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Abstract: Earth observation offers an unprecedented opportunity to monitor intensively cultivated
areas providing key support to assess fertilizer needs and crop water uptake. Routinely, vegetation
traits mapping can help farmers to monitor plant development along the crop’s phenological cycle,
which is particularly relevant for irrigated agricultural areas. The high spatial and temporal resolution
of the Sentinel-2 (S2) multispectral instrument leverages the possibility to estimate leaf area index
(LAI), canopy chlorophyll content (CCC), and vegetation water content (VWC) from space. Therefore,
our study presents a hybrid retrieval workflow combining a physically-based strategy with a machine
learning regression algorithm, i.e., Gaussian processes regression, and an active learning technique
to estimate LAI, CCC and VWC of irrigated winter wheat. The established hybrid models of the
three traits were validated against in-situ data of a wheat campaign in the Bonaerense valley, South
of the Buenos Aires Province, Argentina, in the year 2020. We obtained good to highly accurate
validation results with LAI: R2 = 0.92, RMSE = 0.43 m2 m−2, CCC: R2 = 0.80, RMSE = 0.27 g m−2

and VWC: R2 = 0.75, RMSE = 416 g m−2. The retrieval models were also applied to a series of S2
images, producing time series along the seasonal cycle, which reflected the effects of fertilizer and
irrigation on crop growth. The associated uncertainties along with the obtained maps underlined the
robustness of the hybrid retrieval workflow. We conclude that processing S2 imagery with optimised
hybrid models allows accurate space-based crop traits mapping over large irrigated areas and thus
can support agricultural management decisions.

Keywords: leaf area index; vegetation water and chlorophyll content; Gaussian processes regression;
hybrid retrieval workflow; dimensionality reduction; active learning

1. Introduction

Wheat is a worldwide cultivated grain crop providing nearly 20% of all calories
consumed due to its strong adaptability to various temperature and water conditions [1].
As an important global food crop, wheat yield information is essential in terms of food
security [2]. Good agronomic practices and natural resource usage become fundamental
for winter wheat grain development and crop yield. These practices have an important
significance for modern precision agriculture [3]. Irrigated valleys, although representing
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only 20% of the world’s croplands, produce 40% of the global crop harvest [4]. In arid and
semi-arid intensively cultivated areas, irrigation improves economic returns and can boost
food production by up to 400% [4,5]. Hence, accurate and timely mapping of winter wheat
biophysical and biochemical variable, or crop traits, results in being indispensable for
enhancing crop management, food security, and agriculture structure adjustment [6–8]. The
estimation and monitoring of crucial crop variables, such as leaf area index (LAI), canopy
chlorophyll content (CCC), and vegetation water content (VWC), are key for agricultural
applications including crop growth modelling and yield estimation supporting sustainable
management of cultivated areas [6,9]. Definitions of these variables are given as follows.

LAI is defined as the total one-sided leaf area per soil unit (m2 leaf area per m2 soil). It
is strongly related to canopy photosynthesis and evapotranspiration and plays a key role in
the exchange of energy and water between the biosphere and atmosphere [10]. Varying def-
initions of LAI have been presented, such as effective plant area index [11], which includes
the area from all plant organs and assumes random distributions of leaves. The green LAI
(GAI) is probably the most relevant term describing the radiation transfer in vegetated
canopies, i.e., the green photosynthetically active elements of the canopy [12,13]. Here, we
refer mainly to GAI being most closely related to the signal actually recorded by satellite
instruments. Nonetheless, for the sake of simplicity, we use the term LAI throughout this
study. CCC is defined as the product of LAI and leaf chlorophyll content (Cab) expressed in
grams per unit leaf area (g/m2). Hence, CCC represents the optical path in the vegetated
canopy where absorption by chlorophyll pigments dominates the radiometric signal [14].
In addition, due to its strong relationship with nitrogen (N) content, often Cab is considered
a proxy for leaf N status. Therefore, CCC can be considered for quantifying canopy-level
N content [15,16], although restricted to vegetative growth stages [17]. Due to its strong
association with plant transpiration, vegetation stress, and biomass productivity, VWC has
been widely considered a crucial variable for crop physiological status [18–20]. VWC of
wheat crops is also a significant growth indicator during different development stages [6].
Water availability not only affects wheat photosynthesis, but also the grain filling rate and,
ultimately, yield [21,22]. Traditionally, wheat crop water content has been determined by
manually sampling plants to obtain fresh weight and dry weight and then calculating crop
water content [2]. However, conventional field measurements are destructive and labour-
intensive, especially across large areas with significant within-field spatial variability in soil
infiltration, drainage, and conductivity characteristics [23]. The same holds true for destruc-
tive sampling of other crop variables. Earth observation (EO) technology can be used as an
appealing alternative, providing a synoptic view of the Earth’s surface by making use of the
complex interactions between radiation and the environment [24]. Nowadays, an attractive
operational EO system with the capability to capture the visible (VIS), near-infrared (NIR),
red-edge and short-wave infrared (SWIR) spectral domains involves the Sentinel-2 (S2)
mission [25]. The recent S2 constellation that combines a high revisit frequency (5-day) and
spatial resolution (10–20 m) with systematic global acquisition and an open access policy
is promising in the development of operational farming services in near-real-time [16]. In
recent years, the rapid development of EO technology has produced an unprecedented
amount of research applying satellite data for monitoring crop traits across large areas, in a
quick and accurate way e.g., [13,19,26–30].

With respect to the retrieval of crop traits from EO data, a multitude of techniques
have been developed, which can be categorized into four main categories [30,31]: (1) Para-
metric regression approaches typically consist of relations between the traits and spectral
data transformed into spectral indices e.g., [32,33]. (2) The second category of regres-
sion approaches obtains these variables from reflectance data using linear or nonlinear
nonparametric approaches, i.e., chemometrics or machine learning regression algorithms
(MLRA) e.g., [34–36]. (3) The category of physically-based retrieval methods refers to the
inversion of radiative transfer models (RTMs) e.g., [37–41]. RTMs apply physical laws to
explain the cause–effect relationships between radiation–photon interactions and plant
constituents. The most prominent one-dimensional, (1D) turbid medium RTM for sim-
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ulating vegetation reflectance is PROSAIL [42]. PROSAIL is composed of a leaf optical
properties model, typically from the PROSPECT family [43,44], and, (b) the Scattering
of Arbitrarily Inclined Leaves canopy architecture model (SAIL, 4SAIL) [45,46]. The last
category of retrieval methods (4) is presented by hybrid approaches, being perhaps of
most interest within current research lines and also for operational contexts [26,27,30,47,48].
Hybrid methods blend physics described by RTMs with the speed and efficiency of MLRAs.
Within hybrid scenarios, training datasets are simulated by varying the input parameter
space of coupled leaf-canopy RTMs. The nonlinear relationships between simulated re-
flectance and vegetation properties are then learned by an MLRA. Ideally, these training
databases represent the canopy states realistically and at the same time are small enough
to avoid exhaustive processing times. Regarding these strategies, a diversity of MLRAs
have been successfully applied for retrieval tasks during the last few decades, e.g., artificial
neural networks, decision trees or kernel-based methods [30,31]. As part of the latter family,
especially Gaussian processes, regression (GPR) [49] emerged as a competitive retrieval
algorithm e.g., [50–52], and has been widely adopted in studies inferring traits from EO
data e.g., [48,53–64].

GPR received special attention also thanks to associated uncertainty estimates pro-
vided along with the predictions. This special feature enables assessing the fidelity of the
models when transferring them into other spaces and times [28]. Moreover, to enhance
mapping performance and processing speed, active learning (AL) techniques can be incor-
porated into hybrid workflows. AL aims to optimize training datasets through intelligent
sampling using an iterative procedure devoted to exploiting samples during the design of
the regression model [65–67].

Time-series of multiple quantitative traits over irrigated winter wheat present a cap-
tivating tool to address crop management questions and improve agricultural practises.
Multiple authors have developed satellite-based retrieval models for wheat traits mapping
using MLRA or parametric regressions [3,13,20,59,68,69]. Hybrid retrieval workflows may
outperform these simpler empirical approaches due to their appealing property of com-
bining physical awareness (RTMs) with flexibility of machine learning algorithms. Hence,
they are an appealing alternative to be explored in our context. Several experimental
studies have already demonstrated the feasibility of producing accurate vegetation traits
maps from multispectral data, including S2 [59,70–73]. However, there is still the need to
further test and adapt hybrid methods under diverse environmental conditions, at different
locations and to multiple crop types.

In an attempt to demonstrate the possibilities of space-based cropland trait monitoring,
this study presents the development of an optimised hybrid retrieval workflow dedicated
to irrigated winter wheat monitoring in Argentina. Given the above-sketched general
framework, this study aims to reach the following objectives: (1) to develop independent
hybrid models optimised with AL and GPR for an explicit quantification of winter wheat
LAI, CCC, and VWC from S2 data; (2) to generate accurate S2-based maps of the wheat traits
with the inclusion of associated uncertainties over an intensive irrigated agroecosystem;
and (3) to evaluate LAI, CCC, and VWC time series identifying seasonal trends over the
selected study site.

