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Abstract
To understand the potential of forests to adapt to wildfire, we studied the genetic architecture of fire-related structural, damage 
and recovery traits in a globally important Australian forest tree species, Eucalyptus globulus. Fourteen traits were evaluated 
in an outcrossed F2 population in a field trial in Tasmania, Australia, which was burnt by a wildfire 14 years after planting. The 
trial also included open-pollinated families of the grandparental dwarf and tall ecotypes used to produce the F2 population. 
We studied the phenotypic correlations within the F2 population and performed quantitative trait loci (QTL) analyses using a 
linkage map comprised of 472 markers. Ecotype comparisons revealed that almost all traits were under genetic control, with 
trees of the dwarf ecotype significantly more damaged and mainly recovering from lignotubers, whereas tall ecotype trees 
mainly recovered from epicormic resprouts extending for a variable height up the stem. Within the F2, tree size was negatively 
correlated with fire damage and positively correlated with recovery. Genetic control of fire-related traits was confirmed by 
the detection of 38 QTL in the F2 population. These QTL accounted for 4 to 43% of the phenotypic variation in these traits. 
Several QTL co-located and likely reflect pleiotropic effects. However, many independent QTL were detected, including 
QTL for crown consumption and trunk scorch, epicormic resprouting, resprout herbivory, and seedling establishment. The 
QTL detected argue that many genetically controlled mechanisms are responsible for variation in fire damage and recovery.
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Introduction

Fire is an important ecological process in many forest com-
munities, affecting species composition and coexistence 
(McLauchlan et al. 2020). Many tree species have strategies 
to resist or recover from the effect of fire (Keeley et al. 2011; 
Clarke et al. 2013; Pausas and Keeley 2014). However, such 
strategies are increasingly being challenged by changes in 
fire regimes, with the frequency and intensity of forest fires 

projected to increase globally due to increased droughts and 
extreme temperatures caused by climate change (Miller et al. 
2019; Bowman et al. 2020; Kelly et al. 2020; Nolan et al. 2021).

Australia is one of the most fire-prone countries in the 
world (Burrows 2008), and future climate change scenarios 
show an increase in fire risk over a large portion of the con-
tinent because of warming, reduction in relative humidity 
(Pitman et al. 2007), and increase in dry lightning (Dowdy 
2020). A large component of the Australian vegetation is 
dominated by the genus Eucalyptus and other sclerophyl-
lous species of the Myrtaceae family, which have evolved 
in the presence of fire (Crisp et al. 2011; Paramjyothi et al. 
2020). Eucalypts have numerous traits which are direct- or 
pre-adaptations to survive or recover from fire (Gill 1997). 
Among the most notable of these are the storage of seed in 
closed fruits in the canopy (serotiny, Lamont et al. 2020) and 
recovery traits such as the capacity to resprout vegetatively 
(Burrows 2013). Resprouting from basal lignotubers allows 
eucalypts to survive after high-intensity fires when their 
crown is completely killed, while epicormic resprouting 
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from stems or branches allows individuals to rapidly restore 
photosynthetic capacity (Burrows 2002; Pausas and Keeley 
2017). The latter is facilitated by bud-bearing meristematic 
strands which reside in the bark, outer-wood, and vascular 
cambium (Burrows 2002; Clarke et al. 2013). Recovery after 
fire can also occur by seedling recruitment from canopy-
stored seed which is usually shed en masse following canopy 
damage (Ashton 1979). Fire increases the availability of 
nutrients in the soil, removes other vegetation, and alters soil 
microbial dynamics, which promotes seed germination and 
establishment (Aguas et al. 2018; Ammitzboll et al. 2022).

Many plant traits have been postulated to affect the 
response of trees to fire (Midgley et al. 2010; Bowman 
et al. 2014; Pausas et al. 2017; Karavani et al. 2018). For 
example, tree size is positively correlated with the likeli-
hood of survival after fire because trees with larger diam-
eter are less likely to have the whole circumference of the 
cambium killed by exposure to high temperatures (Gutsell 
and Johnson 1996; Lawes et al. 2011). Bark thickness is 
another trait positively associated with fire resistance, with 
thicker bark thought to shield the cambium and the dormant 
epicormic buds or meristematic tissue beneath the bark from 
heat damage (Rosell 2016; Pausas 2017; Pausas and Keeley 
2017; Karavani et al. 2018). While bark thickness is gen-
erally a function of tree size (Lawes et al. 2013), relative 
to tree diameter, it can also differ between species (Hengst 
and Dawson 1994; VanderWeide and Hartnett 2011; Graves 
et al. 2014) and populations of the same species (López et al. 
2002; Bdeir et al. 2019). The association of other traits with 
fire resistance is less studied, but a multi-species study has 
shown that wood density has a strong positive correlation 
with post-fire survival (Brando et al. 2012), suggesting an 
increased capacity of trees with denser wood to compart-
mentalize fire damage, which may lead to reduced xylem 
damage and susceptibility to cavitation (Nolan et al. 2021). 
Although the contribution of all these traits to resistance and 
recovery from fire has been previously studied at the phe-
notypic level, this has rarely been addressed at the genetic 
level, which is required to understand the potential for forest 
tree populations to genetically adapt to various fire regimes.

Depending on whether it is the direct or indirect result of 
natural selection by fire or other selective pressures, particu-
lar traits may be said to provide an adaptation or a pre-adap-
tation (i.e., fire-exaptation) to fire, respectively (Keeley et al. 
2011; Lamont and He 2017; Lamont et al. 2019). Regard-
less, the potential for adaptation and pre-adaptation depends 
on the existence of genetic variation (Bradshaw et al. 2011), 
which is required for an evolutionary response to selection 
(Le Rouzic and Carlborg 2008). Common garden field trials 
testing provenance or family differences are a long-standing 
approach to reveal the genetic basis to phenotypic variation 
in forest trees (Alberto et al. 2013; Ramírez-Valiente et al. 
2021). Such trials have shown a quantitative genetic basis to 

variation in fire-related traits associated with reproduction 
(e.g., precocity, serotiny) and tree structure (e.g., trunk size 
and relative bark thickness) (Chambers et al. 1997; Dut-
kowski and Potts 1999; Hernández-Serrano et al. 2014). In 
forest trees, both family-level quantitative trait locus (QTL) 
mapping and population-level association genetic studies 
are also frequently used to provide insights into the genetic 
architecture underlying phenotypic variation and for identi-
fying the putative loci influencing this variation (Neale and 
Kremer 2011). However, there is a paucity of studies linking 
genotype with phenotype for fire-related traits, especially 
recovery traits. Furthermore, post-fire factors that affect 
resprouting, such as insect attack and mammalian herbivory, 
are scarcely addressed, even at the phenotypic level (Wool-
ley et al. 2012; Hutchen et al. 2017).

