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Parasites of the phylum Apicomplexa are the causative agents of important diseases

such as malaria, toxoplasmosis or cryptosporidiosis in humans, and babesiosis

and coccidiosis in animals. Whereas the first human recombinant vaccine against

malaria has been approved and recently recommended for wide administration by the

WHO, most other zoonotic parasitic diseases lack of appropriate immunoprophylaxis.

Sequencing technologies, bioinformatics, and statistics, have opened the “omics” era

into apicomplexan parasites, which has led to the development of systems biology, a

recent field that can significantly contribute to more rational design for new vaccines.

The discovery of novel antigens by classical approaches is slow and limited to very

few antigens identified and analyzed by each study. High throughput approaches

based on the expansion of the “omics”, mainly genomics and transcriptomics have

facilitated the functional annotation of the genome for many of these parasites, improving

significantly the understanding of the parasite biology, interactions with the host, as

well as virulence and host immune response. Developments in genetic manipulation

in apicomplexan parasites have also contributed to the discovery of new potential

vaccine targets. The present minireview does a comprehensive summary of advances

in “omics”, CRISPR/Cas9 technologies, and in systems biology approaches applied to

apicomplexan parasites of economic and zoonotic importance, highlighting their potential

of the holistic view in vaccine development.
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INTRODUCTION

Apicomplexans parasites are a major cause of disease in humans and animals worldwide. These
pathogenic unicellular microorganisms can be zoonotic, threatening human populations, and/or
compromise animal health and welfare, causing an economic impact to the farming industry.
The most relevant human parasite, Plasmodium spp., is the etiological agent of malaria in
humans. Other zoonotic apicomplexans are the cyst forming Toxoplasma gondii that is the model
organism for research within the phylum, and Cryptosporidium parvum. Parasites of this phylum
also encompass several species causing diseases with welfare and economic impact in livestock
and poultry, as well as in wild animals and pets (1), some examples are babesiosis, eimeriosis
(coccidiosis), neosporosis, besnoitiosis, and theileriosis, among others, caused by species from
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the genera Babesia, Eimeria, Neospora, Besnoitia, and Theileria,
respectively. Although there are notable differences between
apicomplexans, they are obligate intracellular microorganisms
for some stages, with complex lifecycles. Typically, parasites of
this phylum contain an apical complex composed of the conoid
and specialized secretory organelles that includes micronemes,
rhoptries, and dense granules, which are involved in host cell
attachment, invasion, and the establishment of an intracellular
parasitophorous vacuole within the host cell (2); proteins
secreted by these organelles has been classical candidates for
vaccine development (3).

The advanced molecular tools for the study of some of these
organisms can provide detailed information of relevant biological
processes that can be an invaluable source for antigen discovery
and vaccine development. Despite that the first vaccines were
developed in humans in 1796, with the smallpox vaccine (4),
no vaccines were developed in the veterinary field until a
centenary later, being pioneer the vaccine against chicken cholera
developed in 1879 (5) and a few years later against bovine
babesiosis developed by Pound et al. (6), and Connaway et al.
(7), which were followed by vaccines against avian coccidiosis
(8) developed in the 1950s. However, the major contribution
to the development of vaccines against parasites came from the
efforts to combat malaria in the 1960s (9). Besides all the progress
made towards the control of human malaria disease, between
2010 and 2017 the incidence has only been reduced by an 18%
(10); and despite its importance in public health, there is only
one vaccine approved by the EuropeanMedicines Agency against
human malaria: Mosquirix (RTS,S– GlaxoSmithKline) (11, 12)
that has recently been recommended by the World Health
Organization (WHO) for its widespread use in children in sub-
Saharian Africa and other regions with moderate to high risk of
Plasmodium falciparum transmission (13). To date, only a small
number of vaccines against apicomplexan parasites of veterinary
importance are available (14). The main barriers in protozoal
vaccinology relate to their complex and multifaceted lifecycles,
presenting different stages and intricate interactions with the
host, not yet well understood, impairing the development of
successful vaccines.

The discovery of novel antigens by classical approaches is
slow and limited to very few antigens (15). High-throughput
technologies based on the expansion of the “omics” (defined as
the ‘characterization and quantification of pools of biological
molecules’ such DNA—genomics, RNA—transcriptomics,
proteins—proteomics, metabolites—metabolomics, lipids—
lipidomics) has facilitated the functional annotation of the
genomes for many of these parasites, significantly improving the
understanding of their biology, interactions with the host (16),
as well as providing novel targets for vaccine development (17).
Additionally, advances in genetic manipulation of parasites have
allowed the generation of transgenic populations to understand
biological processes (18) or experimentally validate the gene
function (19).