2. Materials and Methods
2.1. Generation of Training Data Sets

Aiming to develop optimised hybrid models, the workflow initiates with simulating
a training database using the coupled PROSPECT-PRO [44] and 4SAIL models, further
referred to as PROSAIL-PRO. The models simulate bi-directional reflectance as a function of
diverse leaf biochemical input variables, e.g., Cab, leaf protein content (Cp), leaf carotenoid
content (Cxc) or leaf equivalent water thickness (EWT) and biophysical variables, i.e., LAI
and average leaf inclination angle (ALIA). The synthetic training database was generated by
using Latin Hypercube Sampling (LHS) to randomly select samples from the multi-spectral
input space. For this, 1000 combinations were drawn from all PROSAIL-PRO parameters.
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The selected size of the training dataset may appear rather small compared to classical
retrieval approaches, for instance using lookup-table approaches or neural networks. Note
that a standard implementation of GPR struggles to cope with thousands of samples within
reasonable time intervals. Hence, as suggested by prior studies, e.g., [67,74], successfully
training GP models with data sets of rather small sizes, we also restrict here to 1000 samples.

An overview of all included PROSAIL-PRO parameters including sampling, mean
values, distributions and ranges is given in Table 1 (see also the study by Berger et al. [26]
for full information about the generation of the training database). VWC can then be
directly calculated from EWT with a (unit) conversion factor of 10’000 upscaling from leaf
to canopy level through LAI. Fractional vegetation cover (FVC) was used to introduce the
crop-bare-soil relationship (see Equation (1)). CCC was also obtained through extrapolating
from Cab to canopy level by means of LAI (see Equation (2)). Finally, simulated VWC and
CCC both in [g m−2] were added to the training database:

VWCs = (EWT × LAI × FVC)× 10000
[
g/m2

]
(1)

CCCs = (Cab × LAI)/100
[
g/m2

]
(2)

Table 1. Parameter ranges for PROSPECT-PRO and 4SAIL (PROSAIL-PRO). Specified ranges are
uniformly distributed in LHS sampling.

Leaf Optical Properties Canopy Reflectance Model
PROSPECT-PRO Parameters Notation [Unit] Range 4SAIL Parameters Notation [Unit] Range

Leaf chlorophyll a+b content Cab [µg cm−2] 5–75 Leaf area index LAI [m2 m−2] 0.1–7.0
Leaf structure parameter Nstruct , no dim. 1.0–2.0 Average leaf inclination angle ALIA [◦] 30–70
Leaf carotenoid content Cxc [µg cm−2] 0–15 Soil brightness soil, no dim. 0–1
Leaf equivalent water thickness EWT [cm] 0.0002–0.05 Sun zenith angle SZA [◦] 20–40
Carbon-based constituents CBC [g cm−2] 0.001–0.01 Hot spot effect Hot [m m−1] 0.01
Leaf anthocyanin content Canth [µg cm−2] 0–2 Observer zenith angle OZA [◦] 0
Leaf protein content Cp [µg cm−2] 0.001–0.0025 Diffuse/direct radiation DDR [%] 80
Leaf mass per area Cm [µg cm−2] 0.0001–0.03 Relative azimuth angle rAA [◦] 0
Brown pigment content Cbrown, no dim. 0

Finally, bi-directional canopy reflectance was calculated using S2 spectral configuration
and excluding low-resolution bands of 60 m since their focus is on cloud screening and
atmospheric corrections. For instance, Estévez et al. [59] analyzed the contribution of the S2
spectral bands covering 10–20 m pixel resolutions for LAI retrieval purposes. The authors
concluded to keep all ten bands (with S2 central wavelengths of 493 nm, 560 nm, 665 nm,
704 nm, 740 nm, 783 nm, 833 nm, 865 nm, 1610 nm, and 2190 nm) for further processing.
To assure a maximum of spectral information required for the retrieval of multiple crop
traits, we also decided to explore the ten S2 bands.

2.2. Gaussian Processes Regression

GPR is used as core MLRA in the hybrid model development. GPR modeling is
flexible enough to fit many types of data, including geospatial and time-series data. GP is a
Gaussian distribution over functions, which means that, instead of inferring the distribution
of a parameter, GP can be then used to infer a distribution over functions directly under the
premise that the function values are themselves random variables. At the inference stage,
every time a new observation is made, the model hypothesis (prior probability distribution)
is updated in light of the new observations. After having observed some function values,
prior distribution over functions can be converted into posterior over functions. A Gaussian
Process is a collection of random variables any finite number of which have (consistent)
joint Gaussian distributions [49].
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Notationally, GP can be deployed as follows: we observe training dataset D =
{(xi, fi(xi))|i = 1, . . . , N}, where xi ∈ RB (being B the number of sensor spectral bands)
and X = {xi}N

i=1, GP aims to provide a suitable model to predict the function outputs f∗
given a test dataset X∗ of size N∗ ×D unknown by the model. In a noise-free environment,
the joint distribution under GP is:(

f
f∗

)
∼ N

([
µ
µ∗

]
,
[

k(X, X) k(X, X∗)
k(X∗, X) k(X∗, X∗)

])
(3)

where µ and µ∗ are the means of the functions f and f∗, which can be assumed as 0,
K = k(X, X) is the matrix of self-similarities in the training dataset, K∗ = k(X, X∗) and
KT
∗ = k(X∗, X) represents the similarities between training and test datasets, and K∗∗ =

k(X∗, X∗) express the self-similarities in the test dataset. The mean µ∗ (expectation of f∗)
and the co-variance Σ∗ of the test dataset X∗ can be calculated as follows:

µ∗ = E( f∗) = KT
∗K−1 f (4)

Σ∗ = K∗∗ − KT
∗K−1K∗ (5)

To compute the measures of similarity between two points xi and xj, a positive definite
kernel (or covariance function) that describes the covariance of the GP random variables
should be implemented. The squared exponential kernel, also known as a radial basis
function (RBF), which arises from taking the exponent of the scaled squared Euclidean
distance between the data locations, is one of the most popular kernels used in GP modeling.
It can be computed as:

k
(

xi, xj
)
= σ2

f e−
1

2`2 ‖xi−xj‖2

(6)

where σ2
f is the overall variance (σ2

f that is also known as amplitude), and the parameter ` is
the variance of the Gaussians (length scale) that controls the smoothness and confidence
of the regression process. Thus, a Gaussian process is a distribution over functions whose
smoothness is defined by the kernel k. RBF is a linear combination of basis functions;
wherever there is data, we place a basis function scaled by the term σ2

f . Consequently, f∗ is

the sum of basis functions scaled by σ2
f . There are several manners to find the optimal `

value, cross-validation, maximum likelihood estimation (MLE), and Bayesian Learning
are examples of different methods that can be implemented in the stage of learning the
kernel parameters.

The key concept regarding GP is the fact that given two points xi and xj that are
similar (similarity determined by the kernel k), the function values f (xi) and f (xj), should
be expected to be similar too. Straight away, the kernel function parameters have been
optimised using a training dataset, and the kernel matrix can be plugged into the predictive
equations for the mean µ∗ and co-variance Σ∗ of the test data x∗ to obtain predictions f∗
on the whole test dataset X∗. The process of making predictions is only computing the
posterior distribution p( f∗|X∗, X, f ) of x∗ given f and the previous x, we can condition on
the observations, to obtain:

f∗|X∗, X, f ∼ N
(

f∗; k(X, X∗)k(X, X)−1 f , k(X∗, X∗)− k(X, X∗)k(X, X)−1k(X∗, X)
)

(7)

Conditioning a Gaussian gives another Gaussian:

p( f∗|X∗, X, f ) ∼ N
(

f∗|µ∗, ∑ ∗
)

(8)

where Σ∗ models the co-variances and cross-covariances between all combinations of train
and test data. Predictions made using GP are not just point predictions: they are whole
probability distributions.
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More commonly, we have access to noisy observations {xi, yi}N
i=1 with yi = fi(xi) + E ,

where E is the noise of the observations. Assuming that the noise is Gaussian distributed
with zero mean and variance σ2

n , the noise can be therefore expressed as E ∼ N
(
0, σ2

n
)
.

The value of σ2
n can be estimated from data utilizing the MLE principle. Assuming inde-

pendently added Gaussian noise to each observation, the joint distribution of observations
and test predictions is given by:(

y
f∗

)
∼ N

(
[0],
[

k(X, X) + σ2
n I k(X, X∗)

k(X∗, X) k(X∗, X∗)

])
(9)

To make predictions from a noisy GP, the only thing to do is to establish a conditioning
on the observation:

f∗|X∗, X, y ∼ N
(

k(X, X∗)
[
k(X, X) + σ2

n I
]−1

y, k(X∗, X∗)− k(X, X∗)
[
k(X, X) + σ2

n I
]−1

k(X∗, X)

)
(10)

The mean is linear in two ways:

µ∗ = k(X∗, X)
[
k(X, X) + σ2

n

]−1
y (11)

The predictive co-variance (confidence intervals) is the difference between two terms:

Σ∗ = k(X∗, X∗)− k(X∗, X)
[
k(X, X) + σ2

n I
]−1

k(X, X∗) (12)

The first term is the prior variance, from which we subtract a (positive) term, telling
how much the data X has explained. It is worth mentioning that the variance is independent
of the observed outputs y. Although the posterior distribution p( f∗|X∗, X, y) covers noise
in training data, it is still a distribution over noise-free predictions f∗. To additionally
include noise ε into predictions y∗, we must add σ2

n to the diagonal of Σ∗:

p(y∗|X∗, X, y) ∼ N
(

y∗|µ∗, ∑ ∗ + σ2
n I
)

(13)

Summarizing, as a Bayesian approach, GPR provides a natural and automatic mecha-
nism to construct and calibrate uncertainties.

