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Abstract 

Background: Genomic prediction (GP) and genome‑wide association (GWA) analyses are currently being employed 
to accelerate breeding cycles and to identify alleles or genomic regions of complex traits in forest trees species. Here, 
1490 interior lodgepole pine (Pinus contorta Dougl. ex. Loud. var. latifolia Engelm) trees from four open‑pollinated 
progeny trials were genotyped with 25,099 SNPs, and phenotyped for 15 growth, wood quality, pest resistance, 
drought tolerance, and defense chemical (monoterpenes) traits. The main objectives of this study were to: (1) identify 
genetic markers associated with these traits and determine their genetic architecture, and to compare the marker 
detected by single‑ (ST) and multiple‑trait (MT) GWA models; (2) evaluate and compare the accuracy and control of 
bias of the genomic predictions for these traits underlying different ST and MT parametric and non‑parametric GP 
methods. GWA, ST and MT analyses were compared using a linear transformation of genomic breeding values from 
the respective genomic best linear unbiased prediction (GBLUP) model. GP, ST and MT parametric and non‑parametric 
(Reproducing Kernel Hilbert Spaces, RKHS) models were compared in terms of prediction accuracy (PA) and control of 
bias.

Results: MT‑GWA analyses identified more significant associations than ST. Some SNPs showed potential pleiotropic 
effects. Averaging across traits, PA from the studied ST‑GP models did not differ significantly from each other, with 
generally a slight superiority of the RKHS method. MT‑GP models showed significantly higher PA (and lower bias) than 
the ST models, being generally the PA (bias) of the RKHS approach significantly higher (lower) than the GBLUP.

Conclusions: The power of GWA and the accuracy of GP were improved when MT models were used in this lodge‑
pole pine population. Given the number of GP and GWA models fitted and the traits assessed across four progeny 
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Introduction
Interior lodgepole pine (Pinus contorta Dougl. ex. Loud. 
var. latifolia Engelm) is one of the most widely distrib-
uted and commercially important conifer species in 
Northwestern North America [1]. Traditionally, tree 
improvement programs focus on productivity-related 
traits (e.g., growth and wood quality), and rely on ped-
igree-based methods to characterize tested individuals 
[2–4]. In addition, long breeding cycles, unpredictable 
market demands, and climate change act individually 
and/or in concert to accentuate traditional tree improve-
ment’s slow and unresponsive nature. Global climate 
warming since the beginning of this century, together 
with significant shifts in the distribution of precipitation 
and climate-induced insect outbreaks, has triggered a 
number of devastating forest mortality events worldwide 
[5]. For example, the most recent mountain pine bee-
tle (Dendroctonus ponderosae Hopkins) outbreaks that 
began in 1999 had damaged over 10 million hectares of 
mature lodgepole pine in Alberta and British Columbia 
by 2007 [6]. Thus, assessing climate change-related adap-
tive traits such as drought tolerance and pest and disease 
resistance and associated secondary (defense) chemical 
compounds is critical to their incorporation in ongoing 
breeding activities for improving productivity. While 
productivity-related traits have been the traditional focus 
of quantitative genetic analyses of several tree species 
(including conifer species), some recent progress has 
been directed towards the selection of climate change-
related adaptive traits [7].

Meuwissen et  al. [8] introduced genomic prediction 
(GP) or genomic selection and the method’s potential in 
accelerating breeding cycles. Increasing selection inten-
sity and improving breeding values (BVs) have been the 
mainstay of several animal and plant breeding programs, 
including forest trees [9]. The most commonly used 
GP method in forest tree species is the penalized ridge 
regression best linear unbiased predictor (RR-BLUP) 
method (or equivalently, genomic best linear unbiased 
prediction -GBLUP-; e.g., [10–12]). Several studies have 
compared the GP performance of different Bayesian 
methodologies (including BayesA, BayesB, BayesC, and 
BLasso) using single-trait (ST) models, where compara-
ble results were generally found [13–19]. For example, in 
lodgepole pine, Ukrainetz and Mansfield [19] studied ST 
prediction accuracies for tree height and wood quality 

characteristics and found that the results from BayesC 
were indifferent to the GBLUP. However, non-paramet-
ric machine-learning regression methods have not been 
commonly applied for GP in trees species [20–23].

Unlike ST, multiple-trait (MT) GP (MT-GP) models 
simultaneously use the information from multiple traits 
to capture their correlations. Simulation studies have 
shown that MT-GP models can produce more accurate 
breeding value estimates than ST-GBLUP in animal [24] 
and plant [25] breeding scenarios. These benefits have 
also been empirically reported in a number of plants 
[26, 27], including tree species [12, 23, 25, 28, 29]. For 
instance, Cappa et  al. (2018) demonstrated a 2 to 4% 
increase in the theoretical accuracy of a low heritabil-
ity trait (tree height, HT, ĥ2 = 0.15) using MT-GBLUP 
model, when leveraging the genetic correlation with 
diameter at breast height (DBH, ĥ2 = 0.32). Additionally, 
in a 10-fold cross-validation analysis of a Pinus taeda L. 
population, Jia and Jannink [25] observed better predic-
tion accuracy (0.48 vs. 0.30) for fusiform rust (Cronar-
tium quercuum Berk. Miyable ex Shirai f. sp. fusiforme) 
assessed as gall volume with MT-BayesCπ model than 
from an ST model.

In addition to GP, the whole genome approach allows 
for the investigation of traits’ genetic architecture 
(defined as the number of genes affecting a quantitative 
trait), allelic effects on phenotypes, and the frequency 
distribution spectrum of alleles at these genes [30]. In 
MT genome-wide association (GWA) studies (MT-
GWA), it is known that correlations between traits 
reduce false positives and increase the statistical power 
of association tests [31–33]. Compared to ST-GWA, and 
from a biological perspective, MT-GWA enhances plei-
otropy interpretation [32], when a specific locus affects 
multiple traits [34]. In a GWA human study, Watanabe 
et al. [35] compiled a catalog of 4155 GWA results across 
2965 unique traits from 295 studies, and found that 90% 
of the genes were associated with more than one trait, 
highlighting that pleiotropy plays an important role in 
the genetic architecture of complex traits. Over the past 
two decades, ST-GWA studies that fit one trait at a time 
have established the genetic architectural foundations 
for a number of growth and wood quality phenotypes 
in forest tree species [36–40]. Except for a small num-
ber of physiological traits [33, 38–40, Liu et  al. submit-
ted] little is known about the detailed genetic basis and 

trials, this work has produced the most comprehensive empirical genomic study across any lodgepole pine popula‑
tion to date.
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the predictability of adaptive attributes of coniferous spe-
cies, which are key to global biogeochemical cycles and 
climate regulation [41, 42].