Eucalyptus globulus Labill. (Tasmanian blue gum) occurs 
naturally in Tasmania, the Bass Strait Islands, and adjacent 
coastal regions of Victoria (Dutkowski and Potts 1999) and 
is widely planted in other regions of Australia where it is the 
most important plantation eucalypt species (Downham and 
Gavran 2019). As one of the nine Eucalyptus species that 
dominate the world’s eucalypt plantations (Harwood 2011), E. 
globulus is also grown in temperate regions of the world such 
as Chile, Portugal, and Spain where it is a valuable resource 
for pulp, paper, and timber production (Potts et al. 2004). The 
effect of fire on this species is therefore important because 
of the potential impact on both natural populations and the 
plantation industry in Australia (Battaglia and Bruce 2017) 
and overseas (Tomé et al. 2021). The species is well-adapted 
to regenerate from wildfire through vegetative recovery and 
canopy-stored seed. It is a “combination sprouter” having 
the potential to vegetatively recover from crown destruction 
through both epicormic shoot production from the stem and 
branches, and resprouting from basal lignotubers (Nicolle 
2006; Burrows 2013). Wildfire is also important for seedling 
establishment, creating a suitable seed bed and causing the 
release of canopy-stored seed from its woody capsules (Lar-
combe et al. 2013; dos Santos et al. 2015). There is consider-
able genetic variation, both within and between provenances 
of E. globulus, for traits which could potentially affect dam-
age and recovery of trees from wildfire, and thus the adap-
tive potential of the species. Such fire-related traits include 
lignotuber size and vegetative recovery (e.g., resprouting fol-
lowing harvesting (Whittock et al. 2003)), composition and 
abundance of foliar terpenes (O’Reilly-Wapstra et al. 2011), 
and stem traits associated with growth rate, bark and wood 
density (Freeman et al. 2013).

There has been extensive research on the response of E. 
globulus to wildfire, particularly in Portugal where a large 
expanse of the plantation estate has been impacted by wild-
fire in the last decade (Tomé et al. 2021). This research 
shows that tree damage and recovery are not only related 
to fire intensity and landscape features (Larcombe et al. 
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2013; Catry et al. 2015; Aguas et al. 2017), but also physical 
attributes such as tree size (Marques et al. 2011; Catry et al. 
2013a). Despite these previous studies, there is no empirical 
evidence as to whether other structural traits affect damage 
or recovery of E. globulus trees from wildfire at the pheno-
typic level nor if there is a genetic basis to the variation in 
fire response. This lack of information includes the post-fire 
vegetative and reproductive regeneration, both of which can 
be affected by herbivory (Midgley et al. 2010), to which 
E. globulus exhibits considerable genetic variation in sus-
ceptibility (McGowen et al. 2004b; O’Reilly-Wapstra et al. 
2014). Such information is required to understand the poten-
tial long-term consequence of fire on natural and planted 
forests, and assess the potential of the species to adapt to 
altered wildfire regimes.

The present study uses a QTL mapping population of E. 
globulus that was burnt during a wildfire and aims to deter-
mine: (i) whether there is genetic variation in fire damage 
and recovery, including herbivory of resprouting foliage and 
seedling recruitment; and (ii) the phenotypic and genetic 
associations among the fire-related structural, damage, and 
recovery traits.

Materials and methods

Genetic material

Genetic and phenotypic analyses were performed on a trial 
of Eucalyptus globulus that included a large outcrossed F2 
mapping population, comprising a full-sib family generated 
by crossing two F1 individuals (parents), one originating 
from crossing a tree with a dwarf ecotype from Wilsons 
Promontory in Victoria (see Jordan et al. 2000) with a tree 
of the tall ecotype (normal ecotype of the species) from King 
Island in Bass Strait, the other from crossing another unre-
lated Wilsons Promontory tree with one of the tall ecotype 
from Taranna in southeast Tasmania (Hudson et al. 2014). 
Open-pollinated families representing the dwarf and tall 
ecotype grandparents (from open-pollinated seed collected 
from surviving grandparental trees) were also randomly 
interspersed within the planting blocks of the F2 family. The 
number of F2 and open-pollinated individuals used in the 
analyses of the various traits is shown in Table 1.

Trial description and fire event

The trial studied was planted in 2006 on an ex-native for-
est site near Geeveston, in southern Tasmania, Australia 
(43° 13′ 8.60′′ S, 146° 53′ 54.81′′ E, 382 m a.s.l.). The site 
was clear-felled, remaining vegetation cleared, and debris 
windrowed to produce four planting bays. Following typical 
silviculture practices used to establish eucalypt plantations 

in Tasmania, the windrows were burnt, bays then rip-lined 
to produce planting rows 4 m apart into which trees were 
planted at a spacing of 4 m apart. The trial was thus effec-
tively established into bare soil. It was embedded in the rou-
tine plantations established at the same time by Sustainable 
Timber Tasmania, but was surrounded by a fence for protec-
tion against marsupial browsing. The four planting bays of 
the trial were divided into a total of 14 blocks, which were of 
variable size dependent on bay and row configurations. The 
F2 and open-pollinated families were spread across these 
blocks and planted into random positions within each block.

The trial was burnt by a wildfire between January and Febru-
ary 2019. The fire was initiated by a dry lightning storm that 
registered more than 2000 lighting strikes and burned nearly 
64,000 hectares of tall eucalypt forests (Wardlaw 2021). The 
fire burnt through all of the trial and the trial fence was dam-
aged allowing post-fire access by marsupial browsers. Three 
months after the fire, a first inspection showed all surface litter 
and understorey plants were burnt (Fig. 1a, b); the bark of 98% 
of trial trees showed signs of fire damage, and the canopies of 
all trial trees were damaged to some extent. Of the 350 trial 
trees, 280 (80%) had their pre-fire foliar canopies completely 
killed (100% consumed or scorched) by the fire (see Supple-
mentary Figure S1) and 44 of these 280 had their canopies 
completely consumed. The 70 (20%) trees that had some part 
of their pre-fire canopy alive tended to be spatially clustered 
(see Supplementary Figure S1), resulting in statistically signifi-
cant differences among blocks in fire damage scores (one-way 
ANOVA, P < 0.001). Despite canopy leaf death, no tree mortal-
ity occurred in the F2 following the fire, and recovery occurred 
by both epicormic and basal resprouting.

Assessment of fire‑related traits

Fourteen fire-related traits were measured on the trial trees 
at different stages of the stand development, both pre- and 
post-fire. These traits were separated into four categories: 
structural traits, fire damage traits, post-fire recovery traits, 
and post-fire herbivory traits (Table 1). Structural traits were 
assessed prior to the fire and were putatively linked to the 
capacity of trees to respond to fire (e.g., bark thickness). 
Traits associated with fire damage were those that reflected 
burn severity on individual trees (e.g., crown consumption). 
Recovery traits were those that represented a direct response 
of trees to fire by restoring the photosynthetic capacity of 
pre-established trees (e.g., through stem epicormic shoots or 
basal resprouts) or measured the ability of a tree to produce 
a new generation through seedling establishment. Post-fire 
herbivory traits were those associated with herbivory on veg-
etative shoots generated following post-fire resprouting (e.g., 
mammalian browsing).

Three structural traits were assessed up to 3 years prior 
to the fire. Diameter at breast height (1.3 m) was measured 
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on trees before (DBH16) and after the fire (DBH20). Ten F2 
trees were alive in 2016 but were missed in the DBH assess-
ment, leading to more trees being assessed for DBH20. Bark 
thickness and wood density were measured 2.5 years before 
the fire. To measure bark thickness and wood density, a bark 
hole-punch was used to remove a bark window (10 × 70 mm) 
at breast height from the outer rough bark to the cambium 
on the north facing side of the main stem of each tree. Due 
to the requirement for removal of the bark window, we did 
not assess trees with DBH less than 10 cm. Wood density 
was measured from the cambium layer into the stem xylem 
using a 6 J-Forest pilodyn penetrometer. The depth of the 
pilodyn penetration into the stem xylem of the standing tree 
is strongly negatively correlated with wood density in E. 

globulus (Callister and England 2010). Pilodyn penetration 
was averaged after taking a pilodyn measurement from the 
top and bottom of the bark window on the surface of the 
exposed wood (PP16). Following this, bark thickness from 
the outer rough bark to the cambium was measured using 
the depth gauge of the pilodyn (BT16). Given the proximity 
between the age of assessment of structural traits and the 
time of the fire, coupled with the strong age-age correlations 
observed in E. globulus for diameter, wood density (Stack-
pole et al. 2010), and bark thickness (Nickolas et al. 2020), it 
is assumed that the phenotypic differences among individuals 
in 2016 reflect that at the time of the fire.