2.3. Active Learning Principles

GPR as a kernel-based regression method permits an enlarged number of input vari-
ables to be scanned and can be particularly convenient to deal with regression uncertainties
since the confidence interval for the predictions is provided. Even though GPR offer a
suitable alternative to processing large training datasets, processing large simulated train-
ing datasets could become computationally inefficient. Consequently, a reduction in the
sampling domain, which specifies the size of the training dataset, is needed. A solution to
the sampling reduction issue is given by semi-supervised approaches, and these techniques
are also known as active learning [66]. AL aims to provide a strategy to efficiently reduce
massive training datasets into an optimal dataset by sampling and evaluating the data pool
iteratively through an intelligent process [67]. In AL, new informative samples are labeled
based on the knowledge acquired during the exploration of the data input space.

Solving regression problems with AL can be addressed through a diversity framework.
Diversity-based AL strategies create a reduced training dataset by selecting new samples
from the input space, according to their dissimilarities [75]. Euclidean distance-based
diversity (EBD) selects those samples out of the pool being distant from the already included
ones in the training set, using squared Euclidean distance:

dE = ‖xu − xl‖2
2 (14)
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where xu is a sample from the candidate set, and xl is a sample from the training dataset.
All distances between samples are computed and then the farthest are selected.

With the purpose to decrease the GPR training time, the EBD sampling method was
performed in order to reduce the size of the input data space. Accordingly, 1% of the
1000 labeled samples (pairs of simulated bi-directional reflectance and vegetation traits)
was randomly selected as the initial data set. The GPR training process was iteratively
repeated up to 1000 times. At each iteration, the sample from the input data set with the
largest distance between the pool of the 1000 labeled samples was selected by the EBD
and added to the training data only when performance improved as evaluated by the root
mean square error (RMSE) against the in-situ data [66,72].

2.4. Study Site

The Bonaerense Valley of Colorado River (BVCR) is located in the South of the Buenos
Aires Province, Argentina, between the 39◦ and 40◦S parallels and the 62◦ and 63◦W merid-
ians. Two different cropping systems can be well distinguished in the region: irrigated
and non-irrigated crops. From the productive point of view, irrigation presents the highest
productivity and contribution to the regional socio-economic movement. The area has a
surface of 500,000 ha, of which 140,000 ha are irrigated by an extensive irrigation network
based on uncoated drainage channels. Gravity irrigation has made the most of the agricul-
tural activities in the area possible. The implanted crops under irrigation conditions occupy
91163 ha in the BVCR, including horticulture, pastures, and cereals. This study focused on
three wheat paddocks of the BVCR in the Villarino district (see Figure 1).

Figure 1. Overview of the Bonaerense Valley of Colorado River study site with test fields for the
winter wheat campaign of the year 2020. True colour S2 image (R = B4, G = B3, B = B2) of 27 December
2020. Reference system: WGS84 (EPSG 4326).

2.5. Wheat Crop Experimental Design

A total of three repetitions were set up for each of the wheat paddocks. The position of
nine elementary sampling units (ESU) was measured with a differential global positioning
system (GPS) and recorded as point sample references in the field campaign database. The
ESUs were revisited at each date corresponding to cloud-free S2 acquisitions to guarantee
solid time-series. If there was a coincidence in ±6 days related to the S2 acquisition,
the traits of the wheat crop were sampled.
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The measurements were performed following a defined field protocol for the BVCR
2020 wheat campaign; see Figure 2. Hereby, the sampling strategy consisted of defining
ESUs of 10 m × 10 m size for each wheat paddock in order to comply with the S2 spatial
resolution (10 m). In addition, a minimum distance of 30 m from the parcels’ edges was kept.
Sampling points were distributed within the ESUs following a five-measurements square
spatial sampling strategy providing a statistically averaged LAI estimate per ESU [69].
The centre of the ESUs (sampling point A) was georeferenced using the S2 pixel grid to
assure correspondence to the S2 reflectance data.

Figure 2. Layout of measurement design for the 2020 campaign at the BVCR study site: three ESUs
were defined per wheat paddock and sampling approach for each elementary sampling unit, partly
adapted from [69]. Reference system: WGS84 (EPSG 4326).

The in-situ measurement protocol used to carry out the field campaigns involved the
collection of four main traits: LAI, fractional vegetation cover (FVC), Cab, and above-ground
fresh biomass (AGFB). The crop phenological stage and field data observations were also
registered in the in-situ measurements database. The phenology was determined according
to secondary growth stages of the Zadoks-scale [76].

Wheat Crop Management and Field Data Collection

The wheat crop was sown on 25 June 2020 at three different paddocks in the study site,
a uniform seed density was established at 95 kg ha−1, and the weight of 1000 seeds was
45.8 g on average. At the wheat sowed stage, 80 kg ha−1 of diammonium phosphate was
used as a fertilizer considering the formulation 18-46-00 (18% N, 46% P2O5, and K2O 0%).
Phosphorus fertilization is a key factor in replenishing soil nutrients and obtaining more
vigorous plants. Moreover, a rapid formation and growth of the root system are promoted
making plants more resistant to water deficit. A system of ground edges separated by
14 m was implemented at the pre-sowing labour stage to ensure water embankments
during the irrigation processes. Sunflower hybrid seed was the predecessor crop. At the
beginning of the tillering stage, a value of 243 wheat plants per square meter (plant density)
was measured. The distance between rows (rows spacing) was set as 17.5 cm according



Remote Sens. 2022, 14, 4531 9 of 31

to wheat crop management recommendations in the region of the Colorado river valley.
Wheat fertilization took place in two instances throughout the phenological cycle, first
on 31 August 2020 and second by the middle of September. The dose of nitrogen (Urea)
supplied was distributed uniformly and ranged between 150–200 kg ha−1. It is reasonable
to expect that wheat plants start to receive nutrients from Urea up to one week later of
fertilization. Three gravity irrigations were performed at different instances of the crop
cycle between late August and November.

A collection of field data was obtained from the study area of the BVCR. In the
year 2020, the test site was visited regularly during the growing periods from August to
December. Data were collected on wheat fields belonging to the communal farmlands
of BVCR by a group of expert professionals and technicians of HAEE-INTA, Argentina.
The exact sampling sites were the same across the wheat 2020 field campaign. Each site
was confined to a 10 × 10 m area, corresponding to the average S2 pixel size.

LAI measurements were taken using the PocketLAI R Smart-App [77]. Six observations
were made-up per ESU and averaged giving a total of 54 LAI values for the entire campaign.

The FVC was measured utilizing the “Canopeo R©” App [78]. The app uses the RGB
camera of the smart devices applying the relations R/G, B/G, and 2G-R-B to determine the
crop canopy coverage percentage related to the soil.

To determine the AGFB value, five wheat plants per ESU were cut at soil level at each
sampling date throughout the growing season. A sowing track or an area of 0.02 m2 was
considered to obtain the AGFB samples. Each fresh biomass sample made up of wheat leaf,
stalk, and fruit was enclosed in a sealed plastic bag and brought to the laboratory inside
of a cooler for the fresh weight (FW) and dry weight (DW) measurements (see Table 2).
The AGFB samples were weighed in the fresh state and oven-dried until reached constant
weight for 24 h at 60 ◦C before dry weight was determined [79]. The DW corresponds to the
above-ground dry biomass (AGDB) vegetation biophysical variable expressed in g units.

Table 2. Database of in-situ wheat traits with dates, ranges, mean values as well as standard deviations
(SD) of the measurements.

Wheat Variable Date Range Mean SD

LAI
(m2 m−2)

03-09-2020 0.16–0.30 0.23 0.05
17-09-2020 0.56–1.54 0.94 0.29
02-10-2020 1.59–3.81 2.57 0.66
19-10-2020 1.53–3.27 2.62 0.51
02-11-2020 2.78–5.05 4.12 0.63
16-11-2020 3.31–5.39 4.02 0.80
30-11-2020 3.29–4.75 4.08 0.50
16-12-2020 3.97–5.64 4.68 0.43

FVC
(%)

10-08-2020 6.2–9.1 7.63 1.00
03-09-2020 23.0–48.0 34.94 8.32
17-09-2020 22.1–80.2 44.21 22.73
02-10-2020 32.7–69.2 48.30 13.28
19-10-2020 23.6–69.5 46.15 12.97
02-11-2020 11.1–29.3 20.92 5.07
16-11-2020 74.4–92.0 87.44 4.83
30-11-2020 80.0–90.8 88.22 3.06

Cab
(µg cm−2)

03-09-2020 38.23–44.82 41.96 2.23
17-09-2020 36.49–52.61 42.21 4.91
02-10-2020 38.12–52.02 45.33 4.46
19-10-2020 39.64–45.12 43.08 1.84
02-11-2020 33.63–42.44 38.29 2.89
16-11-2020 35.72–44.92 39.41 2.85
30-11-2020 13.93–48.31 35.32 9.59
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Table 2. Cont.