Here, we assessed 1490 trees from a lodgepole pine 
population being tested in four open-pollinated prog-
eny trials in central Alberta, where we characterized not 
only growth and wood quality traits, but also pheno-
types related to pests and drought resistance and defense 
chemical (monoterpenes) traits with 25,099 SNP mark-
ers. The main objectives of this study were to (1) identify 
genetic markers associated with these productivity- and 
adaptability-related traits and determine their genetic 
architecture, and to compare the marker detected by ST- 
and MT-GWA GBLUP models; (2) evaluate and compare 
the accuracy and control of bias of the genomic predic-
tions for these traits underlying different ST and MT 
parametric (BayesC, Blasso, BRR, and GBLUP) and non-
parametric (Reproducing Kernel Hilbert Spaces, RKHS) 
GP methods. Additionally, we estimated the quantitative 
genetic parameters (including heritability and genetic 
correlations) within- and across-sites of these productiv-
ity- and adaptability-related traits.

Results
Genomic heritability estimates and correlations 
between traits within‑ and across‑sites
Overall, narrow-sense heritability estimates based on 
genomic data across the 15 studied traits ranged from 
0.01 to 0.80 with an average of 0.42 (Table  1). Substan-
tial cross-site heritability estimates were observed for 
growth (DBH and HT) and wood quality traits (wood 
density, WD; and microfibril angle, MFA), being signifi-
cantly lower for SWAN (DBH and WD), TIME (DBH) 
and VIR (WD and MFA). Pest resistance traits (western 
gall rust, WGR; and mountain pine beetle, MPB) also had 
low-to-moderate heritability estimates (range: 0.40–0.68 
and 0.01–0.65 for WGR and MPB, respectively). The 
dendrochronological growth decline index (DECL) pro-
duced low-to-moderate heritability estimates for three 
out of four sites (range: 0.24–0.50), but near-zero herit-
ability was obtained for the VIRG site (0.01). While the 
stable carbon isotope ratio (δ13C) values showed consist-
ently moderate-to-high heritability estimates across sites 
(range: 0.42–0.64), monoterpene compounds produced 
variable estimates, with values ranging between 0.20 and 
0.80. Finally, total monoterpenes showed slightly lower 
heritability estimates than individual monoterpene com-
pounds (range: 0.25–0.33).

Overall, genetic correlations between traits ranged 
from − 0.85 to 0.92 (Fig. 1 and Supplementary Table S1). 
Growth traits showed low and negative genetic correla-
tions with WGR (range: − 0.35 - 0.00) and low-to-mod-
erate correlations with MPB (depending on the sites, 

either positive (JUDY, SWAN, and TIME) or negative 
(VIRG); range: − 0.22 - 0.58). The correlations between 
growth traits and DECL were also low-to-moderate and 
generally negative for VIRG, SWAN and TIME (range: 
0.03 - 0.50), and low and positive but not statistically sig-
nificant (with a relatively large standard error) for JUDY 
(0.05). The correlation between growth traits and δ13C 
varied from 0.05 to 0.55 with lower values for JUDY and 
VIRG and higher values for SWAN and TIME.

With the exception of WD at TIME (0.20), wood qual-
ity traits were generally negatively correlated with DECL 
(range: 0.00 - 0.27 for WD and − 0.19 - 0.55 for MFA). 
Meanwhile, WD was low and positively or negatively 
correlated with δ13C values (range: − 0.12 - 0.34). Except 
for JUDY (− 0.17), MFA generally produced low-to-high 
positive correlations (range: 0.14 - 0.80) with δ13C.

Low-to-moderate and negative genetic correla-
tions between the two pest resistance traits (WGR 
and MPB) were detected at JUDY (− 0.23) and VIRG 
(− 0.34) but positive at SWAN (0.31) and TIME (0.18). 
In general, with the exception of WGR and limonene 
at JUDY (0.55) and VIRG (0.53), negative genetic 
correlations between WGR and monoterpene com-
pounds (including total monoterpenes) were observed 
across all sites. Similarly, MPB showed a negative 
correlation with monoterpene compounds and total 

Table 1 Narrow‑sense heritability estimates and their 
approximate standard error (SE), for each of the growth, wood 
quality, pest resistance, drought tolerance and chemical defense 
assessed traits at four progeny test sites in a lodgepole pine 
population. Heritabilies were estimated using the genomic‑ 
relationship matrix (G‑matrix) constructed using 25 K SNPs. See 
text for site and trait abbreviations

a  Logarithmic transformed

Trait /  Siteb JUDY VIRG SWAN TIME

HT 0.767 (0.201) 0.503 (0.221) 0.616 (0.153) 0.432 (0.180)

DBH 0.495 (0.178) 0.464 (0.207) 0.186 (0.136) 0.091 (0.137)

WGR 0.465 (0.174) 0.399 (0.213) 0.648 (0.165) 0.678 (0.197)

WD 0.617 (0.213) 0.293 (0.216) 0.203 (0.163) 0.576 (0.190)

MFA 0.320 (0.171) 0.064 (0.184) 0.452 (0.153) 0.219 (0.146)

δ13C 0.537 (0.198) 0.423 (0.216) 0.638 (0.178) 0.434 (0.167)

DECLa 0.497 (0.222) 0.005 (0.190) 0.239 (0.173) 0.400 (0.206)

MPB 0.140 (0.163) 0.651 (0.211) 0.353 (0.141) 0.013 (0.008)

α‑pinenea 0.681 (0.189) 0.355 (0.205) 0.317 (0.168) 0.503 (0.176)

β‑pinenea 0.298 (0.161) 0.491 (0.211) 0.686 (0.142) 0.547 (0.174)

myrcenea 0.376 (0.196) 0.281 (0.196) 0.237 (0.146) 0.374 (0.175)

limonenea 0.523 (0.207) 0.613 (0.228) 0.495 (0.161) 0.200 (0.148)

β‑phellandrenea 0.437 (0.184) 0.671 (0.206) 0.795 (0.149) 0.661 (0.171)

terpinolenea 0.233 (0.179) 0.566 (0.201) 0.373 (0.149) 0.547 (0.175)

total monoter‑
penea

0.266 (0.183) 0.326 (0.194) 0.256 (0.151) 0.247 (0.167)
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monoterpenes, and as expected, these correlations 
were stronger with limonene (range: − 0.58 - 0.85) fol-
lowed by β-phellandrene, the most abundant monoter-
pene compounds in lodgepole pine phloem (range: 
− 0.22 - 0.49).

