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Abstract: Generating genomics-driven knowledge opens a way to accelerate the resistance breeding
process by family or population mapping and genomic selection. Important prerequisites are large
populations that are genomically analyzed by medium- to high-density marker arrays and extensive
phenotyping across locations and years of the same populations. The latter is important to train a
genomic model that is used to predict genomic estimated breeding values of phenotypically untested
genotypes. After reviewing the specific features of quantitative resistances and the basic genomic
techniques, the possibilities for genomics-assisted breeding are evaluated for six pathosystems with
hemi-biotrophic fungi: Small-grain cereals/Fusarium head blight (FHB), wheat/Septoria tritici blotch
(STB) and Septoria nodorum blotch (SNB), maize/Gibberella ear rot (GER) and Fusarium ear rot (FER),
maize/Northern corn leaf blight (NCLB). Typically, all quantitative disease resistances are caused by
hundreds of QTL scattered across the whole genome, but often available in hotspots as exemplified for
NCLB resistance in maize. Because all crops are suffering from many diseases, multi-disease resistance
(MDR) is an attractive aim that can be selected by specific MDR QTL. Finally, the integration of
genomic data in the breeding process for introgression of genetic resources and for the improvement
within elite materials is discussed.

Keywords: resistance breeding; small-grain cereals/ Fusarium head blight; wheat/Septoria tritici blotch;
wheat/Septoria nodorum blotch; maize/Gibberella and Fusarium ear rot; maize/Northern corn leaf blight;
multi-disease resistance (MDR); genetic resources

1. Introduction

Plant breeding aims to develop new cultivars with superior performance in terms of grain yield,
disease resistance and grain quality. Per crop, about 10 to 30 individual traits have to be considered
in a multi-step procedure where different traits are selected in different generations, starting with
one-row plots in early generations and ending with large-drilled plots (5–10 m2) in late generations.
Selection starts with a plethora of 100,000s of genotypes and should end with 1–5 successful candidates
per year. This procedure takes 6–12 years depending on the crop and is therefore tedious and
capital-intensive. Therefore, each possibility to speed up this process and to get a more targeted
outcome would be highly appreciated. Besides gene transfer and genome editing, genomics could
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play a prominent role in future plant breeding processes. In contrast to genetics, genomics aims at the
collective characterization of all genes/genomic segments and their interaction that are responsible for
a quantitative disease resistance (QDR) phenotype. This became possible by developing high-density
marker chips based on full-genome sequencing that has made tremendous progress in the last decade
and is now available for most crops at reasonable cost.

Disease resistance has been dichotomically classified in qualitative and quantitative resistances.
Qualitative resistance is based on individual resistance (R) genes mainly encoding R proteins that interact
with pathogen-specific effectors triggering a complete defensive response called effector-triggered immunity
(ETI), while the molecular basis of QDR is poorly understood. Hypotheses include regulation of morphology
and developmental traits, basal defense, production of anti-fungal compounds, defense signal transduction,
weak ETI triggered by “defeated” R proteins, or unidentified mechanisms [1]. The evidence suggests
that probably all these mechanisms can lead to QDR, but also that the division between qualitative and
qualitative resistance seems to be not so contrasting as was proposed historically.

In this review, we will concentrate on QDR of the four small-grain winter crops rye (Secale cereale L.),
triticale (×Triticosecale Wittm.), durum wheat (Triticum turgidum ssp. durum), bread wheat (T. aestivum
ssp. aestivum), and of maize (Zea mays L.). These crops provide more than half of the global caloric
intake [2]. Caused by the world-wide growth of human population, the consumption of cereals
between 2019 and 2028 is expected to increase at 1.2% per year, with increasing demand in Asia and
Africa [3]. The production of cereals also provides employment for millions of people throughout the
world. The most important factors restricting further yield improvements are abiotic stress factors
and pests with the latter causing a yield loss of approximately 30–40% on a world-wide basis with
a large range from 5–90% depending on the disease and the region [4,5]. Without the application of
chemical plant protection, the worldwide loss could rise, on average, to 50–75% depending on the
crop [4]. From the side of diseases, we will concentrate on six hemi-biotrophic fungal diseases that
are the most pertinent threat in temperate regions, among them are some of the most important plant
pathogens worldwide: Small-grain cereals/Fusarium head blight (FHB), wheat/Septoria tritici blotch
(STB), and wheat/Septoria nodorum blotch (SNB), maize/Gibberella ear rot (GER) and Fusarium ear rot
(FER), maize/Northern corn leaf blight (NCLB). The papers reviewed here should provide a wider
view on QDR by analyzing large numbers of genotypes with a full-genome coverage concentrating on
the last five years where the most dramatic progress was made.

2. Genetics of Quantitative Disease Resistance (QDR)

Quantitative disease resistances (QDR) are called quantitative because they are distributed in
segregating generations in a quantitative manner [6,7]. They are typically caused by many genes with
moderate to small effects that are highly affected by environment, plant organ, and plant developmental
stage. Since the advent of genomics, we know that QDR to most pathogens is caused by hundreds
of quantitative trait loci (QTLs) that are distributed across the whole genome. QDR results from
a restriction in the growth or development of the pathogen imposed by the host, and theoretically
it should be measured by determining the amount of pathogen in the host tissues [8]. In practice,
this is not feasible for large populations and typically, QDR is determined in multi-environmental
field trials by visual symptom rating with the inclusion of standard varieties of known resistance
level. Each genotype that is performing significantly better than a susceptible standard is called
‘quantitatively resistant’. The degree of QDR can vary from very small to nearly full resistance.
Therefore, quantitative scales of disease assessment, which are good estimators of the pathogen
development, are inevitable. This could be a simple 1 to 9 scale as preferred by plant breeders
to a 0–100% scale that allows a finer resolution. Depending on the growth stage, the same plant
genotype can have different QDR to the same pathogen species. This is notorious for Fusarium diseases
that can affect practically all cereal stages and organs, but the correlations among the respective
QDR are always poor illustrating that different sets of genes are responsible where most (but not
all) are stage specific. Most important is the adult-plant resistance. Typically, QTLs are providing
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a non-race specific resistance that is effective against all genotypes of a pathogen or even against
different pathogens (multi-disease resistance, MDR). The molecular basis of QDR is poorly understood,
mainly because it is a multi-facetted defense system that involves hundreds of (unspecific) cellular
processes, like cell-wall thickening (lignin, callose, glycoproteins), phytoalexins, reactive oxygen
species (ROS), pathogenesis-related (PR) proteins (chitinases, glucanases), inhibitors of fungal enzymes,
detoxification of mycotoxins, lack of/different toxin receptors [9]. Although some of these pathways
are also used by monogenic, qualitative resistance genes, QDR typically does not comply a complete
resistance and shows no symptoms of hypersensitivity. This led to the hypothesis that QDR genes are
defeated qualitative genes that have retained some resistance activity [10]. Although this might apply
for some specific examples, it cannot explain the plethora of hundreds of QDR genes detected per
pathosystem [11]. Because of the complex inheritance and their non-race specifity, QDR is thought to be
of higher durability than qualitative disease resistances that are notorious for being overcome by single
mutations in the pathogen population. Although it is impossible to prove durability experimentally
before the release of cultivars, there are examples where QDR holds for many years [12].

QDR must be strictly separated from a few so-called pleiotropic APR genes that provide in
wheat a non-hypersensitive adult-plant resistance against all races of multiple pathogens, because they
are clearly monogenically inherited as shown by recent gene cloning, like Lr34/Yr18/Sr57/Pm38 [13] or
Lr67/Yr46/Sr55/Pm39 [14]. Typically, they are not providing a complete resistance, but display a partially
resistant phenotype, thus resembling QDR.

3. Basic Techniques for Genomics-Assisted Breeding

Genomics include several techniques that are all based on marker assays of varying density or sequence
data but the methods are highly different from their genetic requirements and biometrical foundations
(Figure 1). It all started in the 1980s with QTL mapping by the analysis of bi-parental populations with a
density of about 100 markers. Starting with a F1 plant, either higher selfing generations or double-haploid
(DH) libraries are produced without any selection to map segregating QTLs.

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 3 of 22 

 

because it is a multi-facetted defense system that involves hundreds of (unspecific) cellular processes, 
like cell-wall thickening (lignin, callose, glycoproteins), phytoalexins, reactive oxygen species (ROS), 
pathogenesis-related (PR) proteins (chitinases, glucanases), inhibitors of fungal enzymes, 
detoxification of mycotoxins, lack of/different toxin receptors [9]. Although some of these pathways 
are also used by monogenic, qualitative resistance genes, QDR typically does not comply a complete 
resistance and shows no symptoms of hypersensitivity. This led to the hypothesis that QDR genes 
are defeated qualitative genes that have retained some resistance activity [10]. Although this might 
apply for some specific examples, it cannot explain the plethora of hundreds of QDR genes detected 
per pathosystem [11]. Because of the complex inheritance and their non-race specifity, QDR is 
thought to be of higher durability than qualitative disease resistances that are notorious for being 
overcome by single mutations in the pathogen population. Although it is impossible to prove 
durability experimentally before the release of cultivars, there are examples where QDR holds for 
many years [12]. 

QDR must be strictly separated from a few so-called pleiotropic APR genes that provide in 
wheat a non-hypersensitive adult-plant resistance against all races of multiple pathogens, because 
they are clearly monogenically inherited as shown by recent gene cloning, like Lr34/Yr18/Sr57/Pm38 
[13] or Lr67/Yr46/Sr55/Pm39 [14]. Typically, they are not providing a complete resistance, but display 
a partially resistant phenotype, thus resembling QDR. 

3. Basic Techniques for Genomics-Assisted Breeding 

Genomics include several techniques that are all based on marker assays of varying density or 
sequence data but the methods are highly different from their genetic requirements and biometrical 
foundations (Figure 1). It all started in the 1980s with QTL mapping by the analysis of bi-parental 
populations with a density of about 100 markers. Starting with a F1 plant, either higher selfing 
generations or double-haploid (DH) libraries are produced without any selection to map segregating 
QTLs.  

Figure 1. Techniques for genomics-assisted breeding (based on an idea of Bohra et al. [15], adapted). 
SSR = Single sequence repeat, DArT = Diversity Array technique, SNP = Single nucleotide 
polymorphism, NGS = Next-generation sequencing, QTL = quantitative trait locus, GWAS = genome-
wide association studies, MAS = Marker-assisted selection, MABC = Marker-assisted backcrossing, 
MARS = Marker-assisted recurrent selection, GS = Genomic selection. 