Systems biology is defined as an interdisciplinary approach
within the area of biomedical research that combines big
data derived from multi-omic studies with computational and
statistical analysis, aimed to unravel interactions and dynamics

from single to complex biological levels (20, 21). The use of
data generated by high-throughput-omics technologies in the
context of vaccination has raised the new field of “systems
vaccinology”, also known as vaccinomics, aimed to understand
the biological processes involved in vaccine-induced immunity
as a holistic view (22). Systems biology-based approaches can
improve the understanding of protective immune predicting
behavior of the immune system in responses after vaccination.
Given the current gaps in host-parasite interactions and the
need for novel vaccine candidates, systems-biology could also
help to fill-up the current empties in knowledge, allowing the
discovery of potential novel targets (23) for chemoprophylaxis,
vaccine development and valuable surrogate markers (24)
as depicts Figure 1. The following section summarizes the
advances in “omics”, CRISPR/Cas9 technologies, and the latest
findings in this field of systems biology for the most relevant
apicomplexan parasites.

NEXT-GENERATION TECHNOLOGIES

Omics
Apicomplexan parasites have large genomes with complex
proteomes (25), of which most proteins remain uncharacterized
(26). One of the first sequenced apicomplexan genomes was from
P. falciparum in 2002, this has enabled a better understanding of
its lifecycle, and has highlighted that a large proportion of genes
are devoted to immune evasion and host-parasite interactions
(25). This has also provided a new starting point for future studies
focused on surveillance strategies and vaccine development.
The genome annotation of Eimeria species has revealed that
these parasites possess the most repeat-rich proteomes ever
described, as well as the presence of retrotransposons-like
elements. Analysis of Eimeria genes involved in basic biological
functions and host-parasite interaction highlights adaptations
to a relatively simple developmental lifecycle and a complex
array of co-expressed surface proteins involved in host cell
binding (27). Annotation of genomic databases can have direct
application on the identification of vaccine candidates, and in this
way, genetic fingerprinting has allowed the identification of the
immunoprotective antigens AMA1 and IMP1 in Eimeriamaxima
(28).

The transcriptome of C. parvum has revealed metabolic
features associated with environmental survival and stresses (29).
Similarly, the analysis of T. gondii transcriptome has identified
developmentally regulated genes including surface proteins (a
SAG1-related protein, SRS9, and a mucin-domain containing
protein), regulatory and metabolic enzymes (methionine
aminopeptidase, oligopeptidase, aminotransferase, and glucose-
6-phosphate dehydrogenase homologs), and a subset of genes
encoding proteins from secretory organelles (MIC1, ROP1,
ROP2, ROP4, GRA1, GRA5, and GRA8), many of which have
become important vaccine candidates (30).

Initial transcriptomic studies based on microarrays,
“expressed sequence tag” (EST) collections, “serial analysis
of gene expression” (SAGE), and massively parallel signature
sequencing (MPSS) had several limitations, such as the
restricted dynamic range and sample preparation, unable to
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FIGURE 1 | Next-generation technologies and systems biology leading to novel vaccines. Cutting-edge technologies such as comparative “omics” or

CRISPR/Cas9-based technologies allow functional characterization of genes with an hypothetical annotation. Systems biology approaches allow positive/negative

dynamic feedback in an iterative process (indicated with blue arrows), by combining the use of data generated by molecular biology and high-throughput technologies

with computational biology and mathematical modeling, have enabled the study of host immune responses and host-parasite interactions that could lead to the

discovery of novel vaccine targets. Furthermore, systems biology applied to animal or disease model holds to the discovery of host immune signatures. Finally, upon

vaccine design and experimental evaluation vaccines are evaluated under different formulations and regimens in animal/human models in controlled in vivo trials–i.e.

field or clinical -, systems-based approaches will integrate immunological, experimental and “omics” data, assessing vaccine efficacy in the specific target populations,

supporting further improvements and leading to new licensed products for apicomplexan parasites.

be simultaneously processed and analyzed for both host and
pathogen. Current RNA sequencing (RNA-seq), a breakthrough
molecular tool, can now provide the full transcript profile
(transcriptome) of cellular RNA with a large dynamic range and
improved sensitivity (31). Transcriptomic studies are widely
used for diverse purposes. For example, global transcriptome
analysis for both host and T. gondii during the establishment
of chronic infection in mice was performed by Pittman and
collaborators (2014) (32). The results demonstrated the influence
of parasite development on host gene transcription as well
as the influence of the host environment on parasite gene
transcription. Importantly, the host genes associated with the
immune response were more abundant during the chronic
infection than in the acute phase. Conversely, parasite genes that
are highly expressed in both acute and chronic infection were
involved in transcription and translation, highlighting that both
stages of the parasites can actively synthesize proteins.