Wheat Variable Date Range Mean SD

AGFB
(g)

03-09-2020 15–25 19.67 3.59
17-09-2020 31–54 42.00 6.83
02-10-2020 76–175 112.67 27.23
19-10-2020 47–94 66.00 13.61
02-11-2020 131–296 213.67 42.41
16-11-2020 57–101 81.78 15.84
30-11-2020 73–184 121.60 38.45

AGDB
(g)

03-09-2020 2.00–6.00 3.56 1.17
17-09-2020 9.00–15.00 11.67 2.00
02-10-2020 23.00–48.00 33.22 8.23
19-10-2020 8.00–15.00 12.11 2.42
02-11-2020 38–62 45.67 7.86
16-11-2020 17–32 26.00 4.22
30-11-2020 23–70 46.67 14.04

The SPAD-502 instrument (Minolta r) was used to perform Cab measurements. Six
leaves per wheat plant were selected randomly at each ESU, and five SPAD values were
registered per wheat leaf and then averaged giving a total of 54 Cab values. To extrapolate
from SPAD non-dimensional values to Cab values expressed in µg cm−2, the following
Equation (15) was implemented:

Cab

[ µg
cm2

]
= 12.23e0.0279.SPAD (15)

LAI was used to upscale from Cab to CCC. Factor 100 led to the correct ground surface
unit by upscaling from leaf [µg cm−2] to canopy level [g m−2]:

CCC
[ g

m2

]
= Cab

[ µg
cm2

]
× LAI × 1

100
(16)

Plant leaf water content is commonly expressed as equivalent water thickness corre-
sponding to a hypothetical thickness of a single layer of water averaged over the whole
leaf area [80]. EWT relates the leaf’s water content to the leaf’s area (Al), so it is usually
expressed in µg cm−2 as follows:

EWT =
(FW − DW)

Al

[
µg cm−2

]
(17)

Canopy water content (CWC) is commonly derived through extrapolation by means
of the LAI:

CWC = EWT × LAI
[
g m−2

]
(18)

Due to the linkage of LAI to the area of leaves, CWC may neglect the water content
contained in other organs, such as stalks and fruits. To monitor the total amounts of water
stored in wheat plants, leaves, stalks, and fruits were included in our analysis. The FW
and DW values determined in the laboratory per each ESU of the study site (consisting of
wheat fresh and dry organic matter) were used as a proxy for the determination of VWC
expressed in g m−2 units. The VWC values were then obtained by calculating the difference
between the FW [g] and DW [g] and referring it to the sowing area A, implicated in the
field data collection process:

VWCh =
(FW − DW)

A

[
g m−2

]
(19)

Equation (19) assumes a wheat plant homogeneously distributed in one square meter
of soil, hence we refer here to VWCh, with the subscript h standing for homogeneous.
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However, this approach can lead to errors in the estimation of total VWC values. During the
first growing stages, plants are separated by rows leading to a proportion of the soil visible
to the sensor. Since the S2 sensor acquires surface reflectance in a 10 m × 10 m ground
sampling distance (GSD), the spectral value of each band summarizes both the soil and
vegetation contributions. Only when the wheat crops reach the maximum greenness stage is
the soil completely covered by vegetation. Hence, to be more precise in the determination of
the VWC, we introduced a modification considering in-situ measured FVC in the calculation
of plant water content per square meter of sowed wheat:

VWC = VWCh × FVC =
(FW − DW)

A
× FVC

[
g m−2

]
(20)

The calculated wheat CCC and VWC values were recorded as new inputs of the field
campaign database as shown in Table 3.

Table 3. Dates, ranges, mean values, and standard deviations (SD) for calculated variables (CCC
and VWC).

Wheat Variable Date Range Mean SD

CCC
(g m−2)

03-09-2020 0.06–0.12 0.10 0.02
17-09-2020 0.22–0.71 0.41 0.16
02-10-2020 0.74–1.61 1.16 0.29
19-10-2020 0.60–1.44 1.13 0.23
02-11-2020 1.18–1.74 1.56 0.17
16-11-2020 1.22–2.10 1.59 0.34
30-11-2020 0.64–1.70 1.40 0.29

VWC
(g m−2)

03-09-2020 207–455 284 70
17-09-2020 315–1554 666 360
02-10-2020 868–3021 1996 693
19-10-2020 494–2240 1315 554
02-11-2020 944–3083 1777 629
16-11-2020 1481–3275 2399 589
30-11-2020 2016–5079 3287 1113

The wheat phenological stage was registered along the BVCR campaign from August
to December 2020 (see Figure 3 and Table 4).

Figure 3. Photographic documentation of wheat crop growing period from August to November
2020, BVCR campaign, corresponding to LAI, FVC, Cab, and AGFB sampling dates. With (a) seedling
stage at 10 August 2020; (b) tillering stage at 4 September 2020; (c) tillering stage at 17 September 2020;
(d) tillering stage at 2 Ocotber 2020; (e) ear emergence from boot at 19 October 2020; (f) anthesis stage
at 2 November 2020; (g) dough development at 30 November 2020, first appearance of senescence;
(h) ripening stage at 16 December 2020, complete senescence.
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Table 4. Winter wheat field campaign observations with in-situ sampling dates, crop growth stages
and details of the field observations.

In-Situ Measurements Date Wheat Growth Stage Field Observations

10-08-2020 Seedling growth
Z1.3—Three leaves emerged

Plant density: 248 plants m−2

(on average), previous crop:
sunflower for seed

03-09-2020
Tillering, 2–3 tillers,

Z2.3—Main stem and
three tillers

Leaves per tiller 2 + 1 flag leaf

17-09-2020
Tillering, 4 tillers

Z2.4—Main stem and
four tillers

Leaves per tiller: 3
Irrigation date: 17/09/2020

Fertilization date: 16/09/2020

02-10-2020

Tillering, 5 tillers
4—Booting

Z4.3—Boots just
visible swollen

Plants height 22 cm from the
base to the second node

Leaves per tiller: 4

19-10-2020 Ear emergence from boot
Z5.5—Ear half emerged

Plants height 71 cm
(on average)

Plants stem nodes: 5

02-11-2020

Anthesis (flowering)
Z6.1—Beginning of anthesis
(few anthers at the middle

of ear)

Plants height 80 cm
(on average)

16-11-2020 Milk development
Z7.5—Medium milk

Plants height 80 cm
(on average)

Start of the senescence

30-11-2020 Dough development
Z8.7—Hard dough Senescence process

16-12-2020 Ripening
Z9.7—Seed not dormant

Complete senescence
Distance between rows: 19 cm

Number of ears at 0.50 cm:
72 on average

2.6. Sentinel-2 Image Acquisitions

A series of S2 images consisting of 15 cloud-free L1C products from 29 August to
11 January 2020 was downloaded from ESA’s web server https://scihub.copernicus.eu/
(accessed on 20 June 2022).The S2 images were atmospherically corrected using the Sen2cor
plugin [81] to obtain bottom-of-atmosphere (BOA) reflectance data from top-of-atmosphere
(TOA) L1C products. As a result, 15 level 2A (L2A) S2 images were obtained, coinciding
with ±6 days of in-situ sampling. The images were resampled to 10 m GSD and cropped
according to the study site in the SNAP 7.0 software https://step.esa.int/main/snap-7-0-
released/ (accessed on 18 July 2022).Bands B1 (443 nm), B9 (940 nm), and B10 (1375 nm)
were excluded from the resulting products due to their low GSD of 60 m, being in corre-
spondence to the simulations. Finally, the S2 products composed of ten spectral bands were
used for further analysis within the AL optimization process (see Table 5).



Remote Sens. 2022, 14, 4531 13 of 31

Table 5. Field campaign and Sentinel-2 acquisition dates.

In-Situ Measurements Date S2 Acquisition ±∆ Days

10-08-2020 NA NA
03-09-2020 29-08-2020 −5
17-09-2020 18-09-2020 +1
02-10-2020 28-09-2020 −4
19-10-2020 13-10-2020 −6
02-11-2020 02-11-2020 0
16-11-2020 17-11-2020 +1
30-11-2020 NA NA
16-12-2020 22-12-2020 +6

2.7. Delineation of the Hybrid Retrieval Workflow

An overview of the complete hybrid retrieval workflow is given in Figure 4. Three well-
distinguished conceptual blocks are detailed, starting with an RTM section, followed by
in-situ data collection, and the retrieval of biochemical and biophysical traits. In summary,
the implemented retrieval workflow consisted of the following four main steps:

1. generation of the training database, i.e., simulated TOC reflectance with corresponding
traits using the PROSAIL-PRO model;

2. building the in-situ database containing multitemporal field measurements from the
BVCR site and S2 spectra;

3. optimizing the training database with AL-EBD and GPR, applying retrieval models to
obtain wheat LAI, CCC, and VWC; and

4. seasonal mapping of the three crop traits over irrigated wheat fields and correspond-
ing uncertainties using S2 scenes.

Figure 4. Illustration of the hybrid retrieval workflow using the coupled PROSAIL-PRO models
to establish a training database for the GPR, partly adapted from [82]. The output maps show our
vegetation traits modeling over the BVCR area in Argentina.
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Note that, according to the 2020 wheat campaign observations (see Table 4), the
senescence of the crops started on 16 November 2020. In order to prioritize the retrieval
models’ response within the vegetation greenness period, the in-situ database was restricted
from 3 September to 16 November 2020. Additionally, 12 non-vegetated and 27 senescent
crop samples were added to the database aiming to improve the robustness of the crop traits
retrieval models after starting yellowing and senescing crop growth stages (see Appendix A
for more information on the training database). For model evaluation, the coefficient of
determination (R2), the RMSE, the normalized root mean square error (NRMSE), the mean
absolute error (MAE), and the mean absolute percentage error (MAPE) were registered for
each crop trait model.