Three traits associated with fire damage were visually 
assessed 3 months post-fire by a single observer. Following 

Table 1   Statistics for traits assessed in the genetic trial of Eucalyptus globulus, pre- and post-fire

Statistics for the post-fire damage, recovery and herbivory traits are based on the filtered data set which only included trees with complete death 
of their foliar canopy (i.e., canopy-killed subset).
Note. SE, standard error; p-level, statistically significant difference between populations of dwarf and tall ecotype grandparents.
a Traits where the means were compared with Welch’s t-test. Other traits were compared with Wilcoxon-Mann–Whitney test.
b Statistics refer to adjusted bark thickness (ADBT16).
† Ten F2 trees were alive in 2020 but were not measured for DBH in 2016 and one re-spouting tree could not be reliably assessed for DBH in 
2020. Not all ecotype controls were assessed in 2020.
†† When individuals had their crown completely consumed, no measurements of crown scorch (CSC19) were possible, which explains the differ-
ence in sample sizes for the damage traits. As CSC19 was invariant in the canopy-killed subset of trees, no SE is shown.

Trait Year of 
evaluation

Code Variable type Units Genetic material

Dwarf ecotype 
grandparents

Tall ecotype 
grandparents

F2 population

n Mean SE n Mean SE p-level n Mean SE

Structural traits
Diameter at breast height a, † 2016 DBH16 Continuous mm 18 71.9 8.5 18 169.5 15  < 0.001 303 145.5 3.0

2020 DBH20 Continuous mm 14 74.9 8.8 16 217.4 16.6  < 0.001 312 172.5 3.8
Bark thickness a, b 2016 BT16 Continuous mm 6 10.8 0.3 16 8.8 0.6 0.004 247 9.9 0.1
Pilodyn penetration a 2016 PP16 Continuous mm 6 11.2 0.8 16 14.4 0.3 0.007 247 13.0 0.1
Fire damage traits
Trunk scorch 2019 TS19 Continuous % 18 55.3 8.4 17 32.9 8.3 0.040 245 30.2 1.5
Crown consumption 2019 CC19 Continuous % 18 83.9 5.0 17 48.5 9.1 0.002 245 41.3 2.1
Crown scorch †† 2019 CSC19 Continuous % 7 100 - 14 100 - - 215 100 -
Post-fire recovery traits
Seedlings established 2020 SE20 Count 13 1.1 0.4 14 0.93 0.4 0.486 245 0.7 0.1
Number of basal resprouts 2019 NBR19 Count 14 1.7 0.5 14 0.9 0.7 0.037 245 1.2 0.1
Number epicormic clusters 2019 NEC19 Count 14 10.6 2.1 14 9.6 4.0 0.288 245 18.7 1.0
Epicormic shoots in crown 2020 ECR20 Bivariate (0,1) 14 0 0 14 0.2 0.1 0.079 245 0.2 0
Height of the last epicormic 2019 HLE19 Continuous % 14 16.8 4.1 14 51 12.1 0.188 245 42.8 2.5

2020 HLE20 Continuous % 14 14.9 5.3 14 42.9 9.0 0.021 245 42.8 2.5
Epicormic shoot coverage 2020 EC20 Continuous % 14 12.1 4.1 14 28.4 6.6 0.058 245 42.7 2.1
Post-fire herbivory traits
Insect attack 2019 IA19 Ordinal (0–3) 12 0.9 0.2 13 0.6 0.2 0.339 218 0.7 0.1

2020 IA20 Ordinal (0–3) 13 1.1 0.1 14 1.0 0 0.335 242 1.2 0
Mammalian browsing 2019 MB19 Ordinal (0–3) 13 1.2 0.3 14 0.4 0.3 0.028 233 0.5 0.1

2020 MB20 Ordinal (0–3) 13 1.2 0.2 14 0.5 0.2 0.029 242 0.6 0.1
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Thies et al. (2006), the trunk (bole) scorch (TS19) was con-
sidered as the percentage of tree height that was scorched by 
the fire (Fig. 1c). Crown consumption (CC19) was defined 
as the percentage of pre-fire live foliar crown volume con-
sumed, therefore gone, by active combustion (McHugh 
et al. 2003) and visually estimated, based on the observ-
ers’ prediction of the pre-fire crown volume from remain-
ing crown branches. Similarly, crown scorch (CSC19) was 
visually estimated as the percentage of the leaves remaining 
in the crown (i.e., that had not been consumed by the fire) 
assessed as scorched (brown and dessicated) and assumed 
dead (McHugh and Kolb 2003).

Recovery traits were assessed twice, at 3 months and 
12 months post-fire. Some traits were evaluated on both 
occasions, while others only once when taking a second 
measurement was impractical. Seedling establishment (SE20) 
was assessed by counting the number of seedlings alive on 

the burnt area of ground in a 1-m radius around the trunk 
of each tree 1 year after the fire. Because eucalypts have (i) 
very limited seed dispersal (Booth 2017), particularly heavy-
seeded species such as E. globulus (Cremer 1977; Larcombe 
et al. 2013), (ii) little soil stored seed (Florence 1996), and 
(iii) seedlings established after wildfire are usually directly 
derived from seeds stored in woody capsules in the tree 
canopy (dos Santos et al. 2015), the seedlings counted in 
the circular plot were assumed to be from seed shed from 
the central tree following the fire. As the maker genotypes 
are expected to be randomly distributed in the trial, any 
seed flow-over from adjacent trees in the trial would only 
diminish the probability of QTL detection. Recovery traits 
also included assessments of resprouting from the ligno-
tuber, stem, crown, and the whole tree. Following Catry 
et al. (2013a), the number of resprouts (NBR19) originating 
from basal lignotubers was counted 3 months post-fire. In 

Fig. 1   Fire damage, post-fire recovery, and herbivory traits measured 
on the common garden field trial. a Trees with 100% of their crown 
scorched. b Trees with 100% of their crown consumed. c Maximum 
stem height scorched by the fire (indicated by red arrow). d Basal 
resprout. e Epicormic clusters. f Seedling established on the forest 

floor (indicated by red arrow). g Damage from mammalian brows-
ing (indicated by red arrow). h Insect herbivory by larvae of the leaf 
beetle, Paropsisterna cloelia. Photographs a, b, and e were taken 
3 months after the fire, while the rest were taken 1 year after the fire
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addition, we also counted the number of epicormic clus-
ters (i.e., number of clusters of vegetative shoots (NEC19)) 
between the ground and 2 m height on the four cardinal faces 
of each tree stem (Fig. 1e). Epicormic shoots in the crown 
(ECR20) were also evaluated as a bivariate trait, defining 
the tree crown as the top section of the stem which starts 
with the main branches. Another resprouting trait considered 
was the height to the highest cluster of epicormic shoots on 
the stem, expressed as a percentage of the total tree height. 
This trait was assessed twice using two different methods. 
The first measurement was performed 3 months post-fire 
(HLE19), using a visual estimation in the field, while a sec-
ond measurement was performed using photos taken of 
every tree 1 year after fire (HLE20). The photos covered the 
entire tree from the base to the top, making it possible to 
identify and measure tree height as well as any resprouting 

along the stem (Fig. 2). To assess the photos, digital meas-
urements were taken with the software ImageJ v. 1.52a (Sch-
neider et al. 2012). We also assessed the epicormic shoot 
coverage (EC20) on the stem using the photos and ImageJ, 
defined as the length of the stem covered by epicormics, 
expressed as a percentage of total tree height.