Comparative transcriptomics can contribute to identifying
biomarkers of resistance to parasite infection, enabling a better
understanding of the onset of the immune response such as
was demonstrated by Bremmer and collaborators (2019) (33)
in two lines of chicken with distinct resistance or susceptibility
to E. maxima infection. They found that the timing at which
the immune response is mounted is paramount to resistance,
in particular for early induction of IFN-γ and IL-10, with
a new gene identified (IL-21) associated to resistance to E.
maxima infection.

Proteomics represents a step forward for the understanding
of the actual proteins expressed by these genomes in specific
conditions, and how well the current models can predict protein
sequence. Proteomics data can supplement genome annotation

efforts, by confirming gene models or correcting gene annotation
errors (34). In order to improve the proteomic understanding of
gene expression in these protozoa parasites, large-scale proteomic
studies have been undertaken in P. falciparum (35, 36),C. parvum
(37, 38), and T. gondii (39) as well as other studies of sub-
proteomes (40, 41). The comparative study of the proteome
of isolates of Neospora caninum exhibiting different virulence
levels led to the identification of novel immunoprophylactic
targets (42) that have been evaluated as vaccine candidates with
good results in immunoprotection (43). A recent multiplexed
proteomic study has demonstrated significant modulations in
key physiological pathways, such as lipid metabolism, cytokine
signaling, complement, and coagulation cascades in severe
malaria, providing bloodmarkers that could improvemonitoring
the disease progression (44).

In addition to proteomics (39), lipidomics analysis in
T. gondii has been addressed in the last decade, revealing
parasite-specific proteins and lipids, unraveling parasite-host
interactions (45). Recently, Kadesch and collaborators (2020)
(46) carried out a mass spectrometry imaging in Besnoitia
besnoiti and T. gondii infection in primary bovine umbilical
vein endothelial cells using atmospheric-pressure scanning
microprobe matrix-assisted laser desorption/ionization (AP-
SMALDI) mass spectrometry imaging (MSI), an emerging
technique that provides high resolution and allows analysis
of single cells, allowing a metabolomic characterization. This
study has revealed biomolecular markers of infection in both
parasites and has shown striking differences in the metabolites
during infection between both parasites, despite their closer
phylogenic relationship, related in particular to lipid classes
such as phosphatidylcholines, phosphatidylethanolamines,
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phosphatidylglycerols, cardiolipins, phosphatidic acids, and
phosphatidylinositol (46).

Clustered Regularly Interspaced Short
Palindromic Repeats/Associated Protein 9
(CRISPR/Cas9) Systems
There is a wide range of emerging tools adapted now to
many Apicomplexa that can allow the discovery of antigens
with potential interest as vaccine targets. Next-generation
technologies of gene editing such as CRISPR/Cas9 have
contributed to this issue, moving forward gene functional studies,
by knocking-out, repressing, activating, or tagging genes in
species where it was not possible before by other methods.
This has enhanced and speed-up the understanding of the
biology of these parasites, providing newly characterized genes
as potential targets for vaccine development (Figure 1). It has
revolutionized parasitology research (47), being successfully
applied to P. falciparum (48, 49) in the first place, and then to
other apicomplexan parasites (T. gondii, Plasmodium yoelii, C.
parvum, and Eimeria spp.) (19, 50–53). For C. parvum (54) step-
by-step protocols have been published, becoming an invaluable
resource for the research community. Improved CRISPR/Cas9
based technologies or the generation of knock-out libraries
in T. gondii have allowed the functional characterization of
a greater number of genes related to virulence (55), leading
to novel therapeutic targets. Recently, a CRISPR/Cas9 strategy
coupled with glycomics in T. gondii has allowed new insights
into the role of glycogens, and the discovery of novel genes
(56). Glycans are involved in many cellular functions such as
invasion, oxygen sensing, wall formation of parasite stages (cyst),
and nutrient storage; hence, this study may provide knowledge
regarding key cellular functions and also regarding virulence in
related parasites.