Except for VIRG (− 0.34), DECL showed low and posi-
tive genetic correlations with δ13C values across sites 
(range: 0.14–0.33). Low-to-moderate and generally 

positive correlations were found between DECL and 
monoterpene compounds, including the total monoter-
penes. Correlation estimates between δ13C values and 
monoterpene compounds and total monoterpenes also 
varied across sites, with generally low and negative val-
ues for JUDY (range: − 0.10 - 0.23), except with limonene 
(0.34) and β-pinene (0.23), and generally positive for the 
remaining sites (range: − 0.15 - 0.57).

Fig. 1 Genomic‑based multiple‑trait estimates of genetic correlation among the 15 traits studied. Colours reflect the genetic correlation strength, 
with red and green indicating negative correlations and light blue and violet reflecting positive correlations in lodgepole pine, respectively. See text 
for site and trait abbreviations
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Finally, with some variation across sites (e.g., average 
0.49 for JUDY and 0.14 for TIME), the genetic correla-
tions between monoterpene compounds (including total 
monoterpenes) were generally moderate-to-high and 
positive. A few exceptions of negative correlations can be 
seen between α-pinene and β-phellandrene.

In general, we observed high and positive genetic cor-
relations between sites (i.e., low genotype by environ-
ment interactions, G × E) (50 out of 72 pairs were > 0.7 
and 60 were > 0.4) and with relatively small standard 
errors (Fig.  2 and Supplementary Table S2). Inconsist-
ent genetic correlations and larger standard errors were 

Fig. 2 Genomic‑based multiple‑site estimates of genetic correlations between the four lodgepole pine progeny test sites. Genetic correlation 
estimates are shown in each cell below the diagonal, with colour and size of circle reflecting the genetic correlation strength. The red and blue 
circles reflect negative and positive correlations, respectively, and small (weaker) and larger (stronger) circles indicate the strength of the correlation, 
shown above diagonal. See text for trait abbreviations
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observed for MFA and DECL, with generally low and 
relatively large standard errors. Due to these inconsist-
encies, these two traits were not included in the mul-
tiple-trait GP and GWA analyses. The lowest genetic 
correlations among pairs of sites were between JUDY 
and VIRG (average across traits 0.48) and JUDY and 
TIME (average across trait 0.58), while the average for 
the rest of the pairs were strong (higher than 0.64). We 
suspected that VIRG’s low genetic correlations with 
other sites were likely caused by the fire that occurred 
on this site in May 1998 (see Discussion below).

Genome‑wide association (GWA)
Manhattan plot generally shows similar profiles between 
ST- and MT-GWA analyses for the 13 traits studied 
(Supplementary Fig. S1). The ST- and MT-GWA analy-
ses with 25,099 SNPs for each of the 13 studied traits 
identified a total of 27 and 221 SNPs, respectively, and 
all these SNPs passed the Bonferroni correction p-value 
cutoff of 1.99 ×  10− 06 (−logP = 5.7) (Fig. 3). Therefore, we 

observed a total of 248 significant SNPs for both ST- or 
MT-GWA; however, 17 SNPs overlapped between ST and 
MT results (HT (1), MPB (2), α-pinene (7), limonene (2), 
and β-phellandrene (5)). Overall, the MT-GWA analysis 
appeared to be more effective in identifying 204 unique 
SNPs that were not detected by the ST-GWA analysis. 
In contrast, only 10 SNPs were found to be unique in 
the ST-GWA. In addition, the greatest number of sig-
nificant SNPs identified with both GWA models (ST and 
MT) were associated with DBH (83), β-phellandrene (50) 
and α-pinene (35), while the lowest number of identified 
SNPs were associated with HT, WGR, δ13C, and β-pinene 
with only one SNP overlapping.

The MT-GWA analysis identified 28 SNPs that simul-
taneously contributed to multiple traits. These include 
associations between growth traits (DBH and HT (1 
SNP)), growth and defense monoterpenes (DBH and 
α-pinene (2 SNPs) and DBH and β-phellandrene (1 
SNP)), wood quality and defense monoterpenes (WD and 
β-phellandrene (1 SNP) and WD and total monoterpenes 

Fig. 3 Number of total significant (p‑values < 1.99 ×  10− 06) SNPs identified by the single‑trait (blue) and multiple‑trait (orange) GWA analyses in 
lodgepole pine. A total of 17 SNPs was identified for both GWA analyses for the traits HT (1), MPB (2), α‑pinene (7), limonene (2), and β‑phellandrene 
(5). See text for site and trait abbreviations
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Fig. 4 Quantile‑quantile (Q‑Q) plots for genome‑wide association (GWA) analyses based in single‑trait (ST, blue) and multi‑trait (MT, orange) models 
for 13 traits studied in lodgepole pine. Q‑Q plot is used to assess the number and magnitude of observed associations between genotyped SNPs 
and traits under study, compared to the association statistics expected under the null hypothesis of no association. See text for trait abbreviations
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(1 SNP)), pest resistance and defense monoterpenes 
(MPB and limonene (4 SNPs)), and defense monoterpe-
nes (α-pinene and β-phellandrene (14 SNPs), and finally 
myrcene and total monoterpenes (4 SNPs)). However, the 
ST-GWA analysis only identified five SNPs with potential 
pleiotropic effects (details in Table 2).

QQ plots showed a clear improvement for MT asso-
ciations compared to their corresponding ST analyses 
(Fig.  4). The scatter plots, where the –log10(p-value) 
for each trait obtained from ST-GWA and MT-GWA 
were compared, also suggest an increase in the power 
of MT association analysis (Fig. 5). Further evidence of 
the strength of the MT-GWAS can be seen in the num-
ber of the SNPs deviated from the diagonal (regression 
line y = x in Fig. 5).

Genomic prediction (GP)
After performing the Tukey’s test (α = 0.05), it was 
found that the average prediction accuracy across 
the studied traits of the five ST-GP models (BayesC, 
BLasso, BRR, GBLUP, and RKHS) did not differ sig-
nificantly from each other (range: 0.410–0.435), with 
the highest values for the non-parametric RKHS-
GP model in 11 out of the 13 studied traits (Supple-
mentary Table S3). Similarly, the ST-RKHS approach 
showed the lowest prediction bias among all five 
ST-GP models studied (average across traits = 0.851), 
statistically significantly different from the other four 
ST-GP models.