Post-fire herbivory traits were visually evaluated across 
epicormic and basal shoots located between the ground and 
2 m up the stem, 3 months and then 1 year after the fire 
(Fig. 1g, h). Separate estimates in the field by the same expe-
rienced observer in both years were made of the percentage 
leaf area lost through insect and mammal browsing based 
on relatively distinctive symptoms. The loss through insect 
attack (IA19 and IA20) integrated damage which was mainly 
ascribed to sawfly larvae (Perga affinis), eucalypt leaf beetle 
larvae (Paropsisterna cloelia), and nymphs of Amorbus sp., 

Fig. 2   Photos taken in 2020 for 
assessing the traits epicormic 
shoot coverage and height to 
the last epicormic (1 year after 
trees were burnt by wildfire). 
a Tree with epicormic shoots 
covering the first third of stem 
from the ground. b Tree with 
epicormics on most of the stem
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which have relatively distinctive symptoms and are species 
previously reported as pests of E. globulus plantations (de 
Little et al. 2008). The mammalian browsing damage (MB19 
and MB20) was caused by the common brushtail possum 
(Trichosurus vulpecula), a marsupial commonly reported as 
responsible for damaging trees in Tasmanian eucalypt plan-
tations (Miller et al. 2009). Their damage is often associated 
with the presence of typical scratch marks on the tree trunk. 
Both insect attack and mammal browsing were assessed 
using an ordinal scale (0 = no damage, 1 = minor damage, 
2 = medium damage, 3 = heavy damage).

Analysis

Diameter at breast height, bark thickness, and pilodyn pen-
etration were analyzed using all the phenotypic measure-
ments available for the trait (Table 1). Since these traits did 
not represent a response to the effect of fire, no exclusion of 
trees was needed to standardize the analysis. However, we 
performed the analyses of damage, recovery, and post-fire 
herbivory only on trees with no pre-fire leaves left alive in 
the crown, that is, trees with foliar crowns either 100% con-
sumed by the fire or trees with crowns 100% scorched. This 
selection was aimed at reducing the variation in fire expo-
sure among trees and restricts our analysis to the subset of 
trees with pre-fire foliar canopies that were completely killed 
by the fire. It also was aimed at avoiding interference from 
living pre-fire canopy foliage in the recovery response due 
to hormonal/nutrient mechanisms (Meier et al. 2012). This 
filtered subset is hereafter referred to as the “canopy-killed” 
trees. This exclusion meant that there was no variation in 
crown scorch in the subset of trees analyzed, so this trait was 
dropped from further analyses, but there was variation in 
crown consumption (CC19) and trunk scorch (TS19). While 
this variation likely includes a residual effect of spatial vari-
ation in fire intensity, this will not bias our QTL results as 
segregating markers are expected to have a random distribu-
tion throughout the trial.

To determine whether there was genetic variation for fire-
related traits, trait means of dwarf and tall ecotype grandpar-
ent families were compared. Since trees of these two groups 
were randomly distributed in the trial blocks, statistical 
differences in fire-related traits were not due to the spatial 
distribution of trees, but genetic-based group differences. 
The group means of traits which had Gaussian distributions 
(i.e., diameter at breast height, bark thickness, and pilodyn 
penetration) were compared with Welch’s t-tests, while com-
parison of group differences for other traits was performed 
with Wilcoxon-Mann–Whitney test. Because bark thickness 
is associated with stem size (Lawes et al. 2013), the effect 
of diameter was removed by linear regression with DBH 
measured at the same time and adjusted values analyzed as 
well as non-adjusted values. This regression was based on 

all data (F2 plus open-pollinated families), and the adjusted 
bark thickness was the sum of the overall mean bark thick-
ness and the residuals derived from the linear regression of 
bark thickness on DBH (Table 1).

To examine the genetic architecture underlying variation 
in the above traits, quantitative trait loci (QTL) analysis was 
performed on the F2 family with the software MapQTL 6 
(Van Ooijen 2009). A high density linkage map has been 
previously constructed using this F2 population (Hudson 
et al. 2012) and several QTL analyses have already been 
performed (Hudson et al. 2014; Butler et al. 2016; Ammitz-
boll et al. 2018). To decrease the computational demand in 
QTL analyses, the linkage map was reduced to 472 markers 
(422 DArT and 50 SSR) located at intervals of 2 to 5 cM by 
removing most 3:1 segregating DArT markers and retaining 
all SSR markers and an even distribution of DArT markers 
segregating in a 1:1 ratio while preserving their cM position 
following the methodology used by Hudson et al. (2014). 
Permutation tests (1000 permutations) were run to deter-
mine the significance thresholds of the logarithm of odds 
(LOD) at the genome-wide and chromosome-wide levels 
(Churchill and Doerge 1994). Putative QTL were declared 
as significant (i.e., genome‐wide type I error rate < 0.05) or 
suggestive (i.e., chromosome‐wide type I error rate < 0.05) 
depending on LOD score (Freeman et al. 2008). Initially, 
interval mapping was used, choosing various traits as covari-
ates when removing the effect of these was meaningful to the 
analysis. For example, DBH was included as the covariate 
for bark thickness given their high phenotypic correlation 
(see the “Results” section); thus, the QTL reported refer 
to relative bark thickness. When QTL peaks exceeded the 
suggestive LOD threshold in interval mapping, the closest 
markers were added as cofactors in a subsequent analysis by 
restricted multiple‐QTL model (rMQM) mapping. rMQM 
analyses were conducted using an iterative approach until 
no more QTL were detected, cofactor markers were the 
closest marker to each QTL, and QTL positions were stable 
(Van Ooijen 2009). To determine if parental segregation of 
QTL effects was solely on the maternal or paternal sides, 
or both, Kruskal–Wallis single marker analyses were con-
ducted in MapQTL 6, and the significance of markers with 
different segregation adjacent to each significant QTL was 
examined. This analysis permitted the classification of QTL 
effects into three main classes: male segregation, where the 
markers inherited solely from the female parent showed no 
significant effect; female segregation, where the markers 
inherited solely from the male parent showed no significant 
effect; and both parents, where markers inherited from the 
male and female parents were significant (P < 0.05). When 
segregation came from both parents and the effect of one of 
the parents was more pronounced than the other, we indi-
cated which of the parents had the major contribution to 
segregation in the region. In addition, associations between 
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traits were explored by estimating Spearman correlations (ρ) 
within the F2 population.

Results

Ecotype comparison

Comparison of means between dwarf and tall ecotypes 
showed statistically significant differences for all structural 
traits (DBH16, DBH20, BT16, PP16; Table 1). The samples 
of the dwarf ecotype had higher wood density (density is 
the inverse of pilodyn penetration) and higher values of 
adjusted bark thickness than samples of the tall ecotype, 
but lower average values of stem diameter. As BT16 and PP16 
were not measured from small stems, a disproportionately 
high number of the dwarf trees were not assessed, which 
could potentially underestimate the difference between the 
ecotypes. Nevertheless, additive genetic inheritance in the F2 
population are likely for stem diameter, adjusted bark thick-
ness, and pilodyn penetration, since its sample means were 
close to midway between that of the grand-parental means 
of the dwarf and tall ecotypes (Table 1, Supplementary Fig-
ure S2). The F2 population encompassed the full range of 
phenotypic variation in DBH20 exhibited between the dwarf 
and tall ecotypes, but there was also much variation in the 
tall ecotype (Supplementary Figure S3).