SYSTEMS BIOLOGY APPLIED TO
APICOMPLEXA

Systems Immunology
System biology-based approaches have been extensively applied
to studies of host-parasite interactions (23) and were recently
reviewed by Swann and collaborators (2015) (26). Systems
biology-based approaches applied to the study, analysis, and
understanding of the immune system are also known as
“systems immunology”, and has been applied to identify immune
signatures upon infection of Plasmodium sp. (57–60) and T.
gondii (61). The analysis of transcriptomic data from both,
parasite and host, has revealed some new aspects of parasite
immunology and are summarized in Table 1. A recent study
carried out using blood from people with uncomplicated P.
falciparum malaria indicated that the innate immune response,
cytokines (IL-1β, IL-6, TNF-α, and IFN-γ), and apoptosis
pathways were acutely upregulated in the group under study
with concomitant downregulation of immune-modulatory and
apoptosis inhibitory genes (58). These results are in contrast
with a previous report from Ockenhouse and collaborators
(2006) (57) that showed that genes involved in phagocytosis

and inflammation, including the cytokines TNF-α, IFN-γ,
and IL-1β were downregulated. The results and the different
interpretations that raise from the different datasets may be
affected by variations in the population under study, clinical
phenotype, and vaccine regimen. Likewise, due to the high degree
of heterogeneity between biological samples, high variability is
expected. Additionally, immune responses are affected by other
factors such as age, genetics, stress, comorbidity, that hinder
the interpretation of the immune mechanisms. Therefore, the
more data is collected the more hypothesis would arise and novel
findings and biomarkers will be generated, clarifying this issue.

Yamagishi and collaborators (2014) have performed a
transcriptomic analysis both in P. falciparum and humans to
elucidate the mechanism of host interactions. This work has
identified human and parasite genes and pathways that correlated
with various clinical data (Table 1), providing novel targets for
therapy. Furthermore, it has been identified genetic variations in
anti-malaria drug resistance-related genes as well as associated
with severe malaria symptoms (59). Another transcriptomic
analysis focused on avian malaria has revealed differences in the
sets of RNA between infected and uninfected birds (Eurasian
siskins), demonstrating shifts in response to malaria infection
(60) (Table 1).

A recent study has shown that microRNA (miRNA)
expression in pigs is altered by T. gondii. In addition, genes
related to immune responses are differently regulated when
compared to the splenocyte miRNA expression profiles during
acute and chronic toxoplasmosis (61) (Table 1).

Systems Vaccinology
Systems biology-based approaches have been applied in malaria
research in immunology and vaccine development since the
last decade. Tran and Crompton (2020) (66) have reviewed
and well-documented all the information regarding this issue.
It is important to highlight that a well stablished standard
protocols are necessary for the assessment of vaccine efficacy for
each disease to allow comparative evaluation. Studies in malaria
infections have adopted a standardized safety procedure, known
as controlled human malaria infection (CHMI) that has been
applied, among other purposes, to the fields of malaria vaccine
and drug development, supporting immunology studies (67) and
systems vaccinology approaches.

Among studies carried out on malaria in systems vaccinology,
it is interesting to mention that Vahey and collaborators (2010)
(62) have found genes of the immunoproteasome pathway
(related to the degradation of proteins for later presentation
by the Major Histocompatibility Complex) that correlate with
protection against P. falciparum infection after the third
vaccination with the licensed vaccine against human malaria
RTS,S, suggesting a potential role in mediating protection in
vaccinated people that may represent a useful surrogate marker
(Table 1). Three recent studies carried out by Van de Berg et al.
(2017) (63), Kazmin et al. (2017) (64) and Tran et al. (2019) (65)
have provided further insight into vaccine-mediated protection,
providing molecular signatures of protective immunity against
malaria (Figure 1 and Table 1). By analyzing longitudinal
peripheral blood transcriptome and immunogenicity data from
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TABLE 1 | Systems biology approaches in the field of vaccinology and immunology applied to P. falciparum and T. gondii.

Field Species Host or target

population

Disease Finding Methods Reference

Immunology P. falciparum1 Human Malaria Immune signatures: upregulation of genes

of the innate response; downregulation of

genes involved in phagocytosis and

inflammation. Differences in apoptosis

genes between symptomatics/

presymtomatics, or uncomplicated malaria

Microarray, computational

approaches

(57, 58)

Immune markers that correlates with

severity. Genetic variation associated with

severe malaria symptoms and

drug-resistance

RNA-seq, computational

approaches

(59)

Plasmodium ashfordi Birds, Mice Malaria Genes differentially expressed and different

T- cell activation with parasitemia stages

RNA-seq, gene set

enrichment analysis

(60)