The hybrid workflow was entirely built within the Automated Radiative Transfer
Models Operator (ARTMO) toolbox [83]. ARTMO was developed as a modular graphical
user interface in Matlab, to automate the simulation of RTMs [84]. The toolbox brings
multiple RTMs together with essential tools required for the retrieval of a diversity of
biophysical and biochemical vegetation traits. ARTMO has been expanded over the years
with all kinds of RTMs and image processing options, such as the MLRA toolbox [85] with
included AL module [74], emulation, sensitivity analysis, and scene generation. More
information can be found at: http://artmotoolbox.com/ (accessed on 18 July 2022).

3. Results
3.1. Optimized Sample Selection for LAI, CCC and VWC Modeling

In order to build efficient GPR-based retrieval models for wheat traits, at first, the AL
EBD technique was explored for optimizing the training samples. In Figure 5, we demon-
strate the results of training database reduction through EBD as a function of RMSE (left
y-axis) and R2 (right y-axis). For all three variables, an initial dataset of 10 samples was
used as starting point for the AL procedure.

Figure 5. Goodness-of-fit results (RMSE, R2) using AL (EBD) against validation data. (a) LAI model;
(b) CCC model; (c) VWC model.

Figure 5a shows the effect of the training data size on the LAI models’ accuracy,
with optimal results obtained after adding 112 samples (RMSE: 0.42 m2 m−2; R2: 0.92).
For CCC, the highest accuracy was obtained after adding 137 samples reaching RMSE:
0.27 g m−2 and R2: 0.8 (see Figure 5b). Figure 5c, shows that the optimal accuracy of the
VWC model was achieved after adding 232 samples (RMSE: 416 g m−2; R2: 0.76). Note
hereby that lowering the RMSE does not necessarily go along with an improvement of
R2, as can be read on the right y-axis of Figure 5. Although it follows the same general
trends as RMSE, the pattern provided by R2 is more irregular, indicating it as a less reliable
measure than RMSE for AL testing [72].

Figure 6 presents the scatter plots of estimated against in-situ measured LAI, CCC
and VWC samples. Overall, values for R2 and RMSE indicate relatively high agreements
between modelled and measured wheat traits. In addition, uncertainties are provided
as standard deviation (SD) expressed by the colour table. The SD of LAI, ranging from
0.62 to 1.23 m2 m−2, provides a proxy of the model’s uncertainty and is indicated by the
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colour bar close to the regression graph (see Figure 6a). Figure 6b shows the resulting
optimised CCC model, with uncertainty interval ranging from 0.2 to 0.48 g m−2. In
Figure 6c, the optimised VWC model are displayed, with uncertainty interval ranging
from 370 to 542 g m−2.

Figure 6. Measuredvs. estimated wheat traits along 1:1-line including uncertainty intervals, using
the EBD-optimised training data set. (a) LAI model estimates; (b) CCC model estimates; (c) VWC
model estimates.

3.2. Lai, CCC, and VWC Mapping

Next, the optimally trained hybrid GPR models were applied to the six selected dates
of the 2020 BVCR wheat campaign. The scenes cover a variety of crop types, including
the wheat paddocks selected for this study. Non-vegetated land covers, comprising bare
soils, water bodies, and man-made surfaces, were removed from the scenes by applying a
vectorial mask.

Figure 7 displays the six S2-derived LAI maps over the BVCR site during the growing
season of 2020 (ending 01/2021). All grey-coloured areas correspond to fallow or harvested
fields or dried-out natural vegetation. In contrast, LAI distribution of the intensively
cultivated crops may vary during the whole growing cycles of the BVCR 2020 campaign.
The wheat crop was sown in late June 2020, leading to the emergence of the main wheat
stem and three tillers in late August. The highest LAI values during the growing season
are identified: LAI reaches a maximum greenness stage at the beginning of November 2020
with 4.12 m2 m−2. Wheat senescence starts in the middle of November and harvest takes
place by the first days of January 2021. Figure 8 shows the multitemporal maps resulting
from the CCC estimates for the BVCR study site. The CCC values oscillate between 0
and 2 g m−2 being the maximum detected on 2 November. Later in the growing season,
from around 16 November 2020 onwards, all wheat parcels exhibited a markedly low CCC
driving toward senescence. Due to the linkage between LAI and CCC, both variables are
strongly correlated across the whole wheat’s growing cycle.

VWC maps are displayed in Figure 9 for the six selected dates of the 2020 BVCR
wheat campaign. These maps show spatio-temporal changes in VWC for all crop parcels
at the BVCR study site, which were in parity with expected changes in VWC, as driven
by rainfall conditions and irrigation management operations during the whole wheat’s
phenological cycle. Since the VWC was calculated with FVC (see Equation (20)), VWC
strongly depends on the percentage of bare soil present in the scene’s pixel observed by S2.
FVC values widely vary during the vegetation growing period determined primarily by the
crop development and structure as well as the implemented crop management practices.
Typical VWC values for wheat crop vary from close to 0 g m−2 at the start and end of the
season to around 2500 g m−2 in late November 2020.
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Figure 7. LAI [m2 m−2] of different crops in the study site, retrieved by the GPR model using simulated vegetation reflectance spectra, in-situ traits measurements
and S2 surface multi-spectral reflectance data. Data obtained from BVCR wheat campaign 2020. (a) wheat tillering stage at 29 August 2020; (b) wheat booting stage
at 28 September 2020; (c) wheat anthesis-flowering stage at 2 November 2020; (d) wheat dough development stage at 27 November 2020; (e) wheat ripening stage at
7 December 2020; (f) harvested wheat at 21 January 2021.
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Figure 8. CCC[g m−2] of different crops in the study site, retrieved by the GPR model using simulated vegetation reflectance spectra, in-situ biophysical/biochemical
measurements and S2 surface multi-spectral reflectance data. Data obtained from BVCR wheat campaign 2020. (a) wheat tillering stage at 29 August 2020; (b) wheat
booting stage at 28 September 2020; (c) wheat anthesis-flowering stage at 2 November 2020; (d) wheat dough development stage at 27 November 2020; (e) wheat
ripening stage at 7 December 2020; (f) harvested wheat at 21 January 2021.
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Figure 9. VWC [g m−2] of different crops in the study site, retrieved by the GPR model using simulated vegetation reflectance spectra, in-situ biophysical/biochemical
measurements and S2 surface multi-spectral reflectance data. Data obtained from BVCR wheat campaign 2020. (a) wheat tillering stage at 29 August 2020; (b) wheat
booting stage at 28 September 2020; (c) wheat anthesis-flowering stage at 2 November 2020; (d) wheat dough development stage at 27 November 2020; (e) wheat
ripening stage at 7 December 2020; (f) harvested wheat at 21 January 2021.
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3.3. Wheat Phenology Based on Multi-Temporal LAI Maps

According to the Z1.3 state of the Zadoks’ scale and collected field data, three leaves of
wheat plants emerged in August 2020. Hence, most of the wheat pixels in the S2-observed
scene have LAI < 0.5 m2 m−2. This is clearly noticeable in the LAI map produced for
the date 29 August 2020 (see Figure 7a and Table 4). Later in the growing season, around
28 September 2020 (Z4.3, wheat at the tillering stage), all crop parcels revealed distinct LAI
growing curves due to field irrigation and fertilization which took place by the third week
of September. The S2-derived LAI map for the date 28 September 2020 reveals LAI values
of about 2.5 m2 m−2 for the wheat crop (see Figure 7b).

Wheat plants were at the flowering stage on November 2 (Z6.1—few anthers at the
middle of the ear) and the plants reached a height of around 80 cm. Hence, LAI ranged
from 3.5 to 4.5 m2 m−2 by this date and almost all the cropped pixels at each paddock have
experienced the beginning of the anthesis, resulting in higher LAI values (see Figure 7c).
Note that some distinct heterogeneities are visible principally in paddock 322; it had a
variety of vegetation vigor. In the anthesis stage, the wheat ear arises from the plant stalk,
implying that all wheat paddocks are in the flowering stage.

The milk development stage started once the flowering is completed during the month
of November, and wheat plants also reached their maximum greenness on 16 November 2020
(Z7.5—Medium milk). Moreover, senescence starts at this time and young leaves may become
yellowish. Accordingly, wheat parcels had LAI > 4 m2 m−2, which represents the LAI curve’s
inflection point hence from this date onwards LAI decreases until wheat harvest. The wheat
traits maps show the early kernel formation stage which occurs one to two weeks after
pollination. Once the plants’ dehydration period has begun the dough development stage
starts. On 30 November (Z8.7—Hard dough), most of the kernel dry weight (starch and
protein content) accumulates and therefore LAI < 3.5 m2 m−2 on average, this stage is also
known as physiological maturity. The LAI map generated for the date 27 November 2020
displays the decrease of this biophysical variable over the BVCR study site (see Figure 7d)
indicating the end of plant growth.

Finally, by the middle of December 2020, wheat parcels revealed complete senes-
cence, and the seed moisture decreased down to 13 to 14%, which corresponds to the
ripening stage. The wheat seeds could have been harvested at the end of this stage on
16 December 2020; however, wheat plants remained standing until the first days of January
2021. This can be appreciated in the LAI maps produced for the date 7 December 2020
where (green) LAI values oscillate between 1.5 and 2 m2 m−2 (see Figure 7e). At the end of
the ripening stage, the seeds were harvested, which resulted in pronounced decrease in
LAI on 4 January 2021 (see Figure 7f).

