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In Argentina, soybean frogeye leaf spot occurs sporadically. However, particularly in 

the Pampas Region, the incidence and severity of this fungal disease have significantly 

increased in the last years. In the present study, its epidemic progress was evaluated in 

six sites of the Pampas region during the 2009/2010 soybean season. Also, 

meteorological variables were calculated during the nine days previous to each field 

observation of disease occurrence for each site, using weather station and satellite data. 

Rain occurrence was obtained from the 3B42 TRMM product and temperature images 

were taken from NOAA-AVHRR. Then, logistic models were used to estimate 

probabilities of having severe or moderate to null disease. The stepwise procedure used 

to select the best model included the interaction (product) between wetness frequency 

(WF) and sum of days without precipitation (DwP) as a variable. Estimations from the 

resulting model agreed with the observed epidemiological curve for one of the sites 

studied (El Trébol, Santa Fe) during the 2010/2011 soybean season and coincided with 

the low disease presence recorded during the 2011/2012 soybean season. These new 

results could be useful as support for rational fungicide application. 
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rogeye leaf spot (FLS) is a disease caused by 

Cercospora sojina Hara. This disease is 

considered as explosive and with a high 

probability of unexpected occurrence epidemics, which 

generates great uncertainty. This fungus was firstly 

described in Japan in 1915 and then in the United States 

in 1924 (Melchers, 1925). In Brazil, this disease was 

identified by Yorinori in Paraná state in 1971 and by Reis 

and Kimati in Río Grande do Sul state in 1973 (Veiga & 

Kimati, 1974). Worldwide, average yield damage ranges 

between 10 and 50 % (Laviolette et al., 1970; Bernaux, 

1979; Mian et al., 1998). 

In Argentina, FLS was first cited in the central area of 

Córdoba province in 1983 (Giorda & Justh, 1983) and 

then found in Tucumán, Salta, Jujuy, Catamarca and 

Santiago del Estero provinces in the 1997/1998, 

1998/1999 and 1999/2000 soybean seasons (Ploper et 

al., 2000). During the following years, its occurrence was 

sporadic but its prevalence increased in other provinces 

such as Entre Ríos, Córdoba, Santa Fe and Buenos Aires. 

During the 2008/2009 soybean season, we recorded 

severe FLS attacks, mainly in Córdoba and Santa Fe 

provinces (Carmona et al., 2009) and in the 2009/2010 

soybean season, FLS prevalence, incidence and severity 

increased and expanded to relevant areas of the Pampas 

Region (Carmona et al., 2010a). Leaf incidence of 100% 

and severity oscillating between 3 and 331 spots per leaf 

were recorded at Piamonte, Las Petacas, María Susana, 

El Trébol (Santa Fe province) and at Monte Buey and 

Bengolea (Córdoba province) (Carmona et al., 2010a). 

Estimated losses caused by FLS during the 2009/2010 

soybean season were about 2000 million dollars 

(Carmona, 2011). 

FLS is mainly a leaf disease but also can develop on 

stems, pods and seeds. Infection can occur at any 

phenological stage but symptoms are usually observed 

after flowering, becoming more evident from the 

beginning-pod stage (R3 stage, Fehr & Caviness, 1977). 

Young tissues are the most vulnerable. In Argentina, 

during the 2009/2010 soybean growing season, FLS 

symptoms were found in fields planted with susceptible 

soybean varieties at vegetative growth stage and in 

voluntary plants with two or three leaves (Carmona et al., 

2010a). Sources of primary inoculum are infected seeds, 

stubble and voluntary soybean plants. Disease 

development is favored by a warm and humid 

environment, especially with temperatures between 25 

and 30-35 ºC, precipitation occurrence, dew and relative 

humidity greater than 90% (Yorinori, 1989; Mian et al., 

2008). 