Figure 1. Techniques for genomics-assisted breeding (based on an idea of Bohra et al. [15],
adapted). SSR = Single sequence repeat, DArT = Diversity Array technique, SNP = Single
nucleotide polymorphism, NGS = Next-generation sequencing, QTL = quantitative trait locus,
GWAS = genome-wide association studies, MAS = Marker-assisted selection, MABC = Marker-assisted
backcrossing, MARS = Marker-assisted recurrent selection, GS = Genomic selection.
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The precision of QTL mapping is mainly governed by the heritability of the trait, the population
size, and the marker density. QTL mapping is stroke by a high bias that (1) regularly overestimates
the QTL effect by about 50% and (2) does not allow to pinpoint the locus to a small chromosomal
segment [16]. A more recent advantage is the use of multi-parental populations that overcome the
problem that only two parental alleles can be analyzed in a specific background. From the definition,
at least one parent should connect the crosses [17,18]. This is also more convenient for breeding
purposes where many crosses are made, but usually only with small population sizes.

Nowadays the problem of marker density is solved by low-cost medium- to high-density marker
assays for all cereals providing 5000 (rye) to 600,000 (maize, rye) markers in one run. This allowed in
2005 the first genome-wide association study (GWAS) for disease resistances in Arabidopsis [19] and
later in all important crops. GWAS is based on diversity panels and takes advantage from historic
recombination events. Thus, much more accessions are screened with the possibility to identify new
alleles not represented in parents of bi-parental mapping populations [20]. The outcome of a GWAS is
mainly dependent on population size, but also on the crop- and genome-specific linkage disequilibrium
(LD) between marker and phenotype. As a rule of thumb, the marker density must be higher the faster
the LD decays. Consequently, a fast decay of LD allows a much more precise localization of the QTLs
than QTL mapping when marker density is sufficiently high. QTLs with non-additive genetic effects
or QTLs with rare alleles could, however, not be detected by routine GWAS.

QTL mapping and GWAS result in the detection of QTLs that can be used either directly for
marker-assisted selection (MAS) or marker-assisted backcrossing (MABC), when the effects are high
enough and reproducible in unrelated populations or for marker-assisted recurrent selection (MARS)
when the effects are only small. The latter has been shown to be successful for resistance to Fusarium
crown rot caused by Fusarium pseudograminearum that has a quantitative, complex inheritance [21].

Due to the availability of large genomic resources for grass model plants, for example rice,
Brachypodium, candidate genes can be predicted from QTLs and further functionally analyzed.
Possible candidate genes can be deduced by searching sequence data bases when the confidence
intervals of the QTLs are small enough, i.e., the study should be done with large populations,
high marker density and a high precision of phenotyping. With cloned genes, allele mining in large
breeding populations or gene banks is possible to detect alternative alleles that might provide a lower
host specificity or higher expression level. Allele mining is also useful to enhance allele diversity and
to extend possibly the durability of these genes. For QDR, however, the postulation of candidate genes
is still highly speculative in most cases.

The landmark paper of Meuwissen et al. [22] opened the avenue for genomic selection (GS) in
animal breeding, that was later adjusted also for plant breeding purposes [23]. Based on high-density
marker assays, the whole genome is scanned for effects on the investigated traits and further used
to estimate the genomic breeding value of individuals to be selected. Once the marker effects are
estimated in a large training set that is used to train GS models (= training set), non-tested genotypes
(= validation set) can be predicted and selected based on of their genome composition. This strategy
reduces large-scale phenotyping and enhances selection gains [24,25] and is especially valuable when
the trait is mainly controlled by a multitude of additive alleles with small effects [26]. A major
requirement for GS is a high genetic relationship between training and validation population that
makes it necessary to repeat the model training after each introgression of non-related material.
In many scientific papers, no real selection occurs, but predictions of the potential outcome are made
(= genomic prediction, GP). Factors, limitations and prospects of GS for quantitative traits have
been extensively reviewed (Table 1) [24–27]. The main criterion for the quality of a prediction is
the prediction ability, i.e., the correlation between the genomically predicted and the phenotypically
estimated trait values. When the prediction ability is divided by the square root of the heritability,
this is called prediction accuracy.
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Table 1. Main advantages and pitfalls1 for GS in science and breeding.

Advantages Pitfalls 1

No special population structure or segregating
generations necessary

Same environments for testing training and
validation sets

Usage of the full genome for trait association
including small QTLs that might not surpass the

significance level in mapping

Creating training and validation set from the same
base population or having a high degree of

relatedness between both sets

GS data can directly be used for selection without
phenotyping

Inclusion of non-related populations can cause severe
changes in allele frequencies

1 leading to an incorrect estimation of prediction accuracies (over-/underestimation).

All genomic methods require extensive phenotyping with high precision because this is the
basis for estimating exact marker effects. This affords the analysis of large populations over several
locations and years that should reflect the future target environments. This is also the only way for
identifying environmentally stable QTLs that are the core element in applied breeding programs [28].
Phenotypic evaluations for QDR are usually assessed in the field in adult-plant stage and should include
artificial inoculation to ensure high disease pressure and uniform disease distribution in the experiment.
Inoculation methods should be feasible for analyzing large populations and can only be dispensed when
the environments regularly allow a high disease severity. High-throughput phenotyping, for example
by image analysis, offers a future perspective to improve trait assessment in quantitative resistances
and could make it faster and more accurate [29].

A problem of most genomic studies is an overestimation of prediction accuracy due to various
reasons (Table 1). Often, the cross-validation of genotypes is evaluated within the same environments
(locations, years). Or the detected QTLs were not validated either in independent genetic materials or at
least in an independent fraction of the genetic materials where they have been detected, e.g., in backcross
generations or by independently resampling the original populations [16]. Overestimation is also given
when a high degree of relatedness between validation and training sets occurs. In many papers 80% of a
given data set is taken as training set and used to fit a GS model to predict the remaining 20% of the same
data set as validation set. This sort of cross-validation is repeated several hundred times with randomly
varying combinations of training and validation sets. However, this procedure does not reflect real
breeding programs where a lot of new crosses of mostly small size are handled every year [28,30].
Prediction accuracies for FHB resistance in wheat, for example, dropped from a range of 0.34 to 0.63
for predictions within small bi-parental families to values from −0.31 to 0.53 for predictions across
bi-parental families [31]. However, in practical breeding, individuals of the training and validation sets
are mostly evaluated in different trials or environments, and very often disease symptoms are scored
by different people. In this case, prediction accuracies may be lower than what has been reported
in literature. Efforts must be made to optimize GS in applied breeding by constantly updating the
training set when new phenotypes and marker data are available [32]. A comprehensive discussion
on the different factors affecting prediction accuracy is available [33]. Thus, verification of QTLs is
essential before integrating them into practical breeding programs. Techniques like Kompetitive Allele
Specific PCR (KASP) or Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) are available to
validate the major effect SNPs before they are incorporated into breeding populations.

4. Advantages and Challenges in Genomics of Quantitative Pathosystems

4.1. Fusarium Head Blight in Small-Grain Cereals

Fusarium head blight (FHB) is caused by Fusarium graminearum as the most frequently occurring
fungus worldwide, but in Europe F. culmorum, F. avenaceum, F. poae and others can also cause similar
symptoms. The disease not only results in yield and quality reduction, but also in contamination of
the harvest with mycotoxins that are harmful to humans and livestock, especially swine. FHB affects
all small-grain cereals with the most susceptible being durum and bread wheat, followed by triticale
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and rye [34]. Also, barley and oats can be infected, however, the symptoms are not so easy to follow
due to the different architecture of the head or panicle. Studies with artificial infection showed high
positive genotypic correlations between FHB severity and Fusarium mycotoxin contaminations in
maize [35], wheat and rye, but not in triticale [36]. The genetic architecture of FHB resistance is
complex, affected by multiple loci, the environment and strong genotype × environment interactions
(G × E) [36,37]. This limits the success from conventional breeding.

Wheat resistance to FHB is one of the most analyzed pathosystems worldwide. In bread and
durum wheat, >550 QTLs have been described in the literature [38] that could be attributed to 65
so-called meta-QTL, i.e., QTL that were detected in several studies at the same locus (so called
“hot spots”). Only one meta-QTL on chromosome 3B was so refined that it could be used for detecting
candidate genes. Ten candidate genes for FHB resistance were found that were differentially expressed
in a resistant cultivar [38]. Two genes were encoding proteins already known to be important for
resistance (glycosyltransferase, Cytochrome P450), three were newly detected without knowing their
role and the other five encoded uncharacterized proteins. This clearly illustrates the potential, but also
the challenges for gene identification by genomic means. In the meantime, seven prominent QTLs have
been fine mapped (Fhb1-Fhb7) and Fhb1 was the first gene of this complex to be cloned [39]. Most of
these QTLs/genes were derived from FHB resistant Chinese wheat, esp. Sumai-3 and Wangshuibai
and were used worldwide for MAS. One of these QTL, however, does not suffice for a high resistance
level [40]. Four QTLs (Fhb1, Fhb2, Fhb4, Fhb5) from Wangshuibai were introgressed by MAS in 40 elite
Chinese cultivars resulting in lines with a high resistance comparable to the donor [39]. In adapted
European wheat sources, many low- to medium-effect QTLs were detected [37,38] that can also provide
a high resistance level, when they are accumulated by recurrent selection procedures. They are,
however, not useful for MAS because they are often population-dependent, in their majority not
validated for their effects and the accumulation of several resistance FHB QTLs will lead to a fixation
of large portions of the genome, thus decreasing the chance for selecting other traits [41].

For the other small-grain cereals, much less work has been done. Some QTL studies and GWAS
were done in durum wheat due to its extreme susceptibility to FHB [42–45], but for triticale only a few
studies [46–48] and for rye only one study is available [49]. In this first paper on rye, a single-locus
GWAS method detected 15 QTLs among nearly 500 partially inbred lines distributed across all
chromosomes except chromosome 7. These QTLs collectively explained about 74% of the genotypic
variance [49]. Similar results have been found in the other small-grain cereals.

Caused by the quantitative nature of FHB resistance and the underlying small- to medium-effect
QTLs in adapted materials, genomic selection (GS)/genomic prediction (GP) should facilitate the
application of genomics in improvement. A larger proportion of genetic variation may be captured by
GS than by MAS. In several recent studies, GS was compared to the traditional MAS using only QTLs
with marker effects of > 5% of genotypic variation. The GP approach outperformed MAS in most cases
as shown by studies in triticale, rye, and bread wheat [47,49–51].