3.4. Seasonal Analysis of Retrieved Traits

This section explores the seasonal evolution of LAI, CCC and VWC along the wheat
2020 campaign. The trait models were applied to a total of 15 free-cloud L2A S2 scenes to
obtain sufficiently dense time series along the wheat seasonal cycle. We also explored the
GPR model uncertainty during the course of the season. The uncertainties are mapped in
the form of SD to describe the variation of LAI, CCC and VWC values. LAI, CCC and VWC
temporal gaps correspond to S2 cloudy acquisitions. Figure 10a displays the temporal
profile of retrieved LAI and Figure 10b the LAI SD profiles of the nine in-situ measurement
points corresponding to the three paddocks of wheat cropland in the BVCR study site.
The figure shows the temporal evolution of the averaged nine ESUs (solid line), and the
mean of the in-situ measured LAI values (yellow dots). Figure 10c,d show the temporal
profile of the retrieved CCC, the SD, and the mean of the in-situ measured values of all
ESUs. Figure 10e,f illustrate the VWC and SD trends. Seasonal patterns of LAI, CCC and
VWC reproduce the typical phenological stages of the wheat crop. LAI, CCC and VWC
increase steadily, reaching a maximum peak in November 2020. By that time, a plant’s
dehydration process also emerges, and senescence starts. During the senescence stage,
plant water content drops significantly, leading to the wilting of leaves and thus causing
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LAI to decrease [86]. Abrupt drops of LAI, CCC and VWC in January 2021 suggest the
harvest event.

Figure 10. Seasonal evolution of wheat cropland over the three paddocks at the BVCR study sites
described by LAI, CCC, and VWC mean values of nice ESUs within the crop limits and the associated
uncertainty, plotted as vertical bars. (a) LAI estimates; (b) LAI uncertainty (SD); (c) CCC estimates;
(d) CCC uncertainty (SD); (e) VWC estimates; (f) VWC uncertainty (SD).

3.4.1. In-Situ Measured FVC Time Series Analysis of Irrigated Winter Wheat Crops

In the course of wheat tillering, plants reach 10–20 cm height on 17 September and FVC
values oscillate between 25–45% (see Figures 3c and 11). The crop leaves remain horizontal
during the tillering stage with four leaves per tiller leading to increase of vegetation
coverage to FVC about 30–65% on October 2 (see Figure 3d). From the booting stage
onwards, the wheat FVC decreases due to plants’ stem elongation up to a minimum of
22% on average on November 2. Figure 12b, showing the seasonal patterns of the retrieved
LAI vs. the in-situ measured FVC, reflects this behavior: a strong dropping of FVC at the
beginning of November (minimum on 2 November), while LAI values remain high in
this period (around 3.7 m2 m−2) and only decrease at the end of November with starting
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senescence. This specific behavior of FVC can be explained by the fact that the Canopeo R©

application uses only the RGB spectral bands to determine the crop canopy coverage.

Figure 11. Temporal evolution of wheat crop over the three paddocks at the BVCR study sites
described by FVC mean measured values of nine ESUs within the crop limits and the associated SD,
which is plotted as shadowed areas.

Figure 12. Temporal evolution of wheat cropland over the three paddocks at the BVCR study sites
described by LAI, CCC and VWC mean values of nine ESUs within the crop limits and the associated
SD, which is plotted as vertical bars. (a) LAI vs. CCC temporal estimates; (b) LAI temporal estimates
vs. FVC in-situ measured values; (c) LAI vs. VWC temporal estimates.
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Later on in the growing season, by November 16, the FVC values increase up to 86%
(see Figure 11). During the senescence period, the FVC values remain high; wheat plants
remain standing, and the FVC in-situ measured values range from 80 to 90.8% (see Table 2).

3.4.2. Seasonal Analysis of S2-Retrieved CCC and LAI

Figure 12a presents the temporal profiles of the mean estimated CCC and LAI values
along the wheat’s seasonal cycle. A strong positive correlation between LAI and CCC
temporal profiles can be seen as Cab values have been upscaled with LAI to obtain CCC.
CCC retrieved values along the seasonal cycle of winter wheat range from 0 to 1.7 g m−2

approximately. At the start of the crop growing season and during the greenness phase,
the CCC curve follows the LAI’s trend until 27 November. After the vegetation has
reached the maximum greenness, which typically corresponds to the LAI peak value,
the senescence phase begins until crops are ultimately harvested throughout January 2021.
From 27 November onwards, during cropland senescence, the difference between LAI and
CCC profiles starts to become more noticeable. On 7 December, 1.5 < LAI < 2 m2 m−2

indicates the presence of vegetation structures, while 0.2 < CCC < 0.4 g m−2 suggests that
the chlorophyll content of wheat plants is declining until, finally, the crop turns yellowish
due to the absence of the pigments. According to the in-situ collected notes (see Table 4),
the complete senescence for the BVCR 2020 campaign of winter wheat crop at the study
site took place by 16 December. Figure 12a shows how the CCC curve drops to zero from
22 December until 21 January. The agreement between both data sources confirms the
capability of S2 to retrieve the CCC for monitoring winter wheat croplands.

3.4.3. Seasonal Analysis of S2-Retrieved VWC and LAI

Figure 12c shows the seasonal evolution of the mean estimated value of VWC against
LAI. As the VWC model is correlated to FVC in-situ measured values instead of LAI ones,
a notorious time shift can be appreciated between the two curves. While the LAI curve
describes the leaves’ surface per square meter of soil, VWC involves not only the leaves
but also the stem and spikes of wheat plants. In addition, third wheat irrigation occurred
on 17 November to boost the grain development. Consequently, although senescence
had started on 16 November, the VWC values remain high at around 2300 to 2400 g m−2

until 27 November. Once the wheat plants have reached the complete senescence by the
middle of December 2020, the mature stems remain with a certain level of humidity, thus
VWC = 750 g m−2 approximately on 22 December.

4. Discussion

With the ambition to develop retrieval models for mapping the diversity of Argentinian
winter wheat traits, time-series of S2 imagery was processed to obtain LAI, CCC and VWC
maps along the phenological crop cycle in an irrigated, intensively cultivated area. This
research is built upon a hybrid retrieval workflow using an optimised simulated training
dataset and in-situ measurements of vegetation traits from the BVCR 2020 campaign.
In the following, advantages and limitations of the RTMs (Section 4.1), performance of
GPR models (Section 4.2), potential of the temporal vegetation traits mapping for wheat
agronomic management (Section 4.3), study limitations (Section 4.4), and finally operational
monitoring opportunities (Section 4.5) are discussed.

4.1. Advantages and Limitations of Coupled RTMs

Physically-based models simulating the influence of water content and pigments on
the obtained signal acquired by satellite sensors potentially lead to improved predictions
of crop traits compared to empirical approaches. Regarding the leaf level, we chose the
PROSPECT model (i.e., the actual PROSPECT-PRO version), being perhaps the most widely
applied leaf RTM in EO vegetation studies. PROSPECT had been first introduced in the
1990s by Jacquemoud et al. [87] and was continuously updated, with for instance improved
calibration of the specific absorption coefficients of Cab (introduced in PROSPECT-D [88])
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and separation of dry matter content into leaf protein content and carbon-based constituents
in PROSPECT-PRO [44]. Although results may not change significantly, the usage of the
most actual model version is always recommended. Still, improvements to the model may
be required, such as the inclusion of specular reflection [88].

To upscale from leaf to canopy level, Cab and EWT were multiplied by LAI simulated
with the SAIL model to obtain CCC and VWC, respectively. The SAIL model assumes
that the horizontal direction of the canopy is infinite [45]. Therefore, it is mainly suitable
for estimating LAI and other traits of rather continuous and homogeneous crops [89].
Winter wheat is not a pronounced row crop (like maize) but belongs to the grass family
(Poaceae). Hence, with its turbid medium assumptions, the choice of SAIL (or PROSAIL
when combined with PROSPECT) is justified for our analysis. In addition, we used the
simulated FVC data for driving calculations of the VWC training dataset (see Equation (1)).
This approach differs from previous studies, e.g., [90,91] where canopy water content was
obtained by upscaling EWT by LAI (see Equation (18)).

To optimise the simulated training dataset, we extensively explored the parameter-
ization of winter wheat. Multiple settings were tested to achieve the final VWC model
minimising the RMSE. The EWT values ranged from 0.0001 to 0.182 g cm−2, being the
most convenient interval presented in Table 1. The in-situ collected variables, LAI, AGFB
and AGDB, allowed us to calculate the EWT for winter wheat, involving plant leaves,
stalks, and fruits. The calculated EWT values from the campaign data oscillated be-
tween 0.019 to 0.175 g cm−2, leading to an uncertainty increase in the final built model
(RMSE = 587 g m−2). This can be argued by the fact that EWT implies only water content
at the leaf level, whereas field measured data include the water content of all plant organs.
Varying the EWT in the PROSAIL-PRO training dataset generation not only affected the
VWC model statistics but also the R2 and RMSE of the LAI and CCC obtained models,
which highlighted the sensitivity of PROSAIL-PRO to this leaf variable.