Regarding FLS management, main control strategies 

include the use of tolerant or resistant cultivars, seed and 

foliage fungicide treatment and crop rotation. Use of 

resistant varieties is the prime control action. However, 

it is supposed that the existence of races could change the 

genotype reaction. In Argentina, race 11 predominates in 

Buenos Aires, Córdoba and Santa Fe provinces, whereas 

race 12 is mostly found in Santiago del Estero and Entre 

Ríos provinces (Scandani et al., 2012). Knowledge that 

resistant cultivars have the Rcs3 gene, together with the 

identification of new sources of resistance to C. sojina, 

are key factors for future disease management. In 

Argentina, resistance genes were incorporated mainly in 

long-maturity groups because FLS initially developed in 

the northwest of the country (Carmona et al., 2010a). 

Thus, varieties belonging to maturity groups VII and 

VIII are currently resistant. Approximately 50% of the 

Pampas Region is planted with maturity groups III, IV 

and V, which are mostly susceptible (Carmona et al., 

2010a). As a consequence, the only available strategy to 

avoid damages in these varieties is chemical control. 

F 
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Since 2009, FLS has become more important because of 

its severity and affected crop surface. 

Therefore, a thorough research is necessary and research 

projects that allow anticipating or minimizing the 

damage caused by FLS should be developed. An 

efficient and sustainable chemical control should be 

reached before resistant genotypes become widely 

available. Thus, it is essential to create a regional 

prediction system to operate together with chemical 

control so as to help reduce the potential crop losses.  

Prediction models are used to estimate disease 

occurrence probability for a specific site or region, based 

on different sources of variables. Many prediction 

models use meteorological variables obtained from 

weather station data. Among these variables, 

precipitation is the one with most spatial variability 

(Hubbard, 1994). Hence, regional disease predictions 

depending on precipitation as the main variable are often 

uncertain because of the lack of spatial representation 

and irregular distribution of the weather station network 

(Levizzani et al., 2002; Huffman et al., 2007). The 

spatial resolution of model inputs affects the accuracy of 

regional predictions. Those using raster precipitation 

data (satellite images) are more accurate than those using 

irregular distributed punctual measurements (weather 

station data) (Guo et al., 2004; Smith et al., 2004). An 

alternative to weather station precipitation data are 

remote sensing estimations. Remote sensing is a high-

technology and readily available tool that, among its 

numerous applications, provides precipitation estimates 

at regional scale (Fattorelli et al., 1995). Therefore, lack 

of meteorological information distributed 

homogeneously in a region is one of the main constraints 

for plant disease models that depend on meteorological 

data as inputs (Workneh et al., 2004). 

The aim of this study was to generate exploratory models 

to estimate the occurrence probabilities of binary levels 

of FLS increasing rates based on weather station and 

satellite meteorological variables. According to the 

reviewed literature, there is no available background 

related to FLS prediction. 

 Materials and Methods 

Monitoring and quantification of Frogeye Leaf Spot 

FLS severity values were recorded in susceptible 

soybean varieties at different phenological stages 

assessed according to Fehr and Caviness (1977), where 

R3 = beginning pod, R4 = full pod, R5 = beginning seed, 

R6 = full seed, R7 = beginning maturity, and R8 = full 

maturity. Measures were performed from R3 in six sites 

within the Pampas region (Santa Fe, Córdoba and 

Fig. 1 Sites within the Argentine Pampas region where frogeye 

leaf spot was recorded 

________________________________________________ 
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Buenos Aires provinces) in the 2009/2010 soybean 

season (Figure 1, Table 1). I n addition, observed data 

from one of those sites were obtained during 2010/2011. 

For data collection, 30 plants were randomly extracted 

from each field. Only central leaflets from main stems 

were counted. Severity was calculated counting average 

number of lesions (spots) per leaflet. Only spots of at 

least 2 mm were considered. The total number of spots 

(NS) was divided by the total number of leaflets sampled. 

Then, to confirm C. sojina presence, plants with lesions 

were incubated in a wet chamber at a temperature range 

of 24-27ºC and alternating 12 hours of ultraviolet light 

and darkness.  