Traits associated with fire damage (TS19 and CC19) also 
showed statistically significant differences between the 
means of dwarf and tall ecotypes using the filtered data set 
of canopy-killed trees (Table 1). The dwarf ecotypes were 
more damaged and the F2 mean was closer to that of the 
tall ecotype. For example, 61% for the dwarf ecotype trees 
studied experienced complete crown consumption during the 
fire, which compares with 18% for the tall ecotype and 12% 
for the F2 trees. Based on the observed absence of epicormic 
shoots below 2 m in the first year following the fire (NEC19) 
and the absence of epicormic shoots on the trunk in the sec-
ond year (HLE20), 20 of the 245 canopy-killed F2 trees (8%) 
would classify having been top-killed by the fire (i.e., total 
death of the above ground aerial biomass), but 60% of these 
were observed with basal shoots in the first post-fire assess-
ment and all were alive at the second post-fire assessment. 
By comparison, there were two top-killed trees of the dwarf 
ecotype (14%, both of which survived to the second assess-
ment) and no top-killed trees of the tall ecotype.

Within the F2, phenotypic correlations (Table 2) revealed 
an inverse and statistically significant relationship of tree 
size (i.e., DBH20) with trunk scorch (TS19, ρ = − 0.49) and 
crown consumption (CC19, ρ = − 0.50), showing that the 
smallest trees suffered the greatest fire damage. These cor-
relations were calculated using the canopy-killed F2 trees. 

Very similar correlations were obtained using all F2 trees 
without filtering based on fire damage (TS19, ρ = − 0.47; 
CC19, ρ = − 0.44). This finding was consistent with the 
ecotype comparisons. Most recovery traits (SE20, NEC19, 
ECR20, HLE19, and EC20) did not show statistical differences 
between the dwarf and tall ecotype (Table 1). Thus, despite 
being more damaged, the dwarf ecotype recovered as well as 
the tall ecotype. The number of seedlings established (SE20) 
beneath tall versus dwarf ecotypes was not significantly dif-
ferent, and there was no significant association between 
tree size (DBH20) and SE20 within the F2 (Table 2). Only 
the number of basal resprouts (NBR19) and height of last 
epicormic (HLE20) showed statistical differences between 
the grand-parental groups, with the dwarf ecotype having 
more basal resprouts and a lower proportion of the stem with 
epicormic shoots than the tall ecotype. The same trait-size 
association was evident within the F2 (Table 2). No differ-
ences between ecotypes were found for insect attack (IA19 
and IA20), but there were statistically significant differences 
in mammal browsing for the two assessments (MB19 and 
MB20). In each year, mammal browsing was more intense on 
the dwarf than the tall ecotypes (Table 1) but was unrelated 
to tree size within the F2 (Table 2).

QTL analysis

In the absence of fitting covariates, exploratory QTL analy-
ses indicated that many of the QTL detected for fire dam-
age and recovery traits collocated with QTL for DBH20 or 
bark thickness (results not shown), as expected from the 
significant phenotypic correlations observed with the F2 
(Table 2). Accordingly, the QTL analyses reported for the 
damage and recovery traits (Table 3) account for the effects 
of tree size (and where relevant fire damage) to focus on 
additional genetic factors which influence fire damage and 
recovery. For example, the QTL we report for fire damage 
traits accounted for differences due to tree size by fitting 
DBH20 as a covariate and QTL for recovery traits addition-
ally accounted for variation in fire damage by also fitting 
TS19 or CC19. These QTL analyses allowed the detection 
of 38 QTL, of which 13 were significant and 25 sugges-
tive (Table 3). QTL were detected for all traits and time 
periods except insect attack in 2020 (IA20). Since linkage 
group, position, and statistical significance of the QTL 
detected were the same for both assessments of diameter 
at breast height (DBH16 and DBH20), only QTL for the last 
measurement is reported. The number of QTL detected 
per single trait ranged from 1 to 7 and the percentage of 
variance explained by each QTL ranged from 1.4 to 12.5%. 
There were 21 QTL that occupied unique genomic regions, 
whereas 17 QTL were co-located. Overall, QTL were 
detected in 28 discrete genomic regions, here defined as 
regions in which no QTL had LOD peaks within 5 cM of 
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Table 3   Quantitative trait loci 
(QTL) for fire-related traits in 
an F2 population of Eucalyptus 
globulus 

LG, linkage group; cM, map position in centimorgan; Marker, marker closest to the QTL peak; LOD, sig-
nificance; PVE, percentage of variance explained; Seg, parent from which the QTL effect segregated (M 
= male, F = female, B = both, or “—” = undetermined due to dominant markers). Where QTL segregated 
from both parents, whether a more significant effect was found from the male or female parent is indicated 
in parentheses. Genome-wide significance was indicated by *** = p < 0.001, ** = p < 0.01, * = p < 0.05. The 
remaining QTL were significant at the suggestive level (chromosome-wide type I error rate < 0.05). DBH16 
and DBH20 were highly correlated (r = 0.97); thus, only those for DBH20 are presented and it is this meas-
urement which was fitted as a covariate for the QTL for recovery traits. Adding more co-variates to the 
analysis of recovery traits did not change the results substantially
a The bark thickness QTL detected refer to adjusted bark thickness as DBH16 has been fitted as a covari-
ate. For each trait, the number of F2 trees used in the QTL analysis corresponds to the sample size given in 
Table 1

Trait Covariable LG cM Marker LOD PVE Seg

Diameter at breast height (DBH20) 10 39.5 Embra153 10.82*** 12.5 —
7 9.7 562769 9.55*** 10.9 M
4 60 570780 4.62* 5.1 F
3 75.7 570139 3.11 3.4 B (> F)

Bark thickness (BT16) a DBH16 9 83.3 569303 6.28** 3.2 —
10 26.9 567691 5.30* 2.7 F
2 108.2 638845 4.06 2.0 —
1 53.2 Embra222 2.79 1.4 —

Pilodyn penetration (PP16) DBH16 4 12.4 600106 8.51*** 10.7 M
6 46 568743 6.12*** 7.5 B (> M)
1 86.6 644046 4.61*** 5.6 B (> M)
2 87.9 564988 3.85 4.6 M
3 83.4 600338 4.42 5.3 F
4 70.2 574628 4.06 5.3 F
10 26.9 567691 3.39 4.1 F

Trunk scorch (TS19) DBH20 11 67.6 502828 3.58 4.2 F
Crown consumption (CC19) DBH20 1 75 638702 2.92 3.4 —

9 60.8 641541 2.89 3.3 —
3 59.8 573637 2.86 3.3 B (> F)

Seedlings established (SE20) DBH20 6 5 569441 4.74* 8.3 F
Number of basal resprouts (NBR19) DBH20 7 3 564899 5.84* 9.1 M
Number epicormic clusters (NEC19) DBH20 7 5.8 570301 3.95 5.6 M

8 61.8 640208 3.55 5.1 M
10 51.6 573717 3.45 4.9 B (> M)
11 27.9 571793 3.17 4.5 F

Epicormic shoots in crown (ECR20) DBH20 + CC19 3 75.7 570139 3.85 5.8 B (> F)
Height of the last epicormic (HLE19) DBH20 + TS19 2 11.4 564330 3.30 3.5 F
Height of the last epicormic (HLE20) DBH20 + TS19 2 14 642292 3.71 3.1 —

3 59.8 573,637 3.42 2.8 F
Epicormic shoot coverage (EC20) DBH20 3 75.7 570139 3.34 3.4 B (> F)

11 31.3 566749 3.11 3.1 F
Insect attack (IA19) 3 35 640311 3.13 6.4 M

11 6.6 638367 2.89 5.5 B
Mammalian browsing (MB19) 3 39.3 570900 4.67** 8.3 M

2 45.3 599725 3.52* 6.2 M
Mammalian browsing (MB20) 3 59.8 573637 3.11 5.3 M

3 6.9 644409 4.30* 7.2 M
4 77.6 565463 2.52 4.3 F
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another QTL (Fig. 3). These regions occurred across 10 of 
the 11 linkage groups of E. globulus.