T. gondii Pigs Toxoplasmosis Parasite actively regulates host genes

related to the immune responses between

acute and chronic infection

Transcriptomics, gene set

enrichment analysis

(61)

Vaccinology P. falciparum 1 RTS,S vaccinated

volunteers

Human malaria Up-regulation of genes associated

adaptive response. Possible innate genes

markers of protection

Transcriptomics, gene

enrichment analysis,

predictive modeling

(62, 63)

CSP2 vaccinated

volunteers

Human malaria Molecular signatures of protective

immunity. Differential expression of genes

of immune response, protein synthesis,

and mitochondrial processes in protected

and non–protected individuals

Gene array, predictive

modeling. RNA-seq,

module correlation

network analysis,

immunological methods

(64, 65)

1Most recent studies, for further information refer to Tran & Crompton 2019 (66).
2CSP: immunization with live sporozoites.

a clinical efficacy trial, in which healthy adults received three
RTS,S doses 4 weeks apart followed by CHMI 2 weeks later, Van
de Berg and collaborators (2017) (63) found that NF-κB and
IFN-γ pathways may induce protection in RTS,S vaccination.
On the other hand, a previous study carried out by Kazmin and
collaborators (2017) (64) has suggested thatmultiplemechanisms
can induce protective immunity against P. falciparum given that
specific antibody titers were associated with protection in the
first vaccinated group but not in the second vaccinated group,
where protection was associated with polyfunctional CD4+T cell
responses. It is interesting to highlight that in this study different
vaccine protocols were used, the first group of 21 volunteers
received three consecutive immunizations of RTS,S/AS01 (RRR
regimen), whereas in the second one the 25 volunteers received
two immunizations with RTS,S/ AS01 followed by immunization
with adenovirus 35 expressing CSP (ARR regimen).

Additionally, systems vaccinology has also been applied for
the analyses of adjuvants (68), discerning new mechanisms
of action that allow the amplification of immune responses.
Hence, systems biology would allow increasing the reduced
number of adjuvants that are currently in use for human
vaccine formulations.

DISCUSSION

Next-generation sequencing (NGS) technologies have recently
been applied to many apicomplexan parasites. NGS allow the

reading of simultaneous millions of sequences in a short period
and at a low cost per base pair. Together with multiplex
platforms (RNA-seq or gene microarrays, among others), high-
resolution techniques (such as AP-SMALDI MSI), and novel
bioinformatic approaches, the way that biological molecules are
sequenced have been revolutionized, facilitating a deeper insight
into parasite-host interactions, transmission, epidemiology, and
as a consequence novel therapeutic targets (Figure 1). Cutting-
edge technologies such as gene editing by CRISPR-Cas9 have also
allowed the discovery and functional characterization of potential
novel vaccine antigens.

The combination of “omics”, computational approaches, and
statistics opens the field of systems biology studies and offers
the possibility to integrate the complex biology of Apicomplexa
and their hosts in a holistic way. This new approach leads to
a better understanding of the mechanisms used by parasites
to avoid host immune defenses and by hosts to balance
parasite actions, leaving behind the reductionist approach, which
analyses the individual components to infer the behavior of
complex systems.

New technologies such as single-cell RNA-seq platforms
can overcome current limitations of “bulk measures” with
high heterogeneity and analytical variability (69). Whereas the
integration of other “omics” (such as proteomics, metabolomics,
lipidomics, or glycomics) can facilitate and increase the number
of systems biology-based studies, generating new knowledge in
host-parasites interactions and immunology.
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Additionally, systems biology in the context of vaccination
could provide novel insights into mechanisms of action of
vaccines and molecular signatures involved in protection
(Figure 1) to improve design and effectiveness, providing
relevant information before vaccine efficacy and safety is
assessed in clinical or field trials. These integrative approaches
are being incorporated into vaccine development research
of protozoa parasites, beyond malarial research, which
was pioneering in the field about a decade ago [recently
reviewed (66)].

Nevertheless, either vaccine candidates derived from “omics”,
computational approaches, or proteins with a validated a specific
biological function by genetic manipulation approaches, will
still require experimental validation in currently available
animal models for the different diseases, evaluating vaccine-
specific immune responses, immunoprotection, and safety. In
consequence, well-established and unified protocols for animal
models to evaluate different diseases caused by Apicomplexa
parasites are paramount. Therefore, systems vaccinology
combined with experimental validation and subsequent

evaluation in animal models can significantly improve the novel
design of vaccines against apicomplexan parasites, opening a
new era of vaccinology research that could lead to an expansion
in licensed products (Figure 1) after decades of significant but
slow advances.
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