Table 1. FLS progress (NS, DSiR) observed in soybean fields. Details of site, soybean variety, phenological stage and 

observation date. 

Site Soybean 

variety 

Observation 

Date 

(Julian day) 

Phenological 

stage 

NS* DSiR** 

El Trébol A4990 43 R3 11.40 0.76 

(Santa Fe) 50 R4 13.60 0.31 

60 R5 19.40 0.58 

67 R5,5 21.30 0.27 

75 R6 22.30 0.13 

81 R6.5 37.10 2.47 

88 R7 65.60 4.10 

Piamonte DM3700 1 R4 64.00 4.30 

(Santa Fe) 13 R5 64.00 0.00 

22 R5 148.50 16.5 

29 R5.6 236.00 12.5 

Vicuña DM4670 9 R2 5.00 0.33 

Mackenna (a) 22 R3 3,50 0.00 

(Córdoba) 29 R3 15.50 1.70 

36 R5 39.00 3.36 

Vicuña DM4670 26 R2 1.00 0.07 

Mackenna (b) 36 R3 0.80 0.00 

(Córdoba) 43 R4 3.50 0.39 

50 R5 7.40 0.56 

57 R5.2 15.60 1.17 

71 R5.8 93.50 5.56 

77 R6 136.20 7.12 

Pergamino NA4613 75 R4 5.10 0.34 

(Buenos Aires) 85 R5.3 6.70 0.16 

97 R6 11.20 0.38 

General A4970 24 R3 4.00 0.27 

Villegas (a) 32 R4 10.00 0.75 

(Buenos Aires) 59 R5 25.00 0.56 

General 5009 24 R2 2.00 0.13 

Villegas (b) 59 R5 22.00 1.54 

(Buenos Aires) 69 R6 24.00 0.20 

Alta Gracia A4613 29 R3 3.60 0.24 

(Córdoba) 42 R4 7.80 0.32 

77 R6 62.00 1.55 
* Number of spots: average of observed values in the lower and upper crop canopy.

** Daily spot increase rate: results from subtracting the NS observed at time t respect the NS observed at time t-1, divided by day interval 

between both consecutive dates. The first DsiR value for each site-soybean variety analyzed was calculated dividing the corresponding NS 

value by 15 days. 

______________________________________________________________________________________________ 
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For further analysis, observed data were expressed as 

daily spot increase rate (DSiR; N=34). DSiR results from 

dividing the difference between the NS observed at time 

t respect the NS at t-1 by the day-interval between these 

two consecutive observation dates. The first DsiR value 

for each site-soybean variety analyzed was calculated 

dividing the corresponding NS value by 15 days. Table 

1 shows the site, soybean variety, phenological stage, NS 

and DSiR for each observation date. 

Meteorological input data 

Maximum and Minimum Temperature 

Daily maximum (XT) and minimum (MT) temperature 

data were obtained from 29 weather stations from the 

National Institute of Agricultural Technology (INTA) 

and National Meteorological Service (SMN) for the 

period b etween December 2009 and April 2010. These 

data were taken to 25-Km grids in all the study area 

based on a climatic temperature zoning of the region that 

was done using NOAA-AVHRR (advanced very high 

resolution radiometer) images that take land surface 

temperature information during clear sky days. Satellite 

overpasses coincident with the occurrence of XT and MT 

were taken from a five-year period (2004-2008). A semi-

supervised classification was run over those images. This 

consists of a mixed technique that uses validation data 

for classification (supervised) and statistical methods 

(ISODATA) for class selection (unsupervised). Thus, 

homogeneous temperature areas within the study region 

were obtained. These areas served for grouping weather 

stations and then assigning a temperature value to each 

25-Km pixel according to its closeness but within the 

same homogeneous area. This allowed giving spatial 

distribution to temperature data using the own 

temperature behavior rather than statistical interpolation 

methods. This method was also applied previously 

(Sepulcri, 2010). 