Structural traits (DBH20, BT16, PP16) showed QTL with 
the highest LOD compared to traits associated with fire dam-
age and recovery. These structural trait QTL mapped to 14 
genome regions in 8 different linkage groups (Fig. 3). The 
number of QTL that influenced each structural trait ranged 
from 4 to 7, explaining 9.3 to 43.1% of the total variance 
of the trait. Eight of the structural trait QTL were declared 
significant at the genome-wide level. Overall, seven QTL 
were detected for pilodyn penetration (PP16) and four for 
bark thickness (BT16 adjusted within the QTL analysis for 

DBH16). While the phenotypic correlation between these 
two traits within the F2 was insignificant (Table 2), their 
QTL co-located on linkage group 10. QTL for both traits 
segregated from the female parent (Table 3), suggesting that 
these QTL are the pleiotropic effect of a single segregat-
ing QTL. Examining the phenotypic means for the different 
genotypes at the markers underlying this QTL showed that 
the genotypes with relatively thicker bark also had denser 
wood (Supplementary Figure S4).

Fire damage (TS19, CC19) was negatively phenotypically 
correlated with tree size (DBH20) (Table 2). After adjusting 
for co-variation with tree size, 1 QTL was detected for trunk 

Fig. 3   The genomic distribution 
of quantitative trait loci (QTL) 
associated with fire-related traits 
in Eucalyptus globulus on 10 of 
its 11 linkage groups (chromo-
somes). Markers are indicated 
by dashes across linkage groups
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scorch (TS19) and 3 QTL for crown consumption (CC19). 
Note that because of the exclusion of trees that were burnt 
less severely from the analysis, these QTL represented the 
genetic variation in crown consumption among trees with 
100% crown scorching. These QTL occupied 4 genomic 
regions on different linkage groups and overall explained 
4.2% of the total variance for trunk scorch and 10% of that 
for crown consumption.

Vegetative recovery was phenotypically associated with 
tree size (Table 2). Bigger trees inherently have thicker 
bark (ρ = 0.81; Table 2), and thus, epicormic recovery was 
positively phenotypically correlated with both tree size and 
bark thickness (BT16), but not with adjusted bark thickness 
which accounted for tree size (Table 2). Epicormic regenera-
tion assessed in both years (NEC19, HLE19, ECR20, HLE20, 
and EC20) was phenotypically negatively correlated with 
fire damage traits (TS19, CC19, Table 2), indicating that the 
smaller trees with more severe damage had less epicormic 
regeneration from the upper trunk and canopy. After adjust-
ing for covariation with tree diameter and relevant fire dam-
age traits (epicormic height traits were adjusted for TS19 
and epicormics in the canopy adjusted for CC19), twelve 
QTL were found for recovery traits (SE20, NBR19, NEC19, 
ECR20, HLE19, HLE20, EC20) occurring on 7 linkage groups 
(Table 3). Note that adding more co-variates did not change 
the results substantially (results not shown). The number of 
QTL that influenced each recovery trait ranged from 1 to 4 
and explained 3.5 to 20.1% of the total variance of the trait. 
Most of the recovery QTL were suggestive, but the QTL for 
seedlings established (SE20) and number of basal resprouts 
(NBR19) were significant (Table 3).

Consistent with the significant positive correlations 
among the epicormic recovery traits within and across 
years (Table 2), many of the suggestive QTL detected for 
these traits were co-located and the genotype segregation 
patterns suggest pleiotropic effects of the same locus. For 
instance, the region at 30 cM on linkage group 11 was shared 
by QTL for two recovery traits, number of epicormic clusters 
(NEC19), and epicormic shoot coverage (EC20) (Fig. 3). Both 
QTL segregated from the female parent (Table 3) and the 
effects of the common marker (Supplementary Figure S4) 
were consistent with the direction expected based on their 
weak positive phenotypic correlation (ρ = 0.20, Table 2). 
The region at 76 cM on linkage group 3 included co-located 
QTL for epicormic shoot coverage (EC20) and epicormic 
shoots in the crown (ECR20). The genotype segregation at 
the nearest marker to these QTL is from the same parent 
(Table 3), and the positive correlation between EC20 and 
ECR20 (ρ = 0.57; Table 2) is in the same direction as the 
marker effects (Fig. 4a), consistent with this co-location 
potentially being the pleiotropic effect of a single segregat-
ing locus. Similarly, for the co-located QTL for epicormic 
clusters (NEC19) and number of basal resprouts (NBR19) on 

linkage group 7 (4 cM), there was male segregation of both 
QTL (Table 3), the traits were weakly positively correlated 
(ρ = 0.16; Table 2), and the patterns of marker segregation 
were in the same direction (Fig. 4b).

QTL for vegetative recovery on linkage group 3 and 7 
continued to co-locate with QTL for DBH20, despite their 
phenotypic covariation with DBH20 being accounted for. 
It is possible that these recovery QTL reflect residual and 
pleiotropic effects of tree size QTL. For example, the co-
located QTL on linkage group 3 at 76 cM show a pattern 
of genotype segregation consistent with genotypes with 
larger stems having greater epicormic coverage of the stem 
and more shoots in the crown (Fig. 4a). In both cases, the 
markers underlying the QTL indicate segregation consist-
ent with increased fire intensity or decreased tree size caus-
ing greater epicormic bud mortality in the upper trunk and 
crown. However, the co-located QTL for height of the last 
epicormic in both years (HLE19, HLE20) on linkage group 
2 and the epicormic QTL on linkage groups 8 (NEC19), 10 
(NEC19), and 11 (NEC19 and EC20) are independent of struc-
tural QTL. There was no significant phenotypic correlation 
of recovery traits with adjusted bark thickness (ADBT16) 
or wood density (PP16) (Table 2), and these recovery QTL 
did not co-locate with any of the QTL associated with bark 
thickness (BT16) or wood density (Fig. 3). The single QTL 
for seedling establishment detected after adjusting for tree 
size (SE20) was independent of all other QTL and was one 
of the two recovery QTL significant at the genome-wide 
level (Table 3).