4.2. Performance of Hybrid GPR Models

The proposed workflow is built on the following fundamental factors. First, the careful
design of the in-situ measurements methodology led to a collection of high-quality field
wheat traits data. Second, the in-situ database covered multi-temporal vegetative stages.
In this respect, the GPR models achieved high accuracy for the studied traits, with trustful
estimates along the crop greenness phase. Third, we added non-vegetated spectra to
the training dataset, i.e., from bare soils, man-made surfaces, and senescent crops as the
retrieval models needed to be adapted to the spectral variability of actual land covers
of the scenes. Note that, with these additional spectra in the learning process, a slight
decrease in the validation may occur; however, more generic wheat traits models can be
obtained [58,72].

Active learning provides a powerful and smart sampling method to decrease the
redundancy of the training dataset maintaining the spectral variability and thus information
content. Finally, from a total of 1000, 112 samples of LAI, 137 samples for CCC, and
232 samples for VWC were intelligently chosen to train the retrieval algorithms. In general
terms, the three traits GPR models performed well in learning the nonlinear relationship
between the reflectance of S2 spectral bands and LAI, CCC and VWC. This confirms the
results of other hybrid studies [59,60,62], where these traits were successfully estimated
from S2 data with a GPR model.

The provision of per-pixel associated uncertainty information helps to understand
how trustful results are, required to appropriately use the information obtained through
a model or measurement [92]. Such information can further indicate the portability of
the methods in space and time and is important when the models are being tested across
different crops or sites.

The seasonal analysis of LAI, CCC, and VWC revealed differences in the uncertainty for
both green and senescent development phases of winter wheat. Generally, low uncertainties
refer to spectra that were well represented during the learning phase, whereas retrievals
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with high uncertainties refer to spectral information that deviates from what has been
represented during the training stage of the models [26]. During the growing season,
the availability of in-situ measured traits renders the models more robust and confident.
Additionally, the reasonably low uncertainty provided by the GPR retrieval models during
this period for most paddocks at the study site suggests reliability in the mapping results.
From 16 November onwards, the senescence started, and consequently, winter wheat
spectra changed drastically. Additionally, field data were absent for this period; therefore,
the uncertainty of the GPR models increased considerably (see Figure 10).

4.3. Potential of Seasonal Traits Mapping for Wheat Agronomic Management

Monitoring of winter wheat traits provides valuable information on the life cycle of
the plants needed for efficient crop irrigation and fertilization management being critical
factors to crop yield. Winter wheat in our study site was irrigated in the transition between
phenological stages. Dates of fertilization were close to those of irrigation since the urea is
incorporated into the soil with water, and fertilization occurs first followed by irrigation
(see Figure 12). Wheat water absorption depends on the previous hydric stress condition as
well as plants’ phenological stage. Effects on the vegetation water content can be noticed
up to 4 or 5 days after crop irrigation [93–95]. Nitrogen fertilization increases the crop
water use efficiency (WUE) due to the higher concentration of nitrogen in plants, leading to
improved radiation use efficiency. Cab is positively correlated to photosynthetic activity [96];
consequently, Cab is an indirect indicator of plants’ total nitrogen content [97]. Plant stress
conditions may affect the photosynthetic process generating nitrogen assimilation and
carbon fixation reduction. The leaf chlorophyll content is a genetic attribute of wheat plants;
consequently, it remains almost constant during most crop growth stages [3].

CCC monitoring is crucial to understanding plants’ photosynthetic activity. Repetitive
LAI mapping of winter wheat can provide not only valuable information about plants’
leaf area but also a proxy for Cab upscaling to canopy level. CCC monitoring provides
useful information to infer plants’ salinity and water stress [98,99], as well for the early
detection of nitrogen absorption deficiencies and decrease yield associated with plant stress
conditions [14,100].

In Figure 12a, the winter wheat fertilization and irrigation dates are presented against
the LAI and CCC trends throughout the crop season. The first and second irrigation take
place during the tillering stage (Z2.3 and Z2.4 according to the Zadoks growth scale); as a
consequence, the slope of the LAI and CCC curves increase. This analysis reveals the
potential of the seasonal mapping of irrigated winter wheat traits in Argentina to manage
the natural resource usage in arid and semi-arid regions.

The WUE of crops can only be roughly estimated, since, under field conditions, it is
arduous to know precisely how much water has been consumed by plants and their growth
in accumulated biomass [101]. Consequently, water consumption is usually estimated from
indirect data on precipitation and the volume of water lost through runoff, percolation,
or direct evaporation from the soil and which has never been consumed by plants [102,103].

Third irrigation occurs during the wheat’s milk development stage to boost grain yield
(Z7.5 according to Table 4). Figure 12c shows the VWC curve response to this irrigation
while LAI has started to decrease by the middle of November 2020.

Well-adjusted VWC models represent an easy-access tool for helping to obtain a
response to the most fundamental questions: when and how much to irrigate winter wheat
crops in arid and semi-arid regions. To support this analysis, one of the most tested and
widespread tools is the hydric balance, which allows for estimating the water content in
the soil and deciding the optimal moments of irrigation.

The data fusion of LAI, CCC, and VWC temporal profiles presented in our research
constitutes a differentiating element in the field of remote sensing monitoring of irrigated
winter wheat development at the study site. (see Sections 3.4.2 and 3.4.3). The potential
yield generated by irrigated wheat in the arid region of the focused study site can be com-
pared with the grain production of the harvested winter wheat crops from the agricultural
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core area of Argentina. Consequently, monitoring crop traits results is crucial to reducing
fertilizer and irrigation water uptake assuring high yields. All these statements point
toward the potential of the vegetation traits retrieval models to address the agronomic
analysis of irrigated winter wheat crops.

4.4. Study Limitations

Even though the in-situ collected data process was conscientiously carried out, the un-
certainty of the measurements and used instruments were not considered in the analysis.
However, uncertainty coming from field data has to be kept in mind when assessing the
overall accuracy of the retrieval models.

From early August to mid-November, winter wheat plants remain green; thereby, the
in-situ LAI samples correspond to the crop’s growing season. During this period green,
LAI (i.e., GAI) increases as the wheat plants grow. Once crop senescence arrives, plants
remain standing and the share of brown leaves increases [13,68]. Each of the winter wheat
paddocks was revisited periodically from 10 August to 16 December 2020. The in-situ
LAI values were taken from 3 September to the end of the BVCR 2020 wheat campaign;
nevertheless, only the green LAI samples were considered to train the LAI model (from
3 September to 16 November). From 16 November to 16 December, in-situ LAI values
continue to rise although the cropland has become senescent (see Table 2).

Since in-situ LAI values were used to tune the GPR retrieval models with the AL-
EBD techniques, the final LAI retrieval model is better adapted toward green vegetation
states. Hence, the uncertainty of the developed models will increase during later (ma-
ture/senescent) growing stages.

Finally, it must be noted that our study was conducted with data coming from
one single growing season. Thus, temporal transferability to other seasons remains an
open question. However, since GPR models provide associated uncertainty estimates,
the fidelity of temporal and spatial transferability of the retrieval models to other regions
with different cropping environments can be assessed to some degree [104].

4.5. Opportunities for Operational Monitoring

The possibility to estimate the irrigated winter wheat traits at 10 m or 20 m GSD
would offer important opportunities for operational precision farming applications. The
promising line of hybrid retrieval workflows opens some new branches to be explored
in the field of agricultural applications using EO data [105]. The following questions
arise: (1) Can we extrapolate the traits models for winter wheat crops to other regions and
times? (2) Are the crop traits models sufficiently generic to be applied to other crop types
in arid and semi-arid intensively cultivated areas? (3) Are the outcomes of this research
useful to address the management of the crops more efficiently, for instance determining
when to irrigate and to fertilize optimally?

In this context, the availability of the winter wheat in-situ database obtained from
the BVCR 2021 campaign represents an excellent opportunity for the validation and
refinement of the developed models and will be explored in a future study.

With respect to the implementation of the GPR models into operational processing,
recent possibilities are opened thanks to cloud computing technologies. In a pioneering
study, [106] presented an approach on how to integrate GPR models into Google Earth En-
gine (GEE), e.g., for S2 processing. In this way, the GPR models can be applied anywhere
and anytime in the world. Pursuing this approach, first applications already emerged
regarding multiple crop traits mapping and monitoring of key growing cycle events
(e.g., start/end-of-season) [60] or for wide-scale S2 cropland traits mapping, e.g., over
the entirety of Germany [62]. GPR models developed here can be likewise implemented
into GEE for monitoring applications. For instance, such a straightforward monitoring
interface can help users to understand the appropriate rates and timing of fertilization
and irrigation.
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5. Conclusions

We presented a hybrid retrieval workflow for operational mapping of LAI, CCC,
and VWC that was optimised for an irrigated winter wheat cropland.

The implemented hybrid retrieval method used the advantages of the radiation-
surface physics interaction being considered by the RTM and at the same time flexibility,
scalability, and computational speed that are provided by GPR. The usage of GPR as a
solid probabilistic regression algorithm provides the additional advantage of delivering
associated uncertainties along with the trait estimates, helping to assess the fidelity of the
mapping results.