Relative Humidity 

Daily Relative Humidity (RH) data were obtained from 

the 29 weather stations cited above. Mean daily values 

(average of the three observations made at 9, 15 and 21 

h) corresponding to the period between December 2009

and April 2010 were used. These values were taken to 

25-Km grids through Krigging interpolation (Burgess 

and Webster 1980), which allowed obtaining daily RH 

matrixes for the whole study area. 

Precipitation 

Precipitation (PR) occurrence data were obtained from 

product 3B42 (Huffman et al. 2007) available from 

TRMM (Tropical Rainfall Measurement Mission), 

which provides three-hourly precipitation estimates 

(mm) at 25 Km of spatial resolution. These images were

obtained for December 2009-April 2010 and December 

2010-April 2011 and for the Pampas Region. Eight 

images per day were integrated from 9 am of a day to 9 

am of the following day according to the SMN 

observation protocol. PR occurrence was defined for 

those cases where it exceeded the 0.8 mm threshold, 

giving a value of 1. Values below 0.8 mm were assigned 

a value of 0. It is worth mentioning that we have 

previously validated this product with weather station 

data from the Pampas Region (Sepulcri et al., 2009) and 

obtained 85% of agreement between satellite and station 

data. 

Logistic model development 

Logistic regression is the most common method used to 

model binary or categorical response data (Agresti, 

2002). These types of models are useful to predict events 

and several authors have used them for disease prediction 

(De Wolf et al., 2002; Moschini et al., 2006; Carmona et 

al., 2010b). This method adjusts non-linear regression 
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models for binary response data by the maximum 

likelihood method. Functions like Logit establish a link 

between a stochastic component and meteorological 

regression variables. 

In the present study, the dependent variable was defined 

as the probability of having severe or moderate to null 

levels of DSiR of FLS, either above or below a certain 

threshold. To define that threshold, a statistical criterion 

was considered based on the median or 50% percentile 

value. For our dataset, the median value was: DSiR = 

0.475. Therefore, observations with DSiR greater than or 

equal to 0.475 were considered as severe (Sev) and those 

below that threshold were moderate to null (Mod). 

Besides, independent meteorological variables were 

calculated from daily XT, MT, RH and PR values, over 

the nine-day periods prior to each DSiR observation. The 

period length was also defined by statistical criteria 

(maximizing the non-parametric Kendall Tau-b 

correlation coefficient, Sprent & Smeeton, 2001) but 

considering that leaf lesions do not appear until 7 to 14 

days after host tissue invasion (Mian et al., 2009). The 

meteorological variables analyzed are detailed in Table 

2. 

Finally, logistic regression models were run using SAS 

Logistic procedure (Proc LOGISTIC SAS 1994), which 

fits models for binary response data by the maximum 

likelihood method. The probability of having a severe 

outbreak (SevPr) implies exceeding the 0.475 threshold 

of DSiR. A logit function provides the link function 

between the stochastic component and meteorological 

variables. The logistic model output is a probable DSiR 

value that can be severe (SevPr) or moderate to null 

(ModPr). The relationship can be written as:  

ln(SevPr / 1-SevPr)= β0 + β1 X1 

where X1 is a weather predictor and β0 and β1 are 

parameter estimators. SevPr is obtained by solving: 

1 / (1+Exp -(ln(SevPr/1-SevPr)) 

The probability of having a moderate to null epidemic 

(ModPr) results from subtracting SevPr to 1. For final 

model assessment, the critical Pc value (probability value 

to classify a case as severe that provides the most 

accurate prediction) was taken into consideration. The 

stepwise logistic regression procedure was run with all 

meteorological variables and then the most appropriate 

model was selected. The significant levels to enter and 

stay in the model were specified as 0.05. 