For traits related to herbivory on resprouting vegeta-
tive shoots (IA19, MB19, MB20), 7 QTL were detected in 
6 genomic regions, explaining 11.9 to 16.8% of the trait 
variance. There were three QTL for mammalian brows-
ing that had genome-wide significance. One of these QTL 
(MB20) co-located with QTL for crown consumption (CC20) 
and height of last epicormic (HLE20) on linkage group 3 
(60 cM) (Fig. 3). However, parental segregation was differ-
ent for each of these traits (Table 3), arguing against these 
co-locations being due to a pleiotropic effect. The other 
browsing QTL did not co-locate with any structural, fire 
damage, or recovery QTL. It is interesting that the QTL for 
mammalian browsing in different years (MB19, MB20) did 
not co-locate, and QTL for insect attack were only detected 
in the first but not the second assessment. However, co-
location was detected for mammalian browsing and insect 
attack scored in the first year after the fire (MB19 and ID19) 
on linkage group 3 (35 cM), suggesting a possible common 
QTL for herbivory of vegetative shoots. The marker geno-
type segregation underlying this QTL co-location shows 
susceptibility to both mammalian and insect herbivores, 
consistent with the significant positive phenotypic correla-
tion between these two traits (Table 3). However, the other 
QTL detected insect damage (ID19) on linkage group 11 
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(6 cM) was not co-located with any other QTL detected 
(Fig. 3).

Discussion

Phenotypic variation in fire damage has been previously 
reported in several forest trees, including E. globulus. 
These studies identified exogenous (e.g., fire intensity, 
site) and endogenous (e.g., plant traits) factors that influ-
ence the level of fire damage (Kobziar et al. 2006; Han-
son and North 2009; Catry et al. 2013b). We here show a 
genetic basis to variation in fire damage among trees of the 
same age, which to a large extent is mediated by genetic 
variation in tree size. A significant difference in fire dam-
age traits was shown between the dwarf and tall grandpar-
ents, along with strong phenotypic correlations between 
stem diameter and the amount of both trunk scorch and 

crown consumption in the F2, which suggests that decreas-
ing tree size increases the risk of stem and crown dam-
age in a wildfire. This finding is consistent with models 
developed for Eucalyptus spp. (including E. globulus) to 
predict topkill (Catry et al. 2013a; Fairman et al. 2019). 
However, the QTL detected for both crown consumption 
and trunk scorch accounted for phenotypic variation in 
tree size by fitting DBH as a covariate, and thus likely 
reflects the influence of other underlying plant traits. 
For example, while stem scorch and crown consumption 
were positively phenotypically correlated reflecting their 
common phenotypic association with stem size, the QTL 
detected for these traits after fitting DBH as a covariate 
were independent.

There are multiple plant traits which could influence 
the severity of fire damage apart from tree size. Although 
bark thickness QTL (after accounting for DBH) did not co-
locate with QTL associated with fire damage, unmeasured 

Fig. 4   Genotype average of co-located QTL for fire-related traits 
based on a common marker. The co-located QTL were on linkage 
group 3 (75.7  cM, marker 570139) and linkage group 7 (5.8  cM, 
marker 570301). The common markers were DArTseq markers 
(where ll/lm indicates a female segregating marker, and h/kk indi-

cates a dominant marker with unknown parental segregation). a Co-
location for trait diameter at breast height, epicormic shoot cover-
age and epicormic shoots in crown. b Co-location for trait diameter 
at breast height, number of basal resprouts and number of epicormic 
clusters
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characteristics of the bark may affect the severity of fire 
damage on trees (Florence 1996). For example, at the 
intraspecific level, eucalypt species differ markedly in the 
amount of decorticating bark which may accumulate on the 
trunk and branches or at the base of the tree, and funnel fire 
to the upper canopy (Gill and Ashton 1968). In this respect, 
Barbour et al. (2009b) reported significant genetic variation 
among E. globulus races in the amount and type of loose 
decorticating bark on the trunks of trees in a common garden 
trial. Similarly, it is also possible that the QTL underlying 
variation in canopy consumption could reflect genetic vari-
ation in attributes specifically affecting canopy flammability 
such as leaf moisture content, retention of dead leaves, leaf 
functional traits (Murray et al. 2013; Alam et al. 2020), and 
leaf chemistry (Bowman et al. 2014; Pausas et al. 2017). In 
the latter cases, essential oils (e.g., terpenes; Pausas et al. 
2016; Ganteaume et al. 2021) and waxes (Tumino et al. 
2019; Ormeño et al. 2020) have been implicated in foliar 
flammability. Indeed, one of the three QTL for crown con-
sumption on linkage group 3 was near a QTL reported for a 
foliar terpene in E. globulus (O’Reilly-Wapstra et al. 2011) 
and another on linkage group 1 near a QTL for cuticular wax 
also in E. globulus (Gosney et al. 2016).

Eucalypts are renown for the propensity of most spe-
cies to vegetatively recover from fire damage (Gill 1997), 
and E. globulus is no exception. In the present study, the 
amount of epicormic resprouting was highly variable and 
negatively correlated with the amount of basal resprouting 
and positively correlated with tree size (Table 2). These 
trends agree with Fairman et al. (2019), who developed 
models to predict resprouting from stem diameter in Euca-
lyptus spp., showing a propensity for small trees to resprout 
from the base, large trees from the stem, and medium 
trees from both base and stem. This phenotypic associa-
tion between tree size and resprouting characteristics is 
confounded with the negative association of tree size with 
trunk scorching and crown consumption, which effectively 
means that the greater stem and crown damage, the less 
epicormic resprouting from the upper stem and the more 
basal resprouting. This is consistent with the rapid develop-
ment of an epicormic-derived canopy leading to suppres-
sion of basal resprouting. However, the only QTL detected 
for the number of basal resprouts (linkage group 7) was not 
co-located with fire damage QTL nor QTL for height and 
amount of epicormic shoot coverage, suggesting that at the 
genetic level, other factors are at play. This QTL for the 
number of basal resprouts was co-located with a QTL for 
the number of epicormic clusters on the bottom 2 m of the 
stem and DBH, and as all three collocated QTL segregated 
from the same parent and showed common directionality, 
these co-located QTL likely reflect a pleiotropic effect of 
a QTL for greater general resprouting at the base of bigger 
trees which was not removed by fitting DBH as a covariate. 

Relative bark thickness increases rapidly near ground level 
in many eucalypts (Bowman and Kirkpatrick 1986), includ-
ing E. globulus (Hamilton et al. 2007), and this QTL could 
reflect a disproportionate increase in relative bark thick-
ness in bigger trees resulting in greater protection of basal 
epicormic and lignotuber buds.

Within the F2 family, there were two cases where 
co-located QTL suggested that the QTL for epicormic 
resprouting could be a pleiotropic effect of QTL for stem 
diameter (linkage groups 3 and 7). These co-locations were 
evident even after accounting for the phenotypic covaria-
tion with stem diameter as well as stem and canopy dam-
age. These co-locations could reflect a residual genetic 
effect of the stem diameter, with the greater absolute bark 
thickness of larger stems offering better thermal protection 
of the cambium (Gutsell and Johnson 1996) and embed-
ded bud-forming structures (Burrows 2013; Nolan et al. 
2021). Nevertheless, most of the detected QTL associated 
with recovery traits were independent of QTL associated 
with stem diameter and even adjusted bark thickness. 
While thicker bark may offer greater protection of bud-
forming structures, Burrows (2013) notes that there is still 
not strong anatomical and ecological evidence to support 
this role in the Myrtaceae. Indeed, the present study sug-
gests that after accounting for the effects of stem diameter, 
there are independent QTL affecting epicormic recovery 
and thus other mechanisms that contribute to genetic vari-
ation in epicormic recovery. For example, differences in 
bark characteristics other than thickness may affect the rate 
of heat penetration, such as water content, density, propor-
tion of inner and outer bark, structure, and texture (Gill and 
Ashton 1968; Pausas 2017; Karavani et al. 2018; Resco de 
Dios 2020). Variation in wood density is another possibil-
ity, as previous studies comprising multiple tree species 
have shown that high wood density delays wood ignition 
and compartmentalizes damage and mortality due to fire 
(Brando et al. 2012; Frejaville et al. 2013). However, in the 
present study, there was no significant phenotypic correla-
tion and no QTL co-location involving wood density and 
epicormic recovery traits, despite the detection of multiple 
QTL for wood density and fire recovery, arguing against 
wood density influencing fire recovery in the present case. 
Other possible mechanisms underlying fire recovery QTL 
include the amount of carbohydrate reserves and mobi-
lization (Clarke et al. 2013; Smith et al. 2018), as well 
as hydraulic limitations arising from xylem embolism and 
damage (Midgley et al. 2011; Nolan et al. 2021).