The high prediction accuracies achieved in many studies are again caused by a large
average kinship between training and validation population [52–55]. It must be admitted that
prediction accuracy dropped dramatically when extending the GS models to less or even unrelated
materials [31,55]. When analyzing genomic estimated breeding values (GEBVs) among families in wheat,
highest accuracies were achieved by predicting from one half-sib family to another, while accuracies
were lowest between unrelated families and even got negative in some cases [31].

In a durum wheat study, the difference between MAS and GP was much smaller, mainly because
the variation within the population was rather small and already exhausted by 7 QTLs [42].
The authors concluded that FHB resistance might be better improved by classical high- throughput
recurrent phenotypic selection in durum wheat. Similarly, a comparison between phenotypic and
genomic selection revealed a superior prediction ability of the phenotypic selection [43]. However,
higher selection responses were found in a simulation study by using GEBVs for early generation
selection, a stage where phenotypic selection is rather unreliable caused by low single-plant heritability
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in this pathosystem. This would also accelerate population improvement much more than it is possible
with classical breeding strategies [43].

Prediction accuracies can be enlarged when including the most prominent QTLs in the GS model
as fixed effects (weighted GS). Especially when only a few QTLs with small to moderate cumulative
effects have been detected, the weighted GP approach results in higher predictability [31,47,56–58].
This is also of advantage, when some high-effect QTLs/genes have a correlated effect on FHB resistance,
like the semi-dwarfing gene Rht-D1 in wheat [59]. Then it is advantageous to combine data from a
GWAS into the genomic selection model for increasing the prediction accuracy when major QTLs/genes
are present [58].

While most studies are doing GP, a recently published study was the first to report realized gains
from genomic selection for FHB and STB resistances [60]. A population of 1120 winter wheat lines was
used as training set to establish the genomic model for calculating GEBVs of 2500 lines that were only
genomically analyzed. As an outcome, a genomic selection advantage of 10.6 percentage points for
FHB resistance was achieved compared to the randomly chosen subpopulation.

When GS is used in practical breeding programs to select for grain yield in early generations,
the prediction of QDR, like FHB resistance, is of no further costs because the marker data are available
already and the phenotypic data must be collected anyway.

4.2. The Septorias in Wheat

Two Septoria diseases are prevailing in wheat: Septoria tritici blotch (STB), caused by Zymoseptoria
tritici (teleomorph Mycosphaerella graminicola) and restricted to leaf symptoms, and Septoria nodorum
blotch (SNB) caused by Parastagonospora nodorum (teleomorph Phaeosphaeria nodorum) and causing
leaf and glume symptoms. Both pathogens are hemi-biotrophic and show a quantitative inheritance
although several isolate-specific genes with gene-for-gene interaction are known for Zymoseptoria (Stb
1–18) and Parastagonospora (SnTox1–7). The latter are necrotrophic effector proteins that induce necrosis
in wheat when confronted with specific wheat sensitivity genes (Snn) [61].

A GWAS of 225 wheat cultivars revealed that 11 of the 21 wheat chromosomes were associated
with for STB resistance explaining, however, only 38% of phenotypic variation [62]. This implies a
similar quantitative inheritance like FHB resistance. Further, the genetic architecture of STB resistance
was analyzed by GWAS based on a mapping population of 1055 European wheat hybrids [63].
The cross-validation study confirmed that the genetic architecture underlying STB resistance in this
population was complex with an absence of large-effect QTLs. Also, individual isolate-specific
resistance genes have not been detected in this population, because the most common resistance genes
in European wheat (Stb6, Stb15) have already been overcome by the European Z. tritici populations
and are, thus, not effective anymore [57]. Stb genes from more exotic origin, like as Stb1 originating
from a Bulgarian landrace, or Stb18 have not yet been introgressed into European elite wheat lines.

The accuracy to predict STB resistance revealed only 0.3 when using a validation set mostly unrelated
to the training set [63]. These results are in accordance with a later study of 1604 European wheat hybrids
comparing GS for STB and FHB resistances [50]. The GWAS again revealed the absence of large-effect QTLs for
both resistances. Cross-validated prediction accuracies of disease severity among unrelated hybrids amounted
to 0.58 for FHB and for 0.23 for STB resistances. Among closely related hybrids, prediction accuracy increased
substantially, but was still lower for STB resistance. Obviously, the quantitative STB resistance is inherited
even more complex than FHB resistance [50]. Accordingly, prediction accuracies of 0.45 and 0.43, respectively,
were reported when analyzing about 300 lines from different winter wheat panels [64,65]. Prediction accuracy
for STB resistance in seedling stage could be improved from 0.47 to 0.62 when all non-redundant GWAS
markers were used as fixed effects [57].

This highly complex genetic architecture of the wheat host might counterbalance the huge
genetic variation of the pathogen. This and the absence of monogenic resistance governed by Stb
genes suggests that resistance in European material is durable, because of the inheritance by a high
number of genes thus reducing the risk of the resistance to be overcome by race-specific isolates [63].
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Given the low accuracies of GS from two studies with vast wheat populations (>1000 entries, [50,63]),
phenotypic selection of quantitative STB resistance might be more encouraging than GS approaches.

The genetic control of resistance to SNB is also very complex, consisting of many loci with
additively inherited minor effects and prone to high genotype × environment interactions resulting
in only low to moderate correlations among environments [20,66]. Therefore, only a few QTLs have
been detected across environments (locations, years). For flag leaf resistance, QTLs on chromosomes
1B, 2A, 2D, and 5B and for glume resistance on chromosomes 2D and 4B were detected in successive
years [67]. A newer study with 232 genotypes of global origin detected 20 QTLs on nine chromosomes
with most QTLs detected only in one environment [20]. Only four QTLs provided resistance to several
isolates in specific environments. Accordingly, in a panel of Nordic spring wheats most of the QTLs
were detected in only one field environment and only two QTL on chromosome 2A and 2D were
found in all environments [66,68]. A QTL on chromosome 2A additionally provided resistance to both
leaf and glume blotch [68]. In addition, eight QTLs were identified in seedling stage, but only two of
them on chromosomes 4B and 7A were also significant in adult-plant stage. Considering the different
developmental stages (seedling, adult plant), the different plant organs (flag leaf, glume), and the
high interactions with isolates and environments, wheat resistance to SNB is extremely variable and
seems to be even more complex than for STB resistance explaining also the slow genetic progress by
traditional breeding [20].

4.3. Gibberella and Fusarium Ear Rots in Maize

Ear rots are major diseases in all maize-growing areas worldwide. However, the fungal
species causing the diseases are quite different. In the temperate zone of the Northern hemisphere,
F. graminearum, F. verticillioides, and F. temperatum, a new species separated from F. subglutinans, are the
main species causing ear rots [69]. The composition of species in an actual year is mainly associated
with weather conditions during silking. F. graminearum (teleomorph Gibberella zeae) causing Gibberella
ear rot (GER) prevails with cooler temperatures, the other species causing Fusarium ear rot (FER)
(teleomorph G. fujikuroi) are more prone to higher temperatures. Unfortunately, all mentioned species
produce chemically different mycotoxins with deoxynivalenol (DON) and zearalenone (ZON) being
the most prominent for F. graminearum and fumonisins (FUM) the most prominent for F. verticillioides.
All Fusarium species can infect via the silk channel during silking period and via wounds in the cob
leading to kernel infection. With rising temperatures due to global climate change the proportions of
isolated pathogens might shift to FER-causing fungi also in northwestern Europe [69] and additionally
the damage by insects might increase in frequency and severity providing an entry portal for Fusarium
spp. For these reasons, the identification of QTLs that are common among different fungal pathogens
should be favored in future to establish a broader resistance. A review on genomic studies known to
date can be found for GER [35] and FER [70].

For GER and FER, uniquely QDR has been identified to date. Several studies based on adapted
germplasm identified many QTLs that explained together 21 to 59% of the total genotypic variance [35,55,70–73].
Overlapping QTLs between GER and DON concentration are expected as both traits were highly correlated
(r > 0.86) [74,75]. Similarly, GER and ZON concentrations were correlated (r = 0.91) [76]. Indeed, two QTLs
with large effects each explaining 29 to 35% of the total genotypic variance were found on bin 1.11 and
2.04, respectively, that provided resistance against GER and additionally a low contamination by DON and
ZON [77]. Similarly, between FER resistance and FUM concentrations high genotypic correlations were found
(r = 0.74–0.84) [78]. However, also specific genes might additionally play a role in GER resistance and reduced
mycotoxin accumulation [35]. Nevertheless, for the large populations handled by practical breeding in early
stages, a selection for low ear rot severity should suffice. The much lower number of experimental hybrids in
later stages could be analyzed also for mycotoxin contents, e.g., by NIRS or immunotests [75].

In a first validation study for QTLs on GER resistance, six QTLs identified in a previous mapping
study were introgressed into two different genetic backgrounds [79]. The validation rate was,
unfortunately, low which indicates that the QTLs identified were population specific. This is further
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substantiated by the fact that different QTLs were validated across several bi-parental mapping
populations. However, two meta-QTL analyses resulted in common QTLs localized in bins 2.08, 3.04,
and 4.08, some of them were valid even for GER, FER and Aspergillus ear rot resistance together [80,81].

Genomic analyses of exotic germplasm may introduce new sources of resistance alleles to adapted
European germplasm [35]. Tropical and subtropical maize as well as popcorn populations are possible
sources of resistance alleles for ear rot for temperate maize breeding pools [82] and should be explored
to achieve higher resistance levels. However, only a few studies exploiting genetic resources to
increase GER resistance have been reported previously (e.g., [80,82]). By conducting multi-parent
QTL mapping, one QTL on bin 1.02 was identified which was overlapping across several populations
and continents (Brazil/Europe) as well as across environments within continents and across line and
testcross performance with an explained genotypic variance of 10–22% depending on the situation [83].
In total, four QTLs have been found in this study within Brazilian or European environments. This low
number of QTL might be caused by the high diversity of European environments in Germany, Austria,
Northern France and Northern Italy or just illustrate the highly polygenic and complex genetic
architecture that even could hinder to find any QTL in a GWAS [78].