For MT-GP models, GBLUP and RKHS demon-
strated significantly higher average prediction accura-
cies across traits than the five ST models. Additionally, 
within the MT-GP approaches, the MT-RKHS model 
provided significantly higher predictability than the 
MT-GBLUP (average 0.703 for MT-RKHS vs. 0.644 for 
MT-GBLUP, 9.2%). Though not statistically significant, 
the averaged prediction bias across traits of the MT-
GBLUP and MT-RKHS GP models were found to be 
lower than those of the ST-GP models (average across 
traits of 0.948 vs. 0.959, respectively; Fig.  6 and Sup-
plementary Table S3).

Regarding each of the studied traits (i.e., within 
trait), the MT-GBLUP- and RKHS-GP models showed 
higher prediction accuracy and lower bias (most were 
statistically significant, p-value < 0.05) than those of 
their respective ST-GP models, with the exception to 
the prediction accuracy of WGR and δ13C traits (Fig. 7 
and Supplementary Table S3). However, prediction 
performance (increment in the prediction accuracy 
or reduction in the bias) varied significantly among 
the studied traits. For example, comparing GBLUP 

and RKHS for the ST-GP models, ST-RKHS showed 
higher prediction accuracy and lower bias than the ST-
GBLUP for all traits (but not statistically significant, 
p-value > 0.05), except for the prediction accuracy of 
DBH. However, MT-RKHS outperformed the MT-
GBLUP model, in terms of accuracy, in eight out of the 
13 traits studied, while lower bias was calculated for all 
traits in the MT-RKHS compared to those values pre-
dicted by MT-GBLUP (Supplementary Table S3).

Discussion
While assessing the prediction accuracy based on 
genomic information and the dissection of the genetic 
architecture of productivity-related traits has been a 
common goal in recent forest tree species research, less 
effort has been directed towards climate-adaptive traits. 
In this study, 1490 lodgepole pine trees from four open-
pollinated progeny trials were genotyped with 25,099 
SNPs and phenotyped for 15 growth, wood quality, pest 
resistance, drought tolerance, and defense chemical 
(monoterpenes) traits. Several parametric and non-para-
metric and single- (ST) and multiple-trait (MT) genomic 
prediction (GP) and genome-wide association (GWA) 
models were evaluated and compared. The main results 
showed that, firstly, in the GWA analysis, the MT model 
showed a clear improvement and identified more signifi-
cant SNPs than the ST approach. Furthermore, some of 
these SNPs simultaneously were associated with multiple 
traits. Secondly, in the GP analysis, while similar predic-
tion efficiencies and bias were observed regardless of the 
ST-GP model used, the MT-GP models (GBLUP and 
RKHS) increased the prediction accuracy and reduced 
the prediction bias considerably as compared to those 
of the ST models. In general, the non-parametric RKHS 
model showed higher prediction accuracy, and lower bias 
for both ST and MT models across the 13 traits studied.

Genome‑wide association (GWA)
Single- (ST) and multiple-trait (MT) GWA analyses using 
a linear transformation of the genomic breeding values 
from their respective GBLUP models were carried out to 
identify significant SNPs associated with the studied 15 
traits. We used the MT-GBLUP models’ genomic breed-
ing values to increase the power of the association tests 
and detect associations with potential pleiotropic effects.

Dissecting the genetic architecture of complex traits is 
essential to understanding quantitative trait variation and 
evolvability [36]. However, due to the lack of genomic 
knowledge, such as reference assemblies and functional 
annotations, genetic association studies in conifer have 
primarily been carried out using candidate-genes or 
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Fig. 5 Scatterplots of p‑values in ‑log10(p‑value) scale for the single‑trait (x‑axis) and multiple‑trait (y‑axis) GWA analyses in lodgepole pine for 13 
traits studied. Note as several points (markers) are positioned above the blue line (i.e., deviated from the diagonal (regression line y = x), suggesting 
the multiple‑trait association analysis increased the power as compared to the single‑trait analysis. See text for trait abbreviations
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Fig. 6 Average prediction accuracy and prediction bias across 13 traits using different genomic selection methods for five single‑ (ST) and two 
multiple‑trait (MT) models in lodgepole pine. Common letters above box‑plots are not significantly different (α = 0.05) according to the Tukey test. 
See text for ST and MT model abbreviations

Fig. 7 Average prediction accuracy and prediction bias using different genomic selection methods for two single‑trait (ST) and two multiple‑trait 
(MT) models for 13 traits studied in lodgepole pine. Within each trait, common letters above box‑plots are not significantly different (α = 0.05) 
according to the Tukey test. See text for model and trait abbreviations
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focused on specific genomic regions [43, 44]. Recently, 
genome-wide genotyping approaches have been applied 
to several conifer species, including Pinus taeda [36, 45] 
and Picea abies (L.) Karst [40]. In lodgepole pine, until 
now, only one other association study that identified 11 
SNP loci with an adaptive phenotype, serotiny, was avail-
able using 98 trees genotyped with more than 95,000 
SNPs [46]. Our results demonstrate that small differences 
exist in the architecture of the different productivity 
and climate resilience traits studied, with no evidence of 
alleles of large effect (Supplementary Fig. S1). Thus, these 
traits’ architecture is complex following the infinitesimal 
model. Here we have uncovered a quantitative aspect- 
with a total of 231 trait-associated SNPs for 13 traits 
identified (Table 2). Armed with the increased statistical 
power of the MT-GWA models, recently, there is a grow-
ing appreciation that many genetic variants can influence 
multiple traits simultaneously [47]. For instance, Chhetri 
et  al. [48] found four SNPs with suggestive associations 
using ST-GWA for 14 morphological and physiological 
traits in Populus trichocarpa, while using MT-GWA for 
12 combinations of a subset of these 14 traits, 32 SNPs 
passed the suggestive association p-value cutoff. Similar 
cases in other species such as dairy cattle [49] and fish 
[50] have also been observed. Based on our study, we 
suspect that the increase in statistical power could be 
the result of the genetic correlations between these traits 
(Fig. 1 and Supplementary Table S1).

In our ST-GWA analysis, 17 out of 27 associations were 
confirmed by the MT-GWA analysis: 7 for α-pinene, 5 for 
β-phellandrene, 1 for HT, 2 for MPB, and 2 for limonene. 
However, ten associations were only seen in the ST-GWA 
results: 3 for DBH, 2 for myrcene, 2 for terpinolene, 1 
for total monoterpenes, 1 for MPB, and 1 for limonene. 
Given that the MT-GWA analysis failed to confirm these 
ten associations, and as indicated [50], we may assume 
that these trait associations identified by the ST-GWA 
analysis are spurious.