The ecotype comparisons and QTL results indicated 
that browsing by insects and marsupials was genetically 
variable. The susceptibility of eucalypt foliage to brows-
ing is affected by leaf toughness, nutritional, and defen-
sive chemistry (O’Reilly-Wapstra et al. 2005; Andrew et al. 
2007). Newly flushed foliage is particularly attractive to 
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browsing mammals and insects (Steinbauer et al. 1998; 
Lawrence et al. 2003). We found co-location of QTL for 
insect and mammal herbivory in the first year, which could 
reflect pleiotropy and a shared susceptibility mechanisms 
associated with traits such as leaf sideroxylonal content 
(Matsuki et al. 2011) or toughness (Loney et al. 2006). 
However, as the same trees were assessed and the co-
located QTL detected in the same year, the possibility of 
induced effects arising from the initial browsing (Borzak 
et al. 2015a) cannot be dismissed. The QTL change across 
years may reflect differences in the foliage quality follow-
ing the initial post-fire flush of regrowth from basal or 
epicormic buds. In eucalypts, foliage quality varies with 
leaf age (Steinbauer et al. 2015; Marsh et al. 2018) and 
ontogeny (Lawrence et al. 2003; Borzak et al. 2015b), as 
does the interaction of herbivores with these traits (Stein-
bauer and Matsuki 2004). Such variation may have led to 
different mechanisms causing variation in susceptibility 
or a change in herbivore species, resulting in different her-
bivory QTL across years. Alternatively, different herbivory 
QTL could reflect host independent change in the herbi-
vore communities through post-fire succession, climate 
variation, or simply season-season stochasticity (Gosper 
et al. 2015; Gosney et al. 2021). While eucalypts, such as 
E. globulus, are relatively resilient to foliar loss (Pinkard 
et al. 2004; Borzak et al. 2016), the detected QTL could 
affect regrowth performance and ultimately tree fitness. 
However, as we found year-year variation in the browsing 
QTL, our study suggests that any evolutionary impact of 
the observed herbivory on regrowth at the genome level 
would be diffuse and the fitness consequences of specific 
QTL likely transitory.

Fire is important for E. globulus seedling establishment 
and recruitment (Larcombe et al. 2013; Catry et al. 2015; 
Aguas et al. 2017). Thus, genetic-based differences in the 
maternal contributions to the new cohort may reflect differ-
ences in a component of their Darwinian fitness (Dall et al. 
2015). For example, the discovery of a significant QTL on 
linkage group 6 for post-fire seedling establishment at the 
base of the planted F2 trees reflects a differential contribu-
tion of QTL alleles to the new cohort and is independ-
ent of tree size. This seedling establishment QTL was not 
co-located with any other QTL discovered, signaling an 
underlying mechanism unrelated to the measured struc-
tural traits, fire damage, and vegetative recovery. There 
are several stages at which this QTL could influence the 
abundance of established seedlings. First, it may be a direct 
reflection of differences in maternal reproductive output 
(Deus et al. 2019), which in terms of capsule abundance, 
seed per capsule or inherent seed germination characteris-
tics have been shown to be under significant genetic control 
in E. globulus (McGowen et al. 2004a; Rix et al. 2015). 
Such variation could reflect inherent constitutive difference 

in reproductive strategies or adaptative differences between 
maternal trees. Second, it may reflect genetic differences 
in the loss of canopy-stored capsules and seeds follow-
ing wildfire, due to variation in traits such as capsule size 
and wall thickness, moisture content, and capacity to shed 
seed (dos Santos et al. 2015; Silva et al. 2016). Third, it 
could reflect a genetic effect on the seedling establishment 
niche at the base of the focal tree. Litter acts as a physi-
cal barrier to E. globulus seedling emergence as well as 
reduces available light (Calviño-Cancela et al. 2018), while 
burnt soil promotes seedling establishment, since the fire 
removes litter and other vegetation, as well as increases 
the availability of nutrients (Tomkins et al. 1991). Genetic-
based differences among the races of E. globulus have been 
shown to differentially affect litter communities, as well as 
condition soil chemistry, with the later revealing quantifi-
able differences in seed germination in bioassays using soil 
extracts (Barbour et al. 2009a; Bailey et al. 2012). Basal 
resprouting can also degrade the seedling recruitment niche 
close to the maternal tree through resource competition 
(Potts 1986). While a co-located QTL was not evident, 
it is noteworthy that there was a low negative phenotypic 
correlation between the number of established seedlings 
and the number of basal resprouts.

Regardless of the mechanisms involved, our demon-
stration of genetic variation in fire-related traits at the 
intra-specific level is important from a micro-evolu-
tionary perspective as this is a requirement for an evo-
lutionary response to selection (Le Rouzic and Carlborg 
2008). While an evolutionary response will be depend-
ent on numerous factors, including genetic constraints 
and trade-offs (Costa e Silva et al. 2020), we show the 
potential for wildfire to modify the genetic structure of 
a forest and accentuate performance-based differences in 
fitness among genotypes. Trees which do survive and rap-
idly recover canopies following wildfire are expected to 
have enhanced competitive ability (Resco de Dios 2020). 
In even-age plantings of E. globulus, mortality has been 
shown to be size dependent (Chambers et al. 1996; Nicko-
las et al. 2019). Consistent with this finding, the present 
study shows that smaller trees are more fire damaged, 
and more likely to resprout from lower on the stem or 
tree base. In the extreme case of the dwarf ecotype which 
mainly resprouted from the base, this would result in a 
transition from a single-stemmed to a multi-stemmed habit 
(Nicolle 2006), as commonly observed in wild populations 
(Jordan et al. 2000). Thus, in a competitive environment 
such as our uniform-age common garden, wildfire will 
accentuate the competitive disadvantage of smaller trees 
as they would be even more prone to be shaded by taller 
trees whose higher epicormics shoots would allow them 
to rapidly establish a high canopy and intercept light (Bur-
rows 2013).
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In conclusion, our study of the post-fire recovery of uni-
form age E. globulus trees in a common garden revealed 
genetic variation for fire damage and recovery. We identified 
QTL for key traits that define the regeneration strategies 
of eucalypts—stem and basal vegetative resprouting and 
seedling recruitment (Nicolle 2006). While some of these 
QTL co-located with structural and fire damage QTL, many 
represented independent QTL affecting vegetative resprout-
ing and even seedling recruitment. A significant component 
of the phenotypic and genetic variation in fire damage is 
linked to pre-fire tree size which has flow-on effects on the 
extent to which resprouting occurs on the tree stem and 
base. Our study highlights these effects at the intraspecific 
level. However, the extent to which the observed differences 
in fire damage and recovery translate to differences in long-
term performance of the different genotypes in this competi-
tive environment will require long-term monitoring. Such 
information is important for understanding the potential of 
forest tree populations to adapt to fire, which is predicted to 
increase in frequency and intensity in many regions of the 
world under climate change.
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