Another valuable genetic resource are European flint landraces. Higher phenotypic variation and
broad-sense heritabilities within landraces than among elite lines were reported for FER severity [84]
by evaluating 389 DH lines from six European flint landraces and 53 elite flint lines in a GWAS.
Also in a second study where a GWAS was undertaken with 500 DH lines from two flint landraces,
maximum phenotypic variation was found in the Austrian landrace “Kemater Landmais gelb” (KE)
and the German landrace “Petkuser Ferdinand rot” (PE) [85]. In the GWAS, however, PE showed
no significant QTL, while KE revealed eight QTLs explaining together 34% of genotypic variation.
Interestingly, a GP procedure revealed similar prediction accuracies for lines from both landraces
implying that many small effects failed to pass the significance threshold due to limited detection
power. The GP procedure weighted with the most significant QTLs was about 20% better than MAS
in KE [85]. GP was also recommended for improving FER resistance by claiming the shortening of
generation intervals and reducing laborious QDR evaluation in the field as main advantages [86].

Genetic relationship between training and validation populations plays a major role also in maize.
When analyzing European maize with 130 dent lines and 114 flint lines for GER resistance and DON
contents, prediction accuracies for DON content were 0.66 within the dent pool and 0.45 within the
flint pool [72]. They dropped for the prediction across pools to 0.1 for the dent lines and even got
negative for the flint lines. Accordingly, no common QTL was localized in the two European heterotic
groups, flint and dent. A combined-pool GP had no higher accuracy than within-pool GP, regardless of
the statistical model used. In accordance with this finding, using only DH lines from one landrace
to predict GER resistance in the other landrace was also not promising at all [85]. In another study
involving six European maize landraces, GP between pairs of DH libraries resulted in prediction
accuracies of approximately zero for all landraces and six agronomic traits analyzed [87]. However,
prediction accuracies improved when the TS and vs. contained lines from both landraces.

A possible solution to optimize results from genomic studies is to combine different analytical
methods to overcome the inherent weaknesses of each individual method [35,81]. For example,
candidate genes for GER resistance among recombinant inbred lines derived from bi-parental crosses
were identified by combining QTL mapping with transcriptomic (RNA-seq) approaches [88]. Also,
QTL results can be used to predict candidate genes by in silico-mapping. A major prerequisite, however,
is that the QTL region is small enough. Therefore, after a normal QTL study, a fine mapping should be
done to further restrict the QTL region. This is especially valid in cross-pollinated crops like maize
because the QTL interval can be narrowed down here rather effectively. Also, association mapping
provides a complementary tool for identifying candidate genes when a region was fine mapped.
By using diversity panels, significant SNPs within the fine-mapping interval can be found where
the underlying candidate genes might be detected [89]. The analyzed diversity panel was then used
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as training population for GP. Candidate genes can be further investigated by expression analyses,
resequencing, and testing across different germplasm sets [90].

4.4. Northern Corn Leaf Blight (NCLB) in Maize

Northern corn leaf blight (NCLB) is caused by the hemi-biotrophic ascomycete Setosphaeria turcica
(syn. Helminthosporium turcicum, anamorph: Exserohilium turcicum). In Europe, NCLB was originally
restricted to the Mediterranean regions, but at the 1990s the disease crossed the Alps and appeared in
southern Germany in 1995 [91]. The disease rapidly expanded and became the most important leaf
disease of maize in Northwestern Europe. The fungus and the disease are also distributed in many
other maize-growing areas [91,92].

Resistance to NCLB can be both qualitatively and quantitatively inherited [92]. The employment
of qualitative resistance genes (mainly Ht1, Ht2, Ht3) already led to directional selection in the European
pathogen populations and resulted in regionally different virulence patterns [93] making some of the
main Ht genes and their combinations already ineffective. QDR, therefore, should provide a more
durable resistance. In all QTL studies reported so far, many small to medium-sized QTLs have been
reported distributed across all ten maize chromosomes with mainly additive gene action [92]. In several
mapping studies, four to 14 QTLs have been assigned to mean disease severity. Additionally, 12 and
19 QTLs were identified for the resistance traits area under disease progress curve (AUDPC) and final
disease rating, respectively, with some QTLs being assigned to two to three traits simultaneously [94].
This corresponds to high phenotypic correlations among the traits (r ≈ 0.8) [95].

High levels of quantitative NCLB resistance have been detected in non-adapted (sub)tropical
materials [96–98] that might be used for widening the resistance diversity in European maize. In a
multi-parental QTL mapping, 17 QTLs distributed along the ten chromosomes were identified, each QTL
explaining 3.6 to 32.0% of the genotypic variance [98]. Most of the resistance alleles originated from
Brazilian donors and reduced NCLB severity between 0.3 to 2.5 scores on the 1–9 severity scale.
None of the known Ht genes have been identified in this genetic material by associated markers or
known DNA sequences. Because always local pathogen populations have been used comprising a
wide range of virulences [98] the described resistances should be quantitatively inherited. This is
important, because otherwise the occurrence of effective monogenic resistances would mask small,
quantitative effects. Two QTLs on bins 7.03 and 9.04 were identified in Brazil and Europe as well
although ecosystems were highly distinct, illustrating another form of QTL stability. As in the other
crops, prediction accuracies for NCLB dropped, on average, from 0.55 for within-family prediction
to 0.20 when totally unrelated materials were predicted [98]. Because of the long-standing epidemic
infections of subtropical maize with NCLB there should be more resistance sources to detect after this
pivotal first study.

At least 197 QTLs were reported for NCLB resistance to date when combining 27 publications.
Only QTLs resulting from the analysis of at least two environments and a minimal population size
of 100 genotypes were considered (see Supplementary Materials). Basically, all chromosomes were
involved in resistance QTLs. Localizing these QTLs in the maize genome clearly shows that there are
hotspots for this resistance with up to 7 QTLs detected in the same bin (Figure 2).

In such studies, also agronomic traits should be considered that might interact with QDR,
especially plant height and genes for plant development. Several QTLs controlling maturity and
the gene vgt1 (flowering time) were also mapped on bin 8.05 [98–100]. The presence of QTLs for
resistance and maturity on the same bin could reflect resistance in late maturity genotypes because of
the preference of S. turcicum for senescent tissue.

These hotspots could correspond to a common gene or to multiple clustered genes [29,101]
and emerge as promising regions to explore the underlying resistance mechanisms with a higher
resolution [90,102]. For example, on bin 1.02, the gene ZmREM6.3 encodes a REM protein. These proteins
regulate the size exclusion limit of plasmodesmata and could restrict the movement of the pathogen in
the host [102]. Some of the hotspots might be caused by the independent detection of the same QTL
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in different populations. This can be interpreted as a sort of independent validation that could be
valuable for introgression breeding.
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Figure 2. Number of QTLs for resistance to NCLB according to the literature; the intensity of color represents
the number of QTLs found in the same bin (for details please refer to Supplementary Materials).

5. Detection of Multi-Disease Resistance (MDR)

All crops are affected by more than one disease at the same time. Thus, loci conferring multi-disease
resistance (MDR) should be under a strong selection pressure and are a highly valuable goal for plant
breeding. MDR, also called broad-spectrum resistance, was defined as the resistance of a host either to
many races of one pathogen (= non-race specific resistance) or resistance to more than one pathogen
species [103]. In this review we will concentrate on the latter definition. MDR might be genetically
controlled by pleiotropy, pyramiding of several unlinked genes/QTLs conferring resistance to single
diseases, or the presence of clusters of resistance genes in the genome [103]. A fourth, special cause could
be the introgression of alien chromosomes that show a reduction or even absence of recombination,
like in wheat translocation lines with the rye chromosome 1RS segment, where several rust and mildew
resistances are located [104]. For the other mentioned cases, also practical examples are known from
wheat. Pleiotropic broad-spectrum resistance genes, like Lr34/Yr18/Sr57/Pm38, Lr46/Yr29/Sr58/Pm39,
Lr67/Yr46 and Sr2/Yr30, are widely exploited in international breeding [105]. They confer a moderate
level of MDR to leaf rust (Lr), yellow (stripe) rust (Yr), stem rust (Sr), powdery mildew (Pm) and even
some hemi-biotrophic fungi.

Besides these rare monogenic examples, also MDR for QDR have been detected. Two out of
110 CIMMYT lines were highly resistant to five wheat diseases, including FHB [106]. MDR loci for
resistance to tan spot (caused by Pyrenophora tritici-repentis) and SNB have been found in 88 out of a
panel of 825 wheat accessions from the USDA [107]. However, in both studies, no molecular analyses
of the genes/QTLs underlying MDR have been performed. In a GWAS, ten of the 35 detected QTLs
conferred resistance to each of two diseases (leaf rust, stem rust, and yellow rust, yellow leaf spot, STB,
crown rot) [108]. In an independent GWAS of 158 winter wheat accessions, about 10% of the cultivars
had superior resistance to yellow rust, stem rust, powdery mildew, and FHB simultaneously [109].
Nine QTLs explaining 62% of the total genotypic variation were detected for MDR. Only three of them
were also found as QTLs for a single disease resistance. This might be a hint on genomic regions
caused by “real” MDR and not only by pyramiding independent loci that are triggered by the strong
selection of the breeders for combined resistances. In another study, among 125 synthetic hexaploid
wheats a wide range of genetic variation was observed for two to five biotic stresses with 17 lines
being resistant to more than one disease [110]. The corresponding GWAS detected 124 significant
marker-trait associations for multiple biotic stresses and 33 of these were found within known genes.
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Several meta-analyses have suggested that MDR loci are relatively common in maize [111,112].
The latter study demonstrated that many QTLs are not randomly distributed over the maize genome,
but clustered in specific regions. More recently, this trend was confirmed by organizing the distribution
of 1080 QTLs for disease resistances mapped in 110 studies [113]. Chromosome 1 and 3 were revealed
carrying the highest proportion of QTLs for resistance. Currently, a multiple diseases approach instead
of analyzing single disease resistances is increasingly getting attention. Different authors combined the
localization of single-disease QTLs finding candidate regions for MDR on the following bins: 1.02,
1.05/1.06, 3.04, 4.06, 7.02, 8.03, 8.05 and 9.02 [29,90,100,113–117]. Some of these regions overlap with
hotspots for resistance to NCLB presented in Figure 2. Obviously, some mechanisms underlying QDR
are unspecific and common for several diseases. Some regions also presented contrasting effects for
resistances to bacterial and fungal diseases [115].