Table 2. Description of meteorological variables 

Variable Description 

DwP Days without precipitation (PR < 0.8 mm) 

PW 

Precipitation wetness (days with 

simultaneously occurrence of PR ≥ 0.8 mm 

and RH>83%, within a temperature range of 

MT > 15ºC and XT < 30ºC) 

DW 

Dew wetness (days without precipitation (PR 

< 0.8 mm) and RH > 85%, within a 

temperature range of MT > 15ºC and XT < 

30ºC) 

WF Wetness frequency (sum of PW + DW) 

DRHT 

AcPR 

Days with simultaneous occurrence of RH > 

83% and temperature ranging between MT > 

15ºC and XT < 30ºC) 

Accumulated PR (mm) 

mXT 

mMT 

Mean maximum temperature (ºC) 

Mean minimum temperature (ºC) 

It1 WF * DwP 

It2 DRHT * DwP 
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Comparisons between model outputs and field data 

Predictions resulted from the selected logistic model 

were compared with FLS observations obtained from a 

soybean field located at El Trébol (Santa Fe province) 

during 2010/2011. Weather data used for model running 

were PR occurrence obtained from TRMM 3B42 product 

and daily XT, MT and RH values recorded at Marcos 

Juarez INTA weather station (Córdoba province), 

located 70 km southwest from the observation site. Also, 

during the 2011/2012 soybean season, the same model 

was run using all data from Marcos Juarez INTA weather 

station. During this last season, no severe epidemics were 

reported in the area. Hence, we evaluated whether the 

model estimates followed the same observed trend. 

It is important to mention that the observed data were 

poor because FLS was either hardly or broadly expressed 

during the 2008/2009 and 2009/2010 soybean seasons 

respectively. However, no new observations of severe 

FLS were later recorded at the sites where it was most 

frequently observed. 

Annual values of the main independent variables were 

calculated for the summer period (45 days, 

approximately) in which phenological stages R3 and R5 

are concentrated. For the study area's latitude, this period 

comprises from January 20th to March 6th. For this, a 42-

year (1971-2012) time series of daily XT, MT, RH and 

PR from Mar cos Juárez INTA weather station was used. 

Percentile values 25%, 50%, 75% and 90% were 

contrasted with model variable values obtained during 

the summer periods of 2010, 2011 and 2012. 

Results 

Monitoring and quantification of Frogeye Leaf Spot 

The monitoring method proposed was very useful to 

quantify FLS severity. NS ranged from 1 to 236 

according to the growing stage and soybean variety 

(Table 1). Maximum NS values corresponded to the 

varieties DM 3700 and DM 4670, which are susceptible 

to FLS (Carmona et al., 2010a). Also, incubation of plant 

material with lesions confirmed the presence of the 

pathogen. 

Fig 2. Number of days of a. WF and b. WF * DwP (It1) during summer (46 days) recorded at Marcos Juárez weather station. 

Dark bars: historical percentiles (1971-2012 series). Clear bars: summer period values (2010, 2011 and 2012). WF: wetness 

frequency. DwP: days without precipitation. 

______________________________________________________________________________________________ 
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Meteorological variables and logistic model 

development 

Meteorological variables were calculated during nine-

day periods prior to each DSiR observation. The most 

significant variables were wetness frequency (WF), 

which simulates dew-induced (DW) and precipitation-

induced (PW) WF within a favorable daily temperature 

range, and It1, which results from the product of days 

without precipitation (DwP) and WF. Kendall’s 

correlation coefficients of these two variables with DSiR 

values were 0.51 and 0.54 respectively. Also, WF and It1 

were calculated for 46-day periods from January 20th to 

March 6th for 42-year (1971-2012) time series and for 

each study year (2010, 2011 and 2012) using Marcos 

Juárez weather station data. During summer 2010, both 

WF and It1 showed the third highest values (9 for WF 

and 288 for It1) in 42 years, exceeding the 90% 

percentile (Figure 2). In 2011 and 2012, those variables 

showed lower values (4 for WF and 156 for It1 and 1 for 

WF and 33 for It1, respectively). The values of these 

weather variables coincided with FLS observed data for 

those seasons, which that were mostly severe during 

2010, moderate to null in 2011 and with no disease 

reports during 2012. Simple variables that were only 

related to PR occurrence (accumulated PR and DwP) had 

weak correlation coefficients with FLS occurrence and 

severity. 

