pseudoreplication, weused the average value per site). To evaluate the
two previously proposed niche-based mechanisms (i.e overyielding,
which implies increases in the spatial mean of productivity as diversity
increases, versus insurance, which implies decreases in species cov-
ariation as diversity increases), we also separately explored the rela-
tionship between biodiversity and each component of variability (i.e.,
σ and µ) and species covariation, using mixed-effects models as
described above.

To remove the possible influence of key abiotic factors on the
relationship between different scales of biodiversity and the spatial
variability of productivity, we used a subset of bioclimatic variables
representing (i) annual trends (mean annual temperature (°C) and
precipitation (mm); seasonality (mean annual range in temperature
(°C), the standard deviation in temperature, coefficient of variation
of precipitation) and (ii) extreme or limiting environmental factors
(mean temperature during thewettest 4months (°C)).We performed
a multiple regression of spatial variability against these climatic
variables, kept the residuals, and then modeled the relationship
between different scales of diversity and the obtained residuals,
using type II regression. We also performed a multimodel inference
(using the “MuMIn” package)67 to select the simplest models that
explained themost variation (of spatial variability) based on Akaike’s
information criterion (AIC). Candidate models represented every
possible combination of explanatory variables (i.e., the subset of
bioclimatic variables along with the different scales of diversity) and
the interactions between bioclimatic variables and the different
scales of diversity.

We then fit a Piecewise Structural Equation Model (Piecewise
SEM)68 to infer the direct and indirect effects of biodiversity on the
spatial variability of productivity. Our model also aimed to explicitly
evaluatewhether increasedbiodiversity candecrease spatial variability
of biomass production by the two previously proposed mechanisms
(i.e., overyielding and decreased species covariation; see Supplemen-
tary Table 5). We began with a full conceptual model (see Supple-
mentary Fig. 7) and followed a model simplification process in which
non-significant paths were iteratively removed until only significant
paths remained69 and/or model fit was higher (i.e., minimization of
BIC) than with further path removals. We incorporated site as a ran-
dom effect in individual models68 and model fit was assessed using
Shipley’s test of d-separation,whichyields a Fisher’s C statistic that is χ2

distributed68. In order to include an estimation of spatial environ-
mental heterogeneity, we repeated the SEM analysis using the subset
of 54 sites in which soil chemistry was measured. Environmental het-
erogeneity was estimated as the average Euclidean distance using the
“vegan” package59 in R for standardized soil parameters (soil C, N, P
andKcontents, andpH) and ambient light56 among the tenplotswithin
each block.

Lastly, we explored the effect of increased environmental het-
erogeneity using data from the 42 sites with experimental nutrient
addition (see Supplementary Table 1). We first evaluated whether
increased environmental heterogeneity affects the observed bivari-
ate relationships between different scales of biodiversity and spatial
variability of productivity, and then fitted the same SEM described
above. For comparisons, we re-fit pre-treatment models for the
subset of 42 experimental sites, and then performed a multigroup
analysis to evaluate differences in path coefficients between pre- and
post-treatment models using the “multigroup” function from the
“piecewiseSEM” package68 in R. In short, this analysis implements a
model-wide interaction in which every term in the model interacts
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with the grouping variable (i.e., pre- versus post-treatment). If the
interaction is significant, then the path is free to vary by group; if not,
then the path is constrained and takes on the estimate from the
global dataset.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in these analyses are publicly available on the Environ-
mental Data Initiative (EDI) (https://doi.org/10.6073/pasta/
583874460a0af70f93d3eee2f22f9a13); see ref. 70.

Code availability
The complete R code supporting the findings of this study is freely
available online at GitHub and archived through Zenodo (https://doi.
org/10.5281/zenodo.7698668); see ref. 71.
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