The maize chromosome bin 1.02 has been identified as a region that confers resistance to a number of
maize diseases such as GER [83], ear and stalk rot (caused by multiple pathogens), common smut (caused
by Ustilago maydis), gray leaf spot (GLS, caused by Cercospora zeae-maydis) [118,119], southern corn
leaf blight (SCLB, caused by Bipolaris maydis, syn. Helminthosporium maydis), NCLB, Stewart’s wilt
(caused by Pantoea stewartii) and common rust (caused by Puccinia sorghi) [102,112,120]. The latter
study investigated candidate genes at this region enhancing the accumulation of callose and phenolic
components around infection sites [120], an unspecific defense mechanism that might be helpful
against all of these pathogens. More recently, 37 QTLs were identified for NCLB, SCLB, and GLS
resistances in two maize populations, four QTLs overlapped for each of two diseases [121].

Another hotspot seems to be maize bins 1.05/1.06, where resistance to NCLB, Stewart’s wilt, SCLB,
common rust, GLS, and ear and stalk rot caused by multiple fungi have been detected [90,100,112,114,115,120].
The bin 1.06 was reported by several authors for NCLB resistance (rf. to Figure 2) and the dominant Stewart’s
wilt resistance gene Sw1 had been mapped in the same genomic region [90]. A subsequent fine mapping of
this chromosomal region resulted in overlapping regions for both diseases. The association study revealed
the candidate genes pan1 that might be a susceptibility gene for NCLB and Stewart’s wilt underlying this
QTL [90]. Additionally, copy number variation was found as a structural element of this genomic region.

Also, bin 8.05–8.06 harbors QTL and genes for resistance to many diseases, among them NCLB,
SCLB, GLS, common rust, common smut, maize streak virus, and aflatoxin accumulation [122].
Several resistance gene analogs and defense response gene homologs were identified in this region as
well as the Ht2 gene for NCLB resistance.

A few other MDR loci have been assigned to candidate genes, among them a glutathione
S-transferase (GST) gene for resistance to SCLB, NCLB, and GLS [116]. More recently, a QTL in bin
9.02 was associated by genomic techniques with a caffeoyl-CoA O-methyltransferase (ZmCCoAOMT2),
a gene conferring QDR to both SCLB and GLS being in connection with the phenylpropanoid pathway
and lignin production [117]. This is another example for a MDR gene that might encode an unspecific
disease resistance mechanism.

In conclusion, we are just at the starting point of understanding the mechanisms of MDR.
Some MDR QTLs split into many QTLs/genes when fine mapped, others are associated with genes
conferring unspecific resistance reactions and in some cases resistance genes are present in varying
copy numbers.

6. Integration of Genomic Data in the Ongoing Breeding Process

The art of breeding is to integrate new genomic-based methods into existing breeding schemes
to speed up the process and make it more efficient. Here, we will discuss two important aspects:
Genomics-based introgression of genetic resources and genetic improvement within elite populations.

6.1. Introgression of Genetic Resources

Genetic resources are a valuable tool to expand genetic variation in highly selected elite populations,
especially for resistance breeding. The occurrence of new diseases or new races of a well-known
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pathogen often makes it necessary to find new resistance sources among non-adapted materials.
Possible sources are old landraces or foreign materials that are less or even not adapted to the target
region. In either case, adaptation breeding is essential with highly heritable traits, like flowering date,
plant height, lodging tolerance etc., selected first.

In hybrid breeding, it must be additionally admitted that DH lines derived from non-adapted,
non-inbred materials suffer from a remnant genetic load that leads to highly undesirable agronomic
phenotypes such as low emergence rate, poor growth rate, lodging, poor seed set, and low grain
yield [84,123]. Inbreeding depression among DH lines can also result in unwanted traits such as high
leaf chlorosis, tillering, extreme susceptibility to diseases such as ear rots, common smut (Ustilago maydis)
and common rust (Puccinia sorghi) [123]. Using materials from foreign regions may additionally afford
adaptation to day length and agronomic practices.

Therefore, introgression of resistance alleles from genetic resources into elite materials should
target resistant lines having better agronomic properties, to reduce the effect of detrimental alleles.
Using European flint landraces as a source, led to the exclusion of close to 70% of the produced DH
lines because of their high inbreeding depression [84].

In an integrated scheme with maize as an example (Figure 3), firstly, the resistance donor is
introgressed by backcrossing to the recurrent parent (RP) and by selection of the major QTLs by MAS.
When only small-effect QTLs are available the introgression part can be confined to backcrossing
without marker selection.
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assisted selection, DH = doubled haploid lines, GS = genomic selection, TC = testcross.

In the integration step, GS is performed in a recurrent selection scheme to rapidly select for
adaptation traits and disease resistances. The training population can be developed in parallel to a first
phenotypic selection cycle or by using historical data from the same resistance sources. To establish
or update the training set, a large-scaled DH production and intensive phenotyping for adaptation
traits and resistance to the targeted diseases are necessary. The outcome of the training set is then
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the basis for genomic prediction of superior DH lines. They are multiplied and crossed to testers to
select superior hybrids for yield and other complex traits on testcross basis. The timeline refers to the
selection on BC1 and two generations per year. The cycle might be longer if more BC generations are
necessary when afforded by a low adaptation of the genetic resources to the target environments.

6.2. Improvement within Elite Materials

Genomics-based improvement of existing breeding schemes is now revolutionizing the practical
breeding work. An example is shown in Figure 4 for so called ‘second-cycle’ breeding in
hybrid development.
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Figure 4. Breeding scheme for combined genomic and phenotypic selection in hybrid breeding (Peer
Wilde, pers. commun.).

The scheme starts with intercrossing the best double-haploid lines (DH-L) and producing new DH-L
from the F1s. Selection of line per se performance in several locations concentrates on high heritable
traits, like vitality, rust resistances, resistance to lodging, and grain quality. Phenotypic selection
can be supported already on this stage by selecting on general combining ability (GCA) for grain
yield with genomically estimated effects (GEGCA) from previous cycles. Assuming a sufficiently high
prediction accuracy, lines with an inferior GEGCA can be already discarded saving the efforts for
producing and phenotyping testcrosses to the putatively better part of the line population. The best
lines are outcrossed to tester(s) of the opposite heterotic group and phenotyped in multi-location
trials assessing GCA estimates for grain yield and complex disease resistances. These phenotypically
estimated effects (PEGCA) can be supplemented with GEGCA effects from genomic prediction to enter a
weighted selection index combining both sources of information. The integration of genomic selection
will be especially beneficial if the model training comes from aggregated data across multiple breeding
cycles [125]. This would also mitigate biases from genotype × year interaction. DH-L with a positive
index value will continue to a second selection stage and will be intercrossed for setting up a new
breeding population.
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Model studies in rye showed that the gain from selection for grain yield with S2 lines is in
a combined scheme up to 12% higher than with pure phenotypic selection assuming a prediction
accuracy of 0.5 [Peer Wilde, pers. commun.]. These estimates for grain yield should be even higher
for QDR because these usually display a higher heritability. GS would then increase the gain from
selection due to a reduced number of years per cycle and/or by genotyping more lines with the same
costs allowing a greater selection intensity.

7. Conclusions

Genomics-based breeding methods are a great step forward without relying on gene technology
procedures. They can be introduced into practical breeding schemes right away. By using QDR, the way
is longer and more tedious and might be hindered by additional trade-offs, however, the durability
over time should also be higher. Recent advantages in genomics illustrate the high complexity of
quantitative host-pathogen interactions. However, our growing knowledge on the most important
pathosystems also allows the development of novel breeding strategies, where genomic selection
seems to be highly advantageous for saving time and field space in many, but not all, pathosystems.

The benefit of genomic selection greatly relies on the genetic relationship between training and
validation population. Therefore, the training population must be updated subsequently. Here,
resistance breeding has an unique advantage over other agronomic traits because distinctive resistance
sources are used in breeding. Once they are identified and validated, they could be used over and over
again and, therefore, the respective genomic models can also be used across cycles with much less
loss of prediction accuracy than with, for example, grain yield. And because medium-dense marker
assays are anyway used for prediction of grain yield, the only additional cost for resistance selection
is the multi-environmental analysis of the training population for the respective disease resistances.
The identification of multiple-disease resistance genes might be further helpful in this respect.

The high impact in genomic research might in future result in the knowledge of more genes
underlying disease-resistance QTLs with a high effect. This opens the avenue to genome editing
techniques that are, however, highly challenging for manipulating whole gene networks as it is
necessary for the improvement of QDR.
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Abbreviations

FHB Fusarium head blight
STB Septoria tritici blotch
SNB Septoria nodorum blotch
GER Gibberella ear rot
FER Fusarium ear rot
NCLB Northern corn leaf blight
QTL Quantitative trait locus
MDR Multi-disease resistance
R Resistance gene (race-specific)
QDR Quantitative disease resistance
ETI Effector-triggered immunity
GS Genomic selection
GP Genomic prediction
MAS Marker-assisted selection
MARS Marker-assisted recurrent selection
GWAS Genome-wide association study
SNP Single-nucleotide polymorphism
LD Linkage disequilibrium
GEBV Genomic estimated breeding values

References

1. Poland, J.A.; Balint-Kurti, P.J.; Wisser, R.J.; Pratt, R.C.; Nelson, R.J. Shades of gray: The world of quantitative
disease resistance. Trends Plant Sci. 2009, 14, 21–29. [CrossRef] [PubMed]

2. FAO. FAOSTAT Database. Available online: http://www.fao.org/faostat/en/#data/QC%0A. (accessed on
20 November 2020).

3. OECD/FAO. OECD-FAO Agricultural Outlook 2019–2028: Cereals. Available online: http://www.agri-
outlook.org/commodities/Cereals.pdf (accessed on 20 November 2020).

4. Oerke, E. Crop losses to pests. J. Agri. Sci. 2006, 144, 31–43. [CrossRef]
5. Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of

pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [CrossRef] [PubMed]
6. Geiger, H.H.; Heun, M. Genetics of quantitative resistance to fungal diseases. Annu. Rev. Phytopathol. 1989,

27, 317–341. [CrossRef]
7. Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics, 4th ed.; Pearson Prentice Hall: Upper Saddle

River, NJ, USA, 1996.
8. Niks, R.E.; Parlevliet, J.E.; Lindhout, P.; Bai, Y. Breeding Crops with Resistance to Diseases and Pests, 3rd ed.;

Wageningen Academic Publishers: Wageningen, The Netherlands, 2019.
9. Onaga, G.; Wydra, K. Advances in plant tolerance to biotic stresses. In Plant Genomics; IntechOpen Limited:

London, UK, 2016.
10. Young, N.D. QTL mapping and quantitative disease resistance in plants. Annu. Rev. Phytopathol. 1996, 34, 479–501.