The stepwise logistic regression run with all 

meteorological variables selected model I as the most 

appropriate (Table 3), with a Pc value of 0.51 and It1 as 

the selected variable. It1 combines by multiplication WF 

(days) with DwP. This model correctly classified 79.4% 

of DSiR observations (27 out of 34 cases). Model I was 

selected for having the best performance and being the 

most simplified. Bivariate models that integrated the 

variable mXT with It1 or It2 showed not enough 

influence on disease response. Figure 3 shows the results 

of model I, the independent variable evolution during the 

period analyzed and observed data in El Trébol (Santa Fe 

province), during the 2009/10 soybean season.  

Comparisons between model outputs and field data 

Estimates obtained from the selected model (I) run with 

2011 and 2012 summer periods meteorological data were 

Table 3. Resulting model based on meteorological variables to estimate probabilities of having severe or 

moderate to null DSiR 

______________________________________________________________________________________________ 

Model* Parameter Estimator Standard 

Error 

Probab > χ2 Pc** 

I Intercept 

It1 

- 1.5752

0.2297 

0.65 

0.08 

0.015 

0.006 

0.51 

______________________________________________________________________________________________ 

* It1= WF * DwP, being WF: wetness frequency (sum of PW + DW) and DwP: days without precipitation (PR < 0.8 mm).

PW: Precipitation wetness (days with simultaneously occurrence of PR ≥ 0.8 mm and RH>83%, within a temperature range 

of MT > 15ºC and XT < 30ºC). DW: Dew wetness (days without precipitation (PR < 0.8 mm) and RH > 85%, within a 

temperature range of MT > 15ºC and XT < 30ºC) 

** Pc: critical predicted probability value to classify a case as severe that provides the most accurate prediction 

______________________________________________________________________________________________ 
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Fig 3. Evolution of severe FLS occurrence probability expressed as DSiR estimated from model I (Table 3), 

independent variable It1 (WF*DwP) and observed FLS data during the 2009/2010 soybean season in El Trébol 

(Santa Fe province). DSiR: daily spot increase rate. WF: wetness frequency. DwP: days without precipitation. 

Fig 4. Evolution of severe FLS occurrence probability expressed as DSiR estimated from model I, independent 

variable It1 (WF*DwP) and observed data during the 2010/2011 soybean season in El Trébol (Santa Fe 

province). DSiR: daily spot increase rate. WF: wetness frequency. DwP: days without precipitation.  

Fig 5. Evolution of severe FLS occurrence probability expressed as DSiR estimated from model I and 

independent variable It1 (WF*DwP) during the 2011/2012 soybean season in El Trébol (Santa Fe province). 

DSiR: daily spot increase rate. WF: wetness frequency. DwP: days without precipitation. 
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contrasted with FLS DSiR observations derived from a 

soybean field situated at El Trébol (Santa Fe province). 

These results were plotted together with the independent 

variable throughout the period analyzed. In 2011, 

predictions of model I followed DSiR observed trend 

with a slight trend towards overestimation in a 10-day 

period within the timeline analyzed (Figure 4). In 2012, 

the meteorological conditions were not favorable for 

disease development (Figure 5). Hence, there were only 

mild to null FLS reports, which coincides with model I 

estimates, which gave no severe alarms in all the period 

analyzed. These results could be some kind of first 

validation for this model which is in exploratory phase. 

Discussion 

 During the 2009/2010 growing season, soybean FLS 

was widely expressed in all the Pampas Region, 

especially over the most susceptible genotypes such as 

variety DM 3700, which showed the maximum number 

of observed lesions at Piamonte. Particularly, this field 

was not harvested because losses and damages were so 

high that the harvesting cost and poor quality of grains 

did not outweigh such work. 