Furthermore, our results suggested that MT-GWA analy-
ses may potentially capture a higher number of pleiotropic 
effects than those from ST-GWA analysis (28 vs. 5, respec-
tively) (Table 2). However, Fernandes et al. [51], using pub-
licly available molecular marker data from Zea mays L. 
(maize) and Glycine max L. (soybean), suggested that the 
MT-GWA model tended to yield high spurious pleiotropy 
detection rates. They recommended that future studies 
should use a combination of ST- and MT-GWA models for 
distinguishing between true and spurious pleiotropy.

Additive GBLUP models have been considered in the 
ST- and MT-GWA analyses performed in this study, and 
dominance has been omitted mainly for reasons of com-
putational efficiency. Some presence of genetic domi-
nance effects of complex growth and adaptive traits has 

been previously reported in GWA conifers studies in 
clonally replicated trees of Pinus taeda L. [44, 52], and in 
Pseudotsuga menziesii var. menziesii [53]. However, when 
the genetic architecture of a trait is in fact mostly addi-
tive, ignoring the dominance effect provides inferences 
that are nonetheless adequate [54]. In our study, the addi-
tive single-trait GBLUP model gave slightly small values 
of Akaike information criterion (AIC) (i.e., better fits) 
than the additive and dominance GBLUP model for all 
the productivity and climate-adaptability complex traits 
studied, with only one exception β-phellandrene (results 
not shown). Moreover, the dominance variance in nine 
out of 13 traits was less than 14% of the total genetic vari-
ance (in the remaining three traits it did not exceed 20%), 
and the ratios of dominance to additive variances did 
not exceed 0.256. These results confirm that the genetic 
architecture of the studied traits is mostly additive, and 
the ST- and MT-GBLUP that model only additive effects 
have accurately characterized the genetic architecture of 
these phenotypes.

Genomic prediction (GP)
In all 13 traits examined for genomic prediction, except 
for the slightly higher accuracy and lower bias observed 
in the RKHS model, all other models yielded compara-
ble results (Supplementary Table S3). In terms of pre-
diction accuracy, Daetwyler et  al. [55] demonstrated 
that the genetic architecture of traits and properties of 
the genomes are the major factors contributing to the 
discrepancy between parametric and non-parametric 
prediction models. Our results suggest that no alleles 
of large effect existed, or they are at very low frequency 
(Supplementary Fig. S1). Reviews of both plant and ani-
mal literature have generally concluded that the Bayes-
ian methods outperform the RR-BLUP (or equivalently 
GBLUP) for traits under the oligogenic model (i.e., trait 
controlled by few markers of moderate to large effect), 
whereas for polygenic traits, the GBLUP is expected to 
perform better. In forest tree species, several studies were 
conducted to compare the predictive performance of 
GBLUP and Bayesian methods. However, non-paramet-
ric models were rarely used for GP in forest trees [21, 22]. 
All of these studies showed that the GBLUP approach has 
prediction accuracies comparable to the Bayesian alpha-
bets, as well as to non-parametric methods, which sug-
gests that growth and wood quality productivity traits 
in eucalypts [13, 16, 17, 21], pines [10, 15, 18, 56], and 
spruce [12, 14, 22, 57], are complex and adequately fit 
into the assumption of the infinitesimal model [58]. How-
ever, when examining traits known to have an oligogenic 
basis, Resende et al. [18] found that BayesA and BayesCπ 
were superior to the ridge regression-BLUP for fusiform 
rust disease phenotype in loblolly pine.
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When penalized and Bayesian GP models are com-
pared with the non-parametric RKHS approach, in P. 
abies, GBLUP, BLasso, and RKHS had similar accuracies 
for three wood quality traits, but a slightly higher accu-
racy was observed for BRR for tree height [22]. How-
ever, in Eucalyptus, in agreement with our results, RKHS 
yielded a slightly better prediction accuracy for six out 
of eight growth and wood quality traits studied than the 
other three GP models (GBLUP, ridge regression-BLUP, 
and BLasso) [21].

Future forestry genetic improvement requires recur-
rent selection of all desirable traits, such as growth, wood 
quality, pest resistance, drought tolerance, and defense 
chemical (monoterpenes) traits. In our current study, 
the advantage of MT-GP over ST-GP models is demon-
strated with the improved accuracies and reduced bias 
(Figs. 6 and 7 and Supplementary Table S3). These results 
are in line with previous studies in forest trees where up 
to three traits were used in the MT models [25, 28]. How-
ever, also shown in our results, the advantage of MT-GP 
models can be trait-dependent and sometimes, negli-
gible [12, 23, 29]. Genetic correlation between traits is 
the basis for the benefit of MT-GP models [25]. Conse-
quently, the MT-GP models´ efficiency, relative to ST-GP, 
depends on the genetic correlations between traits. Using 
simulation, Calus and Veerkamp [59] reported that the 
accuracy increase was higher when the genetic correla-
tion was greater than 0.5.

In addition, using MT-GP models, the predictability 
of low-heritability traits can benefit from leveraging the 
genetic correlation with high-heritability traits [25]. For 
example, myrcene, a trait with relatively low heritability 
(0.32, Table 1) but in sizable genetic correlation with the 
other traits (average across traits 0.55, Supplementary 
Table S1), MT-GP showed significant improvement with 
a 133% increase in prediction accuracy (see ST-GLUP vs. 
MT-GBLUP in Supplementary Table S3). On the other 
hand, δ13C, a trait with a relatively high heritability (0.51, 
Table 1) but low correlation with the other traits (average 
across traits 0.08, Supplementary Table S1), the benefit of 
MT-GP was, as a result, not significant, showing the low-
est increment of 3.0% gain in prediction accuracy (Sup-
plementary Table S3).

Finally, in our MT-GP analyses, non-parametric RKHS 
generally outperformed GBLUP in predictive ability 
and bias. RKHS, using a non-linear Gaussian kernel, 
is expected to be more effective than the linear kernel 
(GBLUP) for capturing the underlying genome complex-
ity, including cryptic interactions between markers [60], 
non-additive genetic effects like dominance and epistatic 
interactions [61], environmental interactions [62, 63], 
as well as other interactions that are not considered in 
standard quantitative genetic models [64]. Our empirical 

GWA analyses revealed the complex genetic architecture 
of the studied traits (Supplementary Fig. S1), and this 
can explain the higher efficiency of the RKHS model in 
capturing small and complex interactions not considered 
in the linear GP models. Similar findings in cereal crops 
have confirmed the advantage of using non-linear kernels 
to increase predictability [60, 62, 65–67]. Overall, given 
the number of GP models fitted and the traits assessed 
across four progeny trials, this study has shown the most 
comprehensive empirical GP analysis in a lodgepole pine 
population to date.