[CrossRef]
11. Kover, P.X.; Caicedo, A.L. The genetic architecture of disease resistance in plants and the maintenance of

recombination by parasites. Mol. Ecol. 2001, 10, 1–16. [CrossRef]
12. Cowger, C.; Brown, J.K. Durability of quantitative resistance in crops: Greater than we know?

Ann. Rev. Phytopathol. 2019, 57, 253–277. [CrossRef]
13. Krattinger, S.G.; Lagudah, E.S.; Spielmeyer, W.; Singh, R.P.; Huerta-Espino, J.; McFadden, H.; Bossolini, E.;

Selter, L.L.; Keller, B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in
wheat. Science 2009, 323, 1360–1363. [CrossRef]

14. Moore, J.W.; Herrera-Foessel, S.; Lan, C.; Schnippenkoetter, W.; Ayliffe, M.; Huerta-Espino, J.; Lillemo, M.;
Viccars, L.; Milne, R.; Periyannan, S.; et al. A recently evolved hexose transporter variant confers resistance
to multiple pathogens in wheat. Nat. Genet. 2015, 47, 1494–1498. [CrossRef]

http://dx.doi.org/10.1016/j.tplants.2008.10.006
http://www.ncbi.nlm.nih.gov/pubmed/19062327
http://www.fao.org/faostat/en/#data/QC%0A.
http://www.agri-outlook.org/commodities/Cereals.pdf
http://www.agri-outlook.org/commodities/Cereals.pdf
http://dx.doi.org/10.1017/S0021859605005708
http://dx.doi.org/10.1038/s41559-018-0793-y
http://www.ncbi.nlm.nih.gov/pubmed/30718852
http://dx.doi.org/10.1146/annurev.py.27.090189.001533
http://dx.doi.org/10.1146/annurev.phyto.34.1.479
http://dx.doi.org/10.1046/j.1365-294X.2001.01124.x
http://dx.doi.org/10.1146/annurev-phyto-082718-100016
http://dx.doi.org/10.1126/science.1166453
http://dx.doi.org/10.1038/ng.3439


Int. J. Mol. Sci. 2020, 21, 9717 17 of 22

15. Bohra, A.; Pandey, M.K.; Jha, U.C.; Singh, B.; Singh, I.P.; Datta, D.; Chaturvedi, S.K.; Nadarajan, N.;
Varshney, R.K. Genomics-assisted breeding in four major pulse crops of developing countries: Present status
and prospects. Theor. Appl. Genet. 2014, 127, 1263–1291. [CrossRef]

16. Utz, H.F.; Melchinger, A.E.; Schön, C.C. Bias and sampling error of the estimated proportion of genotypic
variance explained by quantitative trait loci determined from experimental data in maize using cross
validation and validation with independent samples. Genetics 2000, 154, 1839–1849.

17. Bardol, N.; Ventelon, M.; Mangin, B.; Jasson, S.; Loywick, V.; Couton, F.; Derue, C.; Blanchard, P.; Charcosset, A.;
Moreau, L. Combined linkage and linkage disequilibrium QTL mapping in multiple families of maize
(Zea mays L.) line crosses highlights complementarities between models based on parental haplotype and
single locus polymorphism. Theor. Appl. Genet. 2013, 126, 2717–2736. [CrossRef] [PubMed]

18. Garin, V.; Wimmer, V.; Mezmouk, S.; Malosetti, M.; van Eeuwijk, F. How do the type of QTL effect and the
form of the residual term influence QTL detection in multi-parent populations? A case study in the maize
EU-NAM population. Theor. Appl. Genet. 2017, 130, 1753–1764. [CrossRef] [PubMed]

19. Aranzana, M.J.; Kim, S.; Zhao, K.; Bakker, E.; Horton, M.; Jakob, K.; Lister, C.; Molitor, J.; Shindo, C.; Tang, C.;
et al. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and
pathogen resistance genes. PLoS Genet. 2005, 1, e60. [CrossRef] [PubMed]

20. Francki, M.G.; Walker, E.; McMullan, C.J.; Morris, W.G. Multi-location evaluation of global wheat lines reveal
multiple QTL for adult plant resistance to Septoria nodorum blotch (SNB) detected in specific environments
and in response to different isolates. Front. Plant Sci. 2020, 11, 771. [CrossRef]

21. Rahman, M.; Davies, P.; Bansal, U.; Pasam, R.; Hayden, M.; Trethowan, R. Marker-assisted recurrent selection
improves the crown rot resistance of bread wheat. Mol. Breed. 2020, 40, 28. [CrossRef]

22. Meuwissen, T.H.E.; Hayes, B.J.; Goddard, M.E. Prediction of total genetic value using genome-wide dense
marker maps. Genetics 2001, 157, 1819–1829.

23. Albrecht, T.; Auinger, H.-J.; Wimmer, V.; Ogutu, J.O.; Knaak, C.; Ouzunova, M.; Piepho, H.-P.; Schön, C.-C.
Genome-based prediction of maize hybrid performance across genetic groups, testers, locations, and years.
Theor. Appl. Genet. 2014, 127, 1375–1386. [CrossRef]

24. Edwards, S.M.; Buntjer, J.B.; Jackson, R.; Bentley, A.R.; Lage, J.; Byrne, E.; Burt, C.; Jack, P.; Berry, S.; Flatman, E.;
et al. The effects of training population design on genomic prediction accuracy in wheat. Theor. Appl. Genet.
2019, 132, 1943–1952. [CrossRef]

25. Wallace, J.G.; Larsson, S.J.; Buckler, E.S. Entering the second century of maize quantitative genetics. Heredity
2014, 112, 30–38. [CrossRef]

26. Newell, M.A.; Jannink, J.-L. Genomic selection in plant breeding. In Crop Breeding: Methods and Protocols;
Fleury, D., Whitford, R., Eds.; Springer: New York, NY, USA, 2014; pp. 117–130. ISBN 978-1-4939-0446-4.

27. Robertsen, C.D.; Hjortshøj, R.L.; Janss, L.L. Genomic selection in cereal breeding. Agronomy 2019, 9, 95.
[CrossRef]

28. Nelson, R.; Wiesner-Hanks, T.; Wisser, R.; Balint-Kurti, P. Navigating complexity to breed disease-resistant
crops. Nat. Rev. Genet. 2018, 19, 21–33. [CrossRef] [PubMed]

29. Stewart, E.L.; Hagerty, C.H.; Mikaberidze, A.; Mundt, C.C.; Zhong, Z.; McDonald, B.A. An improved method
for measuring quantitative resistance to the wheat pathogen Zymoseptoria tritici using high-throughput
automated image analysis. Phytopathology 2016, 106, 782–788. [CrossRef] [PubMed]

30. Bernardo, R. Parental selection, number of breeding populations, and size of each population in inbred
development. Theor. Appl. Genet. 2003, 107, 1252–1256. [CrossRef]

31. Herter, C.P.; Ebmeyer, E.; Kollers, S.; Korzun, V.; Würschum, T.; Miedaner, T. Accuracy of within- and
among-family genomic prediction for Fusarium head blight and Septoria tritici blotch in winter wheat.
Theor. Appl. Genet. 2019, 132, 1121–1135. [CrossRef]

32. Heffner, E.L.; Sorrells, M.E.; Jannink, J.-L. Genomic selection for crop improvement. Crop Sci. 2009, 49, 1–12.
[CrossRef]

33. Larkin, D.L.; Lozada, D.N.; Mason, R.E. Genomic selection—Considerations for successful implementation
in wheat breeding programs. Agronomy 2019, 9, 479. [CrossRef]

34. Gaikpa, D.S.; Lieberherr, B.; Maurer, H.P.; Longin, C.F.H.; Miedaner, T. Comparison of rye, triticale,
durum wheat and bread wheat genotypes for Fusarium head blight resistance and deoxynivalenol
contamination. Plant Breed. 2020, 139, 251–262. [CrossRef]

http://dx.doi.org/10.1007/s00122-014-2301-3
http://dx.doi.org/10.1007/s00122-013-2167-9
http://www.ncbi.nlm.nih.gov/pubmed/23975245
http://dx.doi.org/10.1007/s00122-017-2923-3
http://www.ncbi.nlm.nih.gov/pubmed/28547012
http://dx.doi.org/10.1371/journal.pgen.0010060
http://www.ncbi.nlm.nih.gov/pubmed/16292355
http://dx.doi.org/10.3389/fpls.2020.00771
http://dx.doi.org/10.1007/s11032-020-1105-1
http://dx.doi.org/10.1007/s00122-014-2305-z
http://dx.doi.org/10.1007/s00122-019-03327-y
http://dx.doi.org/10.1038/hdy.2013.6
http://dx.doi.org/10.3390/agronomy9020095
http://dx.doi.org/10.1038/nrg.2017.82
http://www.ncbi.nlm.nih.gov/pubmed/29109524
http://dx.doi.org/10.1094/PHYTO-01-16-0018-R
http://www.ncbi.nlm.nih.gov/pubmed/27050574
http://dx.doi.org/10.1007/s00122-003-1375-0
http://dx.doi.org/10.1007/s00122-018-3264-6
http://dx.doi.org/10.2135/cropsci2008.08.0512
http://dx.doi.org/10.3390/agronomy9090479
http://dx.doi.org/10.1111/pbr.12779


Int. J. Mol. Sci. 2020, 21, 9717 18 of 22

35. Gaikpa, D.S.; Miedaner, T. Genomics-assisted breeding for ear rot resistances and reduced mycotoxin
contamination in maize: Methods, advances and prospects. Theor. Appl. Genet. 2019, 132, 2721–2739.
[CrossRef]

36. Góral, T.; Wiśniewska, H.; Ochodzki, P.; Walentyn-Góral, D. Higher Fusarium toxin accumulation in grain
of winter triticale lines inoculated with Fusarium culmorum as compared with wheat. Toxins 2016, 8, 301.
[CrossRef]

37. Buerstmayr, M.; Steiner, B.; Buerstmayr, H. Breeding for Fusarium head blight resistance in wheat—Progress
and challenges. Plant Breed. 2020, 139, 429–454. [CrossRef]

38. Venske, E.; dos Santos, R.S.; Farias, D.D.R.; Rother, V.; da Maia, L.C.; Pegoraro, C.; Costa de Oliveira, A.
Meta-analysis of the QTLome of Fusarium head blight resistance in bread wheat: Refining the current puzzle.
Front. Plant Sci. 2019, 10, 727. [CrossRef] [PubMed]