Among the meteorological variables identified, WF had 

a direct relation with the binary response variable. This 

weather variable estimates wetness duration (total wet 

days) by considering high RH for days without rain or 

combining high RH with PR occurrence, both within a 

favorable daily temperature range. Conversely, variables 

related only to PR (millimeters or PR occurrence) 

reached very weak or negative correlation coefficients 

with disease observations. Hence, WF seems to have 

greater incidence on disease development than PR 

occurrence. Also, it is worth considering that C. sojina 

does not need rain for dispersion. Wind can spread dry 

and free conidia to neighboring areas. Then, conidia 

require WF for germination and tissue penetration, as 

observed in other Cercospora species (Lartey et al., 

2010). This is probably why rain as simple variable did 

not reach high correlation coefficients with FLS 

occurrence, in contrast to that observed in other diseases 

such as those caused by Glomerella glycines, 

Colletotrichum truncatum, Septoria glycines, and 

Phomopsis sojae. 

It1, which resulted from the product between WF and 

DwP, calculated for nine-day periods before symptoms 

manifestation, reached the highest correlation value with 

DSiR observations. This result allows us to associate 

days without rain with greater sunlight duration, which 

is favorable for sporulation. This is consistent with that 

found by Veiga and Kimati (1974), who stated that long 

sunlight duration and alternation of night darkness are 

related to greater C. sojina sporulation. Hence, It1 and 

WF could simplify the meteorological conditions 

observed during the 2009/2010 soybean growing season 

that favored the occurrence of a severe FLS attack. Both 

variables exceeded the 90% percentile of the 42-year 

time series in Marcos Juárez (Córdoba province). 

Extreme values recorded for the main independent 

variables during this growing season could justify the 

sporadic nature of this disease. 

The fact that variables were processed within nine-day 

periods prior to each DSiR observation could help in 

future disease prevention and management, planning in 

advance a monitoring and/or timely chemical control. 

Since this procedure could be performed daily starting 

from the last vegetative soybean stages, it is expected to 

help in planning monitoring and giving risk alarms. 

Although a recommendation based on economic damage 

threshold for susceptible varieties already exists 
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(Carmona, 2011; Carmona et al., 2010a), results 

obtained in this study could improve chemical control 

decisions and allow obtaining a better economic and 

sustainable performance. 

In addition, it should be emphasized that this work 

included remote sensing meteorological data to estimate 

PR occurrence and temperature. The aim is to establish 

some kind of regional alarm system which allows having 

an accurate FLS risk assessment in each site and thus 

improve management efficiency. This method has been 

previously proposed and applied to estimate wheat 

Fusarium head blight spatial distribution (Sepulcri, 

2010). The main advantages resulting from precipitation 

remote sensing estimates were better spatial coverage 

and no need of data interpolation for sites where 

meteorological weather stations were not available. The 

main disadvantage observed from using this kind of data 

was the uncertainty about the real precision of datasets 

and its relation with conventional weather station 

measurements (Workneh et al., 2004). 

Another aspect to consider is the inoculum availability 

associated with its winter survival. According to this, we 

proposed to analyze winter temperature conditions 

previous to each summer season. In this case, we 

analyzed the 2009, 2010 and 2011 winter seasons and 

then compared them to winter temperature time series 

(1971-2011) for Marcos Juárez (Córdoba province). The 

2009 winter period was characterized by having the 

highest mean maximum temperature, compared with the 

41 seasons analyzed (Figure 6). We believe that this 

higher than normal temperature favored winter survival 

in stubble and thus the occurrence of such a severe attack 

during the 2009/2010 soybean crop season. During 2010 

and 2011, winter conditions were close to normal and 

hence no severe attacks were recorded.  

Finally, the results obtained in this work could provide 

useful information at regional level that would help, in 

conjunction with other tools, to generate risk alarms and 

create an efficient monitoring system and a sustainable 

disease chemical control. 
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