Conclusion
We used dense genotypic information to perform a GP 
and GWA analyses on 15 growth, wood quality, pest resist-
ance, drought tolerance, and defense chemical (monoter-
penes) traits assessed in four lodgepole pine progeny trials. 
This study showed that MT-GWA analyses provided a 
substantial improvement in the number of significant SNP 
markers identified compared to ST-GWA and the poten-
tial of identifying pleiotropic effects of individual genes, 
confirming the increase in statistical power of the MT-
GWA models. In addition, we found several SNP markers 
(231) significantly associated with productivity- and adapt-
ability- traits. For genomic prediction, the five different 
parametric and non-parametric ST-GP methods produced 
very similar predictive ability and bias. However, slightly 
higher prediction accuracy and lower bias were generally 
observed for the non-parametric RKHS GP model. The 
model comparison showed that MT-GP models yield a 
relatively higher prediction accuracy and lower bias than 
the ST models. We also demonstrated the superiority of 
the MT RKHS approach to its linear counterpart, GBLUP. 
Furthermore, the MT-GP and GWA models used in this 
study do not consider the causal relationships between 
traits [68]. A future direction may be to use structural 
equation models (SEM) theory further to investigate the 
functional relationships between these complex produc-
tivity- and adaptability-related traits, with the objective of 
enhancing the prediction accuracy of genomic BVs, and 
facilitating a better understanding of the genotype-pheno-
type associations in lodgepole pine.

Methods
Genetic material and trial description
Four open-pollinated (OP) lodgepole pine progeny tests 
(Judy Creek: JUDY, Virginia Hills: VIRG, Swan Hills: 
SWAN, and Timeau: TIME) in the Region C breeding 
program [69] owned and managed by West Fraser - Blue 
Ridge Lumber, Inc. were used in this study (Supplemen-
tary Fig. S2). This breeding population contains 224 OP 
families selected from five natural stands (i.e., prov-
enances; Deer Mountain, Inverness River, Judy Creek, 
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Swan Hills, and Virginia Hills) within the Region C [70]. 
The field experimental design was the same at all progeny 
tests: a “set in reps” design with five replications (blocks), 
with 21 sets per replication, and trees within sets were 
planted in 4-tree row plots at a 2.5 × 2.5 m spacing [71]. 
Further details about these test sites can be found in 
Cappa et al. [72] and in Supplementary Table S4.

Traits evaluated
Two growth traits, diameter at breast height (1.3 m; DBH) 
and tree height (HT), were measured at age-30. Wood 
density (WD) from 5 mm increment cores was meas-
ured at approximately breast height. See details on core 
sampling, transportation and analyses in Cappa et al. [7]. 
Wood density data represents the relative density on an 
oven-dry weight basis. Average WD was calculated as 
the weighted WD of individual tree rings weighted by 
their ring width, to better represent the density of the 
whole tree [7]. Microfibril angle (MFA) was determined 
by X-ray diffraction on the radial face of the individual 
growth rings (see Ukrainetz et al. [73] for details).

Based on Cappa et al. [72], Endocronartium harknessii 
(J.P. Moore) Y. Hirats (western gall rust, WGR) infec-
tion severity was assessed at age 36 using a scoring sys-
tem with seven ordered discrete categories ranging from 
no gall to deceased (i.e., lowest rating having no galls to 
highest rating having a high number of galls) [74]. Very 
few trees were assessed in categories 3, 5, and 7 across 
test sites, therefore these categories were merged with 
the original 2, 4, and 6 categories, respectively, resulting 
in four-category resistance ratings, as indicated by Cappa 
et  al. [72]. Mountain pine beetle (MPB) host suitability 
rating was provided by Ullah et  al. [75] with the lowest 
rating being associated with trees least suitable for MPB 
colonization (i.e., trees more resistant to MPB) and the 
highest rating associated with trees most suitable for 
MPB attack (i.e., trees more susceptible to MPB). Both, 
WGR and MPB four-category ratings, were further trans-
formed into a respective continuous normal score follow-
ing Gianola and Norton [76].

The dendrochronological growth decline index (DECL) 
(Sebastian-Azcona et al. submitted) was calculated from 
tree ring information extracted from the same increment 
cores used for wood quality analysis. DECL describes 
the long-term growth reduction of trees that experi-
enced multiple drought episodes by comparing their 
growth during the last 5 years of the study period to the 
growth during the 5-year period of maximum growth 
(1997–2001) prior to the first severe drought event that 
occurred in 2002. DECL was calculated from tree ring 
measurements as follows: DECL = BAImax/BAIlast, where 
BAImax is the average annual basal area increment (BAI) 
during 1997–2001 and BAIlast is the average BAI between 

2012 and 2016. Trees with DECL values close to 1 rep-
resent non-declining trees that maintained a constant 
growth throughout their lifetime, while trees with larger 
DECL values were those who experienced a severe 
growth reduction compared to their early growth.

The two residual outside slabs of the increment core, 
retained after the pneumatic processing of the specimens 
for WD, were used to capture stable carbon isotope ratio 
(δ13C) variation across the lifespan of the tree. A detailed 
description of how these slabs were processed and ana-
lyzed can be found in Cappa et al. [7]. δ13C values were 
normalized and reported relative to the Vienna Pee Dee 
Belemnite.

Secondary chemical compounds (mainly monoterpe-
nes) were identified and quantified from phloem tissue 
collected from each tree. Briefly, at each test site in July 
2017, phloem samples from the main stem were taken at 
a height of 1 m using a 1.9 cm punch to the depth of the 
cambium, on the north-facing side of each tree. Samples 
were kept at − 40 °C and ground in liquid nitrogen to a 
powder for extraction. Hexane-extractable compounds 
were identified and quantified with a gas chromatograph-
flame ionization detector following Klutsch et  al. [77]. 
A total of 15 compounds were identified but only six 
monoterpenes (α-pinene, β-pinene, myrcene, limonene, 
β-phellandrene, and terpinolene) concentrations were 
employed in this study, including the sum of all hexane-
extractable compound concentrations (total monoter-
penes). These six monoterpenes along with the total 
concentration had the highest relative composition in 
trees and have known biological importance for defense 
against MPB [78]. The concentration of 3-carene was also 
in this list, but it did not fit model assumptions and was 
removed from all analyses.