39. Ma, Z.; Xie, Q.; Li, G.; Jia, H.; Zhou, J.; Kong, Z.; Li, N.; Yuan, Y. Germplasms, genetics and genomics for
better control of disastrous wheat Fusarium head blight. Theor. Appl. Genet. 2020, 133, 1541–1568. [CrossRef]
[PubMed]

40. Brar, G.S.; Pozniak, C.J.; Kutcher, H.R.; Hucl, P.J. Evaluation of Fusarium head blight resistance genes Fhb1,
Fhb2, and Fhb5 introgressed into elite Canadian hard red spring wheats: Effect on agronomic and end-use
quality traits and implications for breeding. Mol. Breed. 2019, 39, 44. [CrossRef]

41. Miedaner, T.; Korzun, V. Marker-assisted selection for disease resistance in wheat and barley breeding.
Phytopathology 2012, 102, 560–566. [CrossRef] [PubMed]

42. Miedaner, T.; Sieber, A.-N.; Desaint, H.; Buerstmayr, H.; Longin, C.F.H.; Würschum, T. The potential of
genomic-assisted breeding to improve Fusarium head blight resistance in winter durum wheat. Plant Breed.
2017, 136, 610–619. [CrossRef]

43. Steiner, B.; Michel, S.; Maccaferri, M.; Lemmens, M.; Tuberosa, R.; Buerstmayr, H. Exploring and exploiting
the genetic variation of Fusarium head blight resistance for genomic-assisted breeding in the elite durum
wheat gene pool. Theor. Appl. Genet. 2019, 132, 969–988. [CrossRef]

44. Haile, J.K.; N’Diaye, A.; Walkowiak, S.; Nilsen, K.T.; Clarke, J.M.; Kutcher, H.R.; Steiner, B.; Buerstmayr, H.;
Pozniak, C.J. Fusarium head blight in durum wheat: Recent status, breeding directions, and future research
prospects. Phytopathology 2019, 109, 1664–1675. [CrossRef]

45. Moreno-Amores, J.; Michel, S.; Miedaner, T.; Longin, C.F.H.; Buerstmayr, H. Genomic predictions for
Fusarium head blight resistance in a diverse durum wheat panel: An effective incorporation of plant height
and heading date as covariates. Euphytica 2020, 216, 22. [CrossRef]

46. Dhariwal, R.; Fedak, G.; Dion, Y.; Pozniak, C.; Laroche, A.; Eudes, F.; Randhawa, H.S. High density single
nucleotide polymorphism (SNP) mapping and quantitative trait loci (QTL) analysis in a biparental spring
triticale population localized major and minor effect fusarium head blight resistance and associated traits
QTL. Genes 2018, 9, 19. [CrossRef]

47. Galiano-Carneiro, A.L.; Boeven, P.H.G.; Maurer, H.P.; Würschum, T.; Miedaner, T. Genome-wide association
study for an efficient selection of Fusarium head blight resistance in winter triticale. Euphytica 2019, 215, 4.
[CrossRef]

48. Ollier, M.; Talle, V.; Brisset, A.L.; Le Bihan, Z.; Duerr, S.; Lemmens, M.; Buerstmayr, H. QTL mapping and
successful introgression of the spring wheat-derived QTL Fhb1 for Fusarium head blight resistance in three
European triticale populations. Theor. Appl. Genet. 2020, 133, 457–477. [CrossRef] [PubMed]

49. Gaikpa, D.S.; Koch, S.; Fromme, F.J.; Siekmann, D.; Würschum, T.; Miedaner, T. Genome-wide association
mapping and genomic prediction of Fusarium head blight resistance, heading stage and plant height in
winter rye (Secale cereale). Plant Breed. 2020, 139, 508–520. [CrossRef]

50. Mirdita, V.; Liu, G.; Zhao, Y.; Miedaner, T.; Longin, C.F.H.; Gowda, M.; Mette, M.F.; Reif, J.C.
Genetic architecture is more complex for resistance to Septoria tritici blotch than to Fusarium head blight in
Central European winter wheat. BMC Genomics 2015, 16, 430. [CrossRef] [PubMed]

51. Rutkoski, J.; Benson, J.; Jia, Y.; Brown-Guedira, G.; Jannink, J.-L.; Sorrells, M. Evaluation of genomic prediction
methods for Fusarium head blight resistance in wheat. Plant Genome 2012, 5, 51–61. [CrossRef]

52. Habier, D.; Fernando, R.L.; Dekkers, J.C.M. The impact of genetic relationship information on genome-assisted
breeding values. Genetics 2007, 177, 2389–2397. [CrossRef]

http://dx.doi.org/10.1007/s00122-019-03412-2
http://dx.doi.org/10.3390/toxins8100301
http://dx.doi.org/10.1111/pbr.12797
http://dx.doi.org/10.3389/fpls.2019.00727
http://www.ncbi.nlm.nih.gov/pubmed/31263469
http://dx.doi.org/10.1007/s00122-019-03525-8
http://www.ncbi.nlm.nih.gov/pubmed/31900498
http://dx.doi.org/10.1007/s11032-019-0957-8
http://dx.doi.org/10.1094/PHYTO-05-11-0157
http://www.ncbi.nlm.nih.gov/pubmed/22568813
http://dx.doi.org/10.1111/pbr.12515
http://dx.doi.org/10.1007/s00122-018-3253-9
http://dx.doi.org/10.1094/PHYTO-03-19-0095-RVW
http://dx.doi.org/10.1007/s10681-019-2551-x
http://dx.doi.org/10.3390/genes9010019
http://dx.doi.org/10.1007/s10681-018-2327-8
http://dx.doi.org/10.1007/s00122-019-03476-0
http://www.ncbi.nlm.nih.gov/pubmed/31960090
http://dx.doi.org/10.1111/pbr.12810
http://dx.doi.org/10.1186/s12864-015-1628-8
http://www.ncbi.nlm.nih.gov/pubmed/26044734
http://dx.doi.org/10.3835/plantgenome2012.02.0001
http://dx.doi.org/10.1534/genetics.107.081190


Int. J. Mol. Sci. 2020, 21, 9717 19 of 22

53. Lehermeier, C.; Krämer, N.; Bauer, E.; Bauland, C.; Camisan, C.; Campo, L.; Flament, P.; Melchinger, A.E.;
Menz, M.; Meyer, N.; et al. Usefulness of multiparental populations of maize (Zea mays L.) for genome-based
prediction. Genetics 2014, 198, 3–16. [CrossRef]

54. Lorenz, A.J.; Smith, K.P. Adding genetically distant individuals to training populations reduces genomic
prediction accuracy in barley. Crop Sci. 2015, 55, 2657–2667. [CrossRef]

55. Han, S.; Utz, H.F.; Liu, W.; Schrag, T.A.; Stange, M.; Würschum, T.; Miedaner, T.; Bauer, E.; Schön, C.-C.;
Melchinger, A.E. Choice of models for QTL mapping with multiple families and design of the training set for
prediction of Fusarium resistance traits in maize. Theor. Appl. Genet. 2016, 129, 431–444. [CrossRef]

56. Michel, S.; Kummer, C.; Gallee, M.; Hellinger, J.; Ametz, C.; Akgöl, B.; Epure, D.; Löschenberger, F.;
Buerstmayr, H. Improving the baking quality of bread wheat by genomic selection in early generations.
Theor. Appl. Genet. 2018, 131, 477–493. [CrossRef]

57. Odilbekov, F.; Armoniené, R.; Koc, A.; Svensson, J.; Chawade, A. GWAS-assisted genomic prediction to predict
resistance to Septoria tritici blotch in nordic winter wheat at seedling stage. Front. Genet. 2019, 10, 1224. [CrossRef]
[PubMed]

58. Spindel, J.E.; Begum, H.; Akdemir, D.; Collard, B.; Redoña, E.; Jannink, J.-L.; McCouch, S.
Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice
improvement. Heredity 2016, 116, 395–408. [CrossRef] [PubMed]

59. Herter, C.P.; Ebmeyer, E.; Kollers, S.; Korzun, V.; Leiser, W.L.; Würschum, T.; Miedaner, T. Rht24 reduces
height in the winter wheat population ‘Solitär × Bussard’ without adverse effects on Fusarium head blight
infection. Theor. Appl. Genet. 2018, 131, 1263–1272. [CrossRef] [PubMed]

60. Herter, C.P.; Ebmeyer, E.; Kollers, S.; Korzun, V.; Miedaner, T. An experimental approach for estimating
the genomic selection advantage for Fusarium head blight and Septoria tritici blotch in winter wheat.
Theor. Appl. Genet. 2019, 132, 2425–2437. [CrossRef] [PubMed]

61. McDonald, M.C.; Solomon, P.S. Just the surface: Advances in the discovery and characterization of
necrotrophic wheat effectors. Curr. Optic. Microbiol. 2018, 46, 14–18. [CrossRef]

62. Arraiano, L.S.; Brown, J.K. Sources of resistance and susceptibility to Septoria tritici blotch of wheat. Mol. Plant.
Pathol. 2017, 18, 276–292. [CrossRef]

63. Miedaner, T.; Zhao, Y.; Gowda, M.; Longin, C.F.H.; Korzun, V.; Ebmeyer, E.; Kazman, E.; Reif, J.C.
Genetic architecture of resistance to Septoria tritici blotch in European wheat. BMC Genom. 2013, 14, 858.
[CrossRef]

64. Juliana, P.; Singh, R.P.; Singh, P.K.; Crossa, J.; Rutkoski, J.E.; Poland, J.A.; Bergstrom, G.C.; Sorrells, M.E.
Comparison of models and whole-genome profiling approaches for genomic-enabled prediction of Septoria
tritici blotch, Stagonospora nodorum blotch, and tan spot resistance in wheat. Plant. Genome 2017, 10.
[CrossRef]

65. Muqaddasi, Q.H.; Zhao, Y.; Rodemann, B.; Plieske, J.; Ganal, M.W.; Röder, M.S. Genome-wide association
mapping and prediction of adult stage Septoria tritici blotch infection in European winter wheat via
high-density marker arrays. Plant. Genome 2019, 12, 180029. [CrossRef]

66. Ruud, A.K.; Dieseth, J.A.; Ficke, A.; Furuki, E.; Phan, H.T.T.; Oliver, R.P.; Tan, K.-C.; Lillemo, M.
Genome-wide association mapping of resistance to Septoria nodorum leaf blotch in a Nordic spring
wheat collection. Plant. Genome 2019, 12, 180105. [CrossRef]