The hybrid models for the winter wheat traits were validated with relative high
accuracies against in-situ data (LAI: RMSE = 0.43 m2 m−2; CCC: RMSE = 0.27 g m−2; VWC:
RMSE = 416 g m−2). They were subsequently applied to a series S2 imagery during the
growing season of 2020 over the South of Buenos Aires Province, Argentina. All produced
winter wheat maps showed consistent spatiotemporal performance and relatively low
associated uncertainty intervals. The seasonal evolution of the winter wheat crops was
quantified by correlating in-situ collected data and interpreting crop growth stages of the S2-
derived maps. We conclude that routine mapping of wheat LAI, CCC and VWC constitutes
a unique opportunity to monitor irrigated winter wheat development, which will contribute
to managing sustainable agricultural production and thus assuring food security.
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Appendix A. EBD-Reduced Final Training Dataset versus Validation Dataset

With the purpose of observing the spectral similarity between the final training data
set (Composed of couples of wheat traits and vegetation spectral reflectance simulated
by the RTM PROSAIL-PRO) and validation dataset (Composed of wheat traits associated
with S2 surface spectral reflectance) from BVCR campaign, both data sets were statistically
compared. Figure A1 illustrates averaged training and validation spectra, with standard
deviation and ranges in partly transparent colours. It can be observed that the training
data match closely with the validation data in the red-edge region and from the NIR on,
the difference between them increases. In the visible region of the electromagnetic spectrum,
a difference in both training and validation means curves can be appreciated, this phe-
nomenon is attributed to the fact that the MSI on board of S2 satellite integrates vegetation
and bare soil reflectance in a 10 × 10 m pixel. The proportionality between vegetation and
bare soil for each pixel varies with the fractional vegetation cover. The broader range of the
validation data is due to the senescent vegetation and bare soil added spectrums, which
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implies a sufficient degree of generalization to ensure that the model is applicable to S2 time
series data and able to retrieve the vegetation traits across the complete phenological cycle.

Figure A1. Statistics(mean, standard deviation, min–max) of EBD-reduced final training dataset
(blue) vs. validation dataset (red). Training data base was simulated with PROSAIL-PRO.).

References
1. Shiferaw, B.; Smale, M.; Braun, H.J.; Duveiller, E.; Reynolds, M.; Muricho, G. Crops that feed the world 10. Past successes and

future challenges to the role played by wheat in global food security. Food Secur. 2013, 5, 291–317. [CrossRef]
2. Han, D.; Liu, S.; Du, Y.; Xie, X.; Fan, L.; Lei, L.; Li, Z.; Yang, H.; Yang, G. Crop Water Content of Winter Wheat Revealed with

Sentinel-1 and Sentinel-2 Imagery. Sensors 2019, 19, 4013. [CrossRef]
3. Zhang, J.; Han, W.; Huang, L.; Zhang, Z.; Ma, Y.; Hu, Y. Leaf Chlorophyll Content Estimation of Winter Wheat Based on Visible

and Near-Infrared Sensors. Sensors 2016, 16, 437. [CrossRef]
4. Caballero, G.R.; Platzeck, G.; Pezzola, A.; Casella, A.; Winschel, C.; Silva, S.S.; Ludueña, E.; Pasqualotto, N.; Delegido, J.

Assessment of Multi-Date Sentinel-1 Polarizations and GLCM Texture Features Capacity for Onion and Sunflower Classification
in an Irrigated Valley: An Object Level Approach. Agronomy 2020, 10, 845. [CrossRef]

5. Fernández-Cirelli, A.; Arumí, J.L.; Rivera, D.; Boochs, P.W. Environmental effects of irrigation in arid and semi-arid regions. Chil.
J. Agric. Res. 2009, 69 (Suppl. S1), 27–40. [CrossRef]

6. Hanes, J. Biophysical Applications of Satellite Remote Sensing; Springer: Berlin, Germany, 2013.
7. Dong, Q.; Chen, X.; Chen, J.; Zhang, C.; Liu, L.; Cao, X.; Zang, Y.; Zhu, X.; Cui, X. Mapping Winter Wheat in North China

Using Sentinel 2A/B Data: A Method Based on Phenology-Time Weighted Dynamic Time Warping. Remote Sens. 2020, 12, 1274.
[CrossRef]

8. Ingram, J.S.I.; Gregory, P.J.; Izac, A.M. The role of agronomic research in climate change and food security policy. Agric. Ecosyst.
Environ. 2008, 126, 4–12. [CrossRef]

9. Hank, T.B.; Bach, H.; Mauser, W. Using a Remote Sensing-Supported Hydro-Agroecological Model for Field-Scale Simulation of
Heterogeneous Crop Growth and Yield: Application for Wheat in Central Europe. Remote Sens. 2015, 7, 3934–3965. [CrossRef]

10. Weiss, M.; Frederic, B.; Smith, G.; Jonckheere, I.; Coppin, P. Review of methods for in situ leaf area index (LAI) determination:
Part II. Estimation of LAI, errors and sampling. Agric. For. Meteorol. 2004, 121, 37–53. [CrossRef]

11. Leblanc, S.G.; Chen, J.M.; Fernandes, R.; Deering, D.W.; Conley, A. Methodology comparison for canopy structure parameters
extraction from digital hemispherical photography in boreal forests. Agric. For. Meteorol. 2005, 129, 187–207. [CrossRef]

12. Duveiller, G.; Weiss, M.; Baret, F.; Defourny, P. Retrieving wheat Green Area Index during the growing season from optical time
series measurements based on neural network radiative transfer inversion. Remote Sens. Environ. 2011, 115, 887–896. [CrossRef]

13. Amin, E.; Verrelst, J.; Rivera-Caicedo, J.P.; Pipia, L.; Ruiz-Verdú, A.; Moreno, J. Prototyping Sentinel-2 green LAI and brown LAI
products for cropland monitoring. Remote Sens. Environ. 2021, 255, 112168. [CrossRef] [PubMed]

14. Schlemmer, M.; Gitelson, A.; Schepers, J.; Ferguson, R.; Peng, Y.; Shanahan, J.; Rundquist, D. Remote estimation of nitrogen and
chlorophyll contents in maize at leaf and canopy levels. Int. J. Appl. Earth Obs. Geoinf. 2013, 25, 47–54. [CrossRef]



Remote Sens. 2022, 14, 4531 28 of 31

15. Baret, F.; Houles, V.; Guérif, M. Quantification of plant stress using remote sensing observations and crop models: The case of
nitrogen management. J. Exp. Bot. 2007, 58, 869–880. [CrossRef] [PubMed]

16. Delloye, C.; Weiss, M.; Defourny, P. Retrieval of the canopy chlorophyll content from Sentinel-2 spectral bands to estimate
nitrogen uptake in intensive winter wheat cropping systems. Remote Sens. Environ. 2018, 216, 245–261. [CrossRef]

17. Berger, K.; Verrelst, J.; Féret, J.B.; Wang, Z.; Wocher, M.; Strathmann, M.; Danner, M.; Mauser, W.; Hank, T. Crop nitrogen
monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions. Remote Sens. Environ.
2020, 242, 111758. [CrossRef]

18. Peñuelas, J.; Filella, I.; Biel, C.; Serrano, L.; Savé, R. The reflectance at the 950–970 nm region as an indicator of plant water status.
Int. J. Remote Sens. 1993, 14, 1887–1905. [CrossRef]

19. Clevers, J.G.P.W.; Kooistra, L.; Schaepman, M.E. Estimating canopy water content using hyperspectral remote sensing data. Int. J.
Appl. Earth Obs. Geoinf. 2010, 12, 119–125. [CrossRef]

20. Zhang, C.; Pattey, E.; Liu, J.; Cai, H.; Shang, J.; Dong, T. Retrieving Leaf and Canopy Water Content of Winter Wheat Using
Vegetation Water Indices. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 11, 112–126. [CrossRef]

21. Fensholt, R.; Sandholt, I. Derivation of a shortwave infrared water stress index from MODIS near- and shortwave infrared data in
a semiarid environment. Remote Sens. Environ. 2003, 87, 111–121. [CrossRef]

22. Raj, R.; Walker, J.P.; Vinod, V.; Pingale, R.; Naik, B.; Jagarlapudi, A. Leaf water content estimation using top-of-canopy airborne
hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102393. [CrossRef]

23. Rud, R.; Cohen, Y.; Alchanatis, V.; Levi, A.; Brikman, R.; Shenderey, C.; Heuer, B.; Markovitch, T.; Dar, Z.; Rosen, C.; et al. Crop
water stress index derived from multi-year ground and aerial thermal images as an indicator of potato water status. Precis. Agric.
2014, 15, 273–289. [CrossRef]

24. Schott, J.W. Remote Sensing Of The Earth: A Synoptic View. Phys. Today 1989, 42, 72. [CrossRef]
25. Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al.

Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36.
[CrossRef]

26. Berger, K.; Verrelst, J.; Féret, J.B.; Hank, T.; Wocher, M.; Mauser, W.; Camps-Valls, G. Retrieval of aboveground crop nitrogen
content with a hybrid machine learning method. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102174. [CrossRef]

27. Danner, M.; Berger, K.; Wocher, M.; Mauser, W.; Hank, T. Efficient RTM-based training of machine learning regression algorithms
to quantify biophysical & biochemical traits of agricultural crops. ISPRS J. Photogramm. Remote Sens. 2021, 173, 278–296.

28. Verrelst, J.; Rivera, J.; Camps-Valls, G.; Moreno, J. Recent advances in biophysical parameter retrieval methods—Opportunites for
Sentinel-2. In Proceedings of the ESA Living Planet Symposium 2013, Edinbrugh, UK, 9–13 September, 2013.

29. Verrelst, J.; Rivera, J.; Tol, C.; Magnani, F.; Mohammed, G.; Moreno, J. Global sensitivity analysis of the SCOPE model: What
drives simulated canopy-leaving sun-induced fluorescence? Remote Sens. Environ. 2015, 166, 8–21. [CrossRef]
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