Prior to model fitting, logarithmic transformation 
was used to DECL and all monoterpene compounds to 
improve data normality. With the exception of the uni-
variate quantitative genomic analyses (i.e., single-trait 
and single-site models, see below Eq. [1]), all pheno-
typic data were spatially adjusted (e.g., [21, 79]) using the 
design effects. That is, following Cappa et al. [72], design 
adjusted phenotype data were obtained for each tree, 
trait and test site, by subtracting the estimated replication 
and set nested within replication effects from the original 
phenotype. Finally, data of all traits were standardized 
to have zero mean and unit variance. See Supplemen-
tary Table S5 for trait list, number of trees for each trait, 
and summary statistics for each phenotypic trait in their 
original scale (i.e., without design adjustment). From the 
final set of 1490 trees (see below), the number of trees 
selected in each trial was 370 in JUDY, 337 in VIRG, 391 
in SWAN, and 392 in TIME, and by replication within 
trial varied from 56 to 101.
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Sample selection and genotyping‑by‑sequencing (GBS)
As described in Cappa et al. [72], 40 OP families (out of 
224) were selected to represent the range of high, aver-
age and low height variation at age-30, and sampling 
approximately ten individual trees per OP family per site 
(n = 1600) (see Cappa et al. [72] for details). Additionally, 
35 potential forward selected trees, previously identi-
fied based on height BVs, and from an additional 28 OP 
families were also included for sequencing, resulting in a 
total of 1635 trees being sequenced from a total of 68 OP 
families.

A total of 1554 (out of the original 1635 trees) DNA 
extracted samples passed the DNA quality control and 
were genotyped using the genotyping-by-sequencing 
(GBS) platform [80] as described by Cappa et  al. [72]. 
A final set of 1490 trees and 25,099 (25 K) SNPs was 
retained based on SNP data set filtering for 30% miss-
ing data and a minor allele frequency ≥ 1%. Missing data 
were imputed using the mean allele frequency [57]. SNPs 
were generated using the reference-free UNEAK pipe-
line, due to the lack of a lodgepole pine genome reference 
assembly.

Quantitative genomic analyses
In order to estimate the quantitative genetic parameters, 
including heritability and genetic correlations within- 
and across-sites, the following single-trait (ST) single-site 
individual-tree mixed model was fitted:

where, y is the vector of phenotypic data, β is the vec-
tor of fixed effect of genetic groups to account for the 
means of the provenances; d is the vector of random 
design effects, replications and set nested within replica-
tion, given that in general, just one single tree was sam-
pled from each 4-tree row plot, the plot effects were not 
fitted; a is the vector of random additive genetic effects 
following a normal distribution with zero mean and (co)
variance matrix Gσ

2
a , where G is the genomic relationship 

matrix (G-matrix, see below) based on 25 K SNPs and σ2a 
is the genetic variance; and e is the vector of the random 
residual effect following a normal distribution with zero 
mean and (co)variance matrix σ2e , where σ2e is the resid-
ual error variance. X, Zd, and Za, are incidence matrices 
relating fixed and random effects to measurements in 
vector y.

The genomic relationship matrix (G-matrix) based on 
25 K SNPs was calculated as:

(1)y = Xβ+ Zdd + Zaa+ e

G =
WW

′

2 pi(1− pi)

where, W is the n × m (n = number of individuals, 
m = number of SNPs) rescaled genotype matrix follow-
ing M - P, where M is the genotype matrix containing 
genotypes coded as 0, 1, and 2 according to the number 
of alternative alleles, and P is a vector of twice the allelic 
frequency,  pi.

Genetic correlations between traits measured from the 
same individual, and genetic correlations between sites, 
considering measurements from different sites as differ-
ent traits, were estimated based on the following multi-
ple-trait (MT) individual-tree mixed model:

where, 
[

y∗′1 |· · ·| y∗′j

]

 is a n × 1 vector that included the 
spatially adjusted phenotypes of all the individual-tree 
measured on all traits (j = HT, DBH, WGR, WD, δ13C, 
MPB, α-pinene, β-pinene, myrcene, limonene, 
β-phellandrene, terpinolene, and total monoterpenes) or 
sites (j = JUDY, VIRG, SWAN, and TIME); the genetic 
group effects for all traits or sites are included in the vec-
tor 

[

β′1 |· · ·| β′j

]

 of order p × 1; the additive genetic effects 
(breeding values) of all individuals (i.e., parents without 
records plus offspring with data in 

[

y∗′1 |· · ·| y∗′j

]

 ) for all 
traits or sites are included in the vector 

[

a′1 |· · ·| a′j

]

 of 
order q × 1, and 

[

e′1 |· · ·| e′j

]

 is the residual vector of 
order n × 1. X1 ⊕ ⋯ ⊕ Xj (of order n × p), and 
Za1 ⊕ · · · ⊕ Zaj (of order n × q) are incidence matrices 
of zeros and ones relating observations of the jth trait or 
site in 

[

y∗′1 |· · ·| y∗′j

]

 to elements of 
[

β′1 |· · ·| β′j

]

 and 
[

a′1 |· · ·| a′j

]

 , respectively. The symbols ⨁ and ‘indicate 
the direct sum of matrices and transpose operation, 
respectively. Finally, the expected value and variance-
covariance matrix of the additive genetic effects in model 
[2] are respectively equal to:

where, σ2aii and σ2ajj are the genetic variances for traits or 
sites i and j respectively; and, σaij is the genetic covari-
ance between traits or sites i and j. The symbol ⨂ indi-
cates the Kronecker products of matrices. The expected 
value and variance-covariance matrix of e were equal to:
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The residual variances for traits or sites i and j were 
σ
2
ei

 , and σ2ej , respectively, and σeij was the residual covar-
iance between traits i and j. Given that the sites were 
assessed separately, the residual covariances across-
sites were assumed to be zero.

The individual-trait narrow-sense heritability ( ̂h2 ) 
and genetic correlations ( ̂ra ) between traits, or sites i 
and j, were estimated as:

where σ̂2a is the estimated of variances for the additive 
genetic effects, and σ̂2e is the estimated residual errors. 
Visualization of genetic correlations between traits was 
done using the corrplot function in R-package corrplot 
[81].