67. Francki, M.G.; Walker, E.; Li, D.A.; Forrest, K. High-density SNP mapping reveals closely linked QTL for
resistance to Stagonospora nodorum blotch (SNB) in flag leaf and glume of hexaploid wheat. Genome 2018,
61, 145–149. [CrossRef] [PubMed]

68. Lin, M.; Corsi, B.; Ficke, A.; Tan, K.-C.; Cockram, J.; Lillemo, M. Genetic mapping using a wheat multi-founder
population reveals a locus on chromosome 2A controlling resistance to both leaf and glume blotch caused
by the necrotrophic fungal pathogen Parastagonospora nodorum. Theor. Appl. Genet. 2020, 133, 785–808.
[CrossRef] [PubMed]

69. Pfordt, A.; Ramos Romero, L.; Schiwek, S.; Karlovsky, P.; von Tiedemann, A. Impact of environmental
conditions and agronomic practices on the prevalence of Fusarium species associated with ear- and stalk rot
in maize. Pathogens 2020, 9, 236. [CrossRef] [PubMed]

70. Santiago, R.; Cao, A.; Malvar, R.A.; Butrón, A. Genomics of maize resistance to Fusarium ear rot and
fumonisin contamination. Toxins 2020, 12, 431. [CrossRef]

http://dx.doi.org/10.1534/genetics.114.161943
http://dx.doi.org/10.2135/cropsci2014.12.0827
http://dx.doi.org/10.1007/s00122-015-2637-3
http://dx.doi.org/10.1007/s00122-017-2998-x
http://dx.doi.org/10.3389/fgene.2019.01224
http://www.ncbi.nlm.nih.gov/pubmed/31850073
http://dx.doi.org/10.1038/hdy.2015.113
http://www.ncbi.nlm.nih.gov/pubmed/26860200
http://dx.doi.org/10.1007/s00122-018-3076-8
http://www.ncbi.nlm.nih.gov/pubmed/29468459
http://dx.doi.org/10.1007/s00122-019-03364-7
http://www.ncbi.nlm.nih.gov/pubmed/31144000
http://dx.doi.org/10.1016/j.mib.2018.01.019
http://dx.doi.org/10.1111/mpp.12482
http://dx.doi.org/10.1186/1471-2164-14-858
http://dx.doi.org/10.3835/plantgenome2016.08.0082
http://dx.doi.org/10.3835/plantgenome2018.05.0029
http://dx.doi.org/10.3835/plantgenome2018.12.0105
http://dx.doi.org/10.1139/gen-2017-0203
http://www.ncbi.nlm.nih.gov/pubmed/29237140
http://dx.doi.org/10.1007/s00122-019-03507-w
http://www.ncbi.nlm.nih.gov/pubmed/31996971
http://dx.doi.org/10.3390/pathogens9030236
http://www.ncbi.nlm.nih.gov/pubmed/32245280
http://dx.doi.org/10.3390/toxins12070431


Int. J. Mol. Sci. 2020, 21, 9717 20 of 22

71. Giomi, G.M.; Kreff, E.D.; Iglesias, J.; Fauguel, C.M.; Fernandez, M.; Oviedo, M.S.; Presello, D.A.
Quantitative trait loci for Fusarium and Gibberella ear rot resistance in Argentinian maize germplasm.
Euphytica 2016, 211, 287–294. [CrossRef]

72. Han, S.; Miedaner, T.; Utz, H.F.; Schipprack, W.; Schrag, T.A.; Melchinger, A.E. Genomic prediction and
GWAS of Gibberella ear rot resistance traits in dent and flint lines of a public maize breeding program.
Euphytica 2018, 214, 6. [CrossRef]

73. Kebede, A.Z.; Woldemariam, T.; Reid, L.M.; Harris, L.J. Quantitative trait loci mapping for Gibberella ear rot
resistance and associated agronomic traits using genotyping-by-sequencing in maize. Theor. Appl. Genet.
2016, 129, 17–29. [CrossRef]

74. Butrón, A.; Reid, L.M.; Santiago, R.; Cao, A.; Malvar, R.A. Inheritance of maize resistance to gibberella and
fusarium ear rots and kernel contamination with deoxynivalenol and fumonisins. Plant. Pathol. 2015, 64,
1053–1060. [CrossRef]

75. Miedaner, T.; Han, S.; Kessel, B.; Ouzunova, M.; Schrag, T.; Utz, H.F.; Melchinger, A.E. Prediction of
deoxynivalenol and zearalenone concentrations in Fusarium graminearum inoculated backcross populations
of maize by symptom rating and near-infrared spectroscopy. Plant. Breed. 2015, 134, 529–534. [CrossRef]

76. Löffler, M.; Miedaner, T.; Kessel, B.; Ouzunova, M. Mycotoxin accumulation and corresponding ear rot rating in three
maturity groups of European maize inoculated by two Fusarium species. Euphytica 2010, 174, 153–164. [CrossRef]

77. Martin, M.; Miedaner, T.; Dhillon, B.S.; Ufermann, U.; Kessel, B.; Ouzunova, M.; Schipprack, W.;
Melchinger, A.E. Colocalization of QTL for Gibberella ear rot resistance and low mycotoxin contamination in
early European maize. Crop. Sci. 2011, 51, 1935–1945. [CrossRef]

78. Holland, J.B.; Marino, T.P.; Manching, H.C.; Wisser, R.J. Genomic prediction for resistance to Fusarium ear
rot and fumonisin contamination in maize. Crop. Sci. 2020, 60, 1863–1875. [CrossRef]

79. Brauner, P.C.; Melchinger, A.E.; Schrag, T.A.; Utz, H.F.; Schipprack, W.; Kessel, B.; Ouzunova, M.; Miedaner, T.
Low validation rate of quantitative trait loci for Gibberella ear rot resistance in European maize. Theor. Appl.
Genet. 2017, 130, 175–186. [CrossRef] [PubMed]

80. Xiang, K.; Zhang, Z.M.; Reid, L.M.; Zhu, X.Y.; Yuan, G.S.; Pan, G.T. A meta-analysis of QTL associated with
ear rot resistance in maize. Maydica 2010, 55, 281–290.

81. Mideros, S.X.; Warburton, M.L.; Jamann, T.M.; Windham, G.L.; Williams, W.P.; Nelson, R.J. Quantitative trait
loci influencing mycotoxin contamination of maize: Analysis by linkage mapping, characterization of
near-isogenic lines, and meta-analysis. Crop. Sci. 2014, 54, 127–142. [CrossRef]

82. Zila, C.T.; Samayoa, L.F.; Santiago, R.; Butrón, A.; Holland, J.B. A genome-wide association study reveals
genes associated with Fusarium ear rot resistance in a maize core diversity panel. G3 Genes Genomes Genet.
2013, 3, 2095–2104. [CrossRef]

83. Galiano-Carneiro, A.L.; Kessel, B.; Presterl, T.; Gaikpa, D.S.; Kistner, M.B.; Miedaner, T. Multi-parent QTL
mapping reveals stable QTL conferring resistance to Gibberella ear rot in maize. Euphytica 2021, in press.

84. Böhm, J.; Schipprack, W.; Utz, H.F.; Melchinger, A.E. Tapping the genetic diversity of landraces in allogamous
crops with doubled haploid lines: A case study from European flint maize. Theor. Appl. Genet. 2017, 130,
861–873. [CrossRef]

85. Gaikpa, D.S.; Kessel, B.; Presterl, T.; Ouzunova, M.; Galiano-Carneiro, A.L.; Melchinger, A.E.; Schön, C.C.;
Miedaner, T. Exploiting the genetic diversity in two European maize landraces for Gibberella ear rot resistance
using genomic tools. Theor. Appl. Genet. 2020. [CrossRef]

86. Riedelsheimer, C.; Endelman, J.B.; Stange, M.; Sorrells, M.E.; Jannink, J.-L.; Melchinger, A.E.
Genomic predictability of interconnected biparental maize populations. Genetics 2013, 194, 493–503.
[CrossRef]

87. Brauner, P.C.; Müller, D.; Schopp, P.; Böhm, J.; Bauer, E.; Schön, C.-C.; Melchinger, A.E. Genomic prediction
within and among doubled-haploid libraries from maize landraces. Genetics 2018, 210, 1185–1196. [CrossRef]

88. Kebede, A.Z.; Johnston, A.; Schneiderman, D.; Bosnich, W.; Harris, L.J. Transcriptome profiling of two
maize inbreds with distinct responses to Gibberella ear rot disease to identify candidate resistance genes.
BMC Genom. 2018, 19, 131. [CrossRef] [PubMed]

89. Kibe, M.; Nair, S.K.; Das, B.; Bright, J.M.; Makumbi, D.; Kinyua, J.; Suresh, L.M.; Beyene, Y.; Olsen, M.S.;
Prasanna, B.M.; et al. Genetic dissection of resistance to gray leaf spot by combining genome-wide association,
linkage mapping, and genomic prediction in tropical maize germplasm. Front. Plant. Sci. 2020, 11, 572027.
[CrossRef] [PubMed]

http://dx.doi.org/10.1007/s10681-016-1725-z
http://dx.doi.org/10.1007/s10681-017-2090-2
http://dx.doi.org/10.1007/s00122-015-2600-3
http://dx.doi.org/10.1111/ppa.12351
http://dx.doi.org/10.1111/pbr.12297
http://dx.doi.org/10.1007/s10681-009-0080-8
http://dx.doi.org/10.2135/cropsci2010.11.0664
http://dx.doi.org/10.1002/csc2.20163
http://dx.doi.org/10.1007/s00122-016-2802-3
http://www.ncbi.nlm.nih.gov/pubmed/27709251
http://dx.doi.org/10.2135/cropsci2013.04.0249
http://dx.doi.org/10.1534/g3.113.007328
http://dx.doi.org/10.1007/s00122-017-2856-x
http://dx.doi.org/10.1007/s00122-020-03731-9
http://dx.doi.org/10.1534/genetics.113.150227
http://dx.doi.org/10.1534/genetics.118.301286
http://dx.doi.org/10.1186/s12864-018-4513-4
http://www.ncbi.nlm.nih.gov/pubmed/29426290
http://dx.doi.org/10.3389/fpls.2020.572027
http://www.ncbi.nlm.nih.gov/pubmed/33224163


Int. J. Mol. Sci. 2020, 21, 9717 21 of 22

90. Jamann, T.M.; Poland, J.A.; Kolkman, J.M.; Smith, L.G.; Nelson, R.J. Unraveling genomic complexity at a
quantitative disease resistance locus in maize. Genetics 2014, 198, 333–344. [CrossRef] [PubMed]

91