Univariate [1] and multivariate [2] models were fit-
ted with the R-package (www.r- proje ct. org) ‘breedR’ 
[82] using the function remlf90, which is based in the 
REMLF90 (for the Expectation-Maximization algo-
rithm, EM) and AIREMLF90 (for the Average Infor-
mation algorithm, AI) of the BLUPF90 family [83]. The 
EM algorithm was followed by one iteration with the AI 
algorithm to compute the approximate standard errors 
of variance components [84]. The program preGSf90, 
also from the BLUPF90 family [83], was used to calcu-
late the inverse of the G-matrix from the 25 K SNPs, and 
then used to fit models [1] and [2].

GWA analyses
Single- and multiple-trait GWA analyses were per-
formed using models [1] and [2], respectively, fitted in 
the breedR R-package. The only difference from these 
models was that the fixed effects of genetic groups and 
random design effects were not considered. Previous 
analyses using the heat map and principal component 
analysis of the genomic relationship matrix of the 1490 
genotyped trees (not shown) revealed that differences 
attributable to provenance origins were negligible. For 
instance, the first principal component (PC) accounted 
for < 0.7% of the total variation. In addition, design 
random effects (i.e., replications and set nested within 
replication) were also not fitted in the GWA analyses, 
given that adjusted phenotypes were used. The two 
traits that showed inconsistent and imprecise geno-
type by environment interactions (G × E) were MFA 
and DECL and were therefore removed from further 
multiple-trait GWA and GP analyses (see Results). 
Thus, G × E was not fitted to simplify the multiple-
trait models.

ĥ2 =
σ̂ 2
a

σ̂ 2
a + σ̂ 2

e

; r̂a =
σ̂ai,j

√

σ̂ 2
ai,i

× σ̂ 2
aj,j

The p-value for each k SNP from each individual trait 
using the ST and MT models was computed with the 
formula [85]:

where sd
(

ĝk
)

 is the standard deviation of the SNP effect 
estimate ( ̂gk ) ( sd

(

ĝk
)

=

√

Var
(

ĝk
)

 ), Var
(

ĝk
)

 is the vari-
ance of the estimated SNP effects, and Ф(.) is the cumula-
tive density function of the normal distribution (see [85] 
for Var

(

ĝk
)

 (expression 5) calculation details). The SNP 
effects for each trait and each ST and MT model were 
obtained from a linear transformation of the genomic 
breeding values in the vector a of model [1, 2] (expres-
sion 3 in [85]). Following Gualdrón Duarte [85], a cus-
tomized R-script was written to obtain the p-values from 
each ST and MT model. Positive associations were deter-
mined at the nominal p-value < 0.05 level, and Bonferroni 
correction was used to control false positive associations 
in the multiple comparison procedure. We, therefore, 
selected a -logP value of 5.7, derived by dividing the 
p-value = 0.05 by the total number of testing SNP mark-
ers in the analysis N = 25,099.

Genomic prediction
Five statistical methods were assessed for their abil-
ity to predict the genomic breeding values using single-
trait (ST) models for all traits studied. These methods 
included BayesC [86], Bayesian Lasso (BLasso, [87]), 
Bayesian ridge regression (BRR, [88]), genomic best lin-
ear unbiased prediction (GBLUP, [89]), and the non-
parametric reproducing kernel Hilbert space (RKHS) 
regression (e.g., [90]). All ST models were run using the 
BGLR function of the BGLR R-package [91]. For ST-GP 
models, a single Gibbs chain of 20,000 iterations was 
sampled, the first 2000 iterations were discarded due to 
“burn-in”, and a thinning interval (thin) of 100 was used 
to compute posterior means.

As mentioned, based on the quantitative genomic 
results obtained from the multiple-site analyses using 
Eq. [2] for each trait (see Results), all further MT-GP 
analyses were carried out without considering MFA and 
DECL due to their inconsistent genotype by environ-
ment interactions. The MT-GP models were performed 
using two statistical methods that produced the best 
predictive performance in the previous ST-GP analysis 
(RKHS, see below) and represent the most commonly 
used GP approach in forest tree studies (GBLUP). The 
MT-RHKS and -GBLUP models were run using the 
Multitrait function of the BGLR R-package [91]. That 
is, RKHS regression models were fitted using a linear 

p_valuek = 2

(

1−�

(

ĝk

sd
(

ĝk
)

))

http://www.r-project.org
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GBLUP kernel (GBLUP), given that the use of RKHS 
along with the G-matrix (see above) is equivalent to the 
mixed linear model of GBLUP [92], and a non-linear 
Gaussian kernel (RKHS). The non-linear kernel matrix 
(K) is defined as: K

(

xi, xi´
)

= e
−
(

h∗d2

ii´

)

 , where d2

ii´
 

points out the squared Euclidean distance between indi-
viduals i and i´. The rate of decay imposed by the band-
width parameter h was estimated using the ST model for 
each trait, where 11 out of the studied 15 traits showed 
the highest predictive ability to the h value equal to 0.5 
(see [92]), for the two RKHS regression models fitted to 
study the MT-GP approaches details). For MT-GBLUP 
and RKHS GP models, a single Gibbs chain of 200,000 
iterations was sampled, the first 1000 iterations were 
discarded due to “burn-in”, and a sample interval (thin) 
of 100 was used to compute posterior means.

In order to evaluate and compare the accuracy and 
bias of the genomic predictions of the studied traits, a 
10-fold cross-validation analysis was conducted across 
all the ST and MT parametric and non-parametric GP 
models, where one subsample was used as the valida-
tion set, and the remaining nine samples as the train-
ing set. A total of 5 replicates were conducted at each 
fold. In the MT cross-validation analysis, when a trait 
is predicted for a tree in the validation population, 
the phenotypic measurements for the other traits are 
available for the tree in the validation set (trait-assisted 
GP, [26]).

Predictive ability was estimated by evaluating the Pear-
son correlation coefficient between the predicted breeding 
values of the validation trees and the adjusted phenotypes. 
Then, the prediction accuracy was calculated for each ST 
and MT model and trait as the predictive ability divided 
by the square root of the narrow-sense heritably of each 
trait, computed using the MT-GBLUP model [93]. The 
prediction bias was calculated by the regression coeffi-
cient between the observed adjusted phenotype and the 
predicted with each ST and MT-GP model. A regression 
coefficient equal to one is considered to have no bias, while 
a coefficient greater or smaller than one indicates deflated 
or inflated predictions. A customized R-script was written 
to automate the cross-validation analyses for each ST and 
MT-GP model.

An analysis of variance (ANOVA) using a linear model 
with fixed effects of method and replication, and Tukey’s 
multiple comparison tests were performed at a signifi-
cance level α = 0.05, to test the significance of the differ-
ence in prediction accuracy and prediction bias between 
the different ST and MT models performed for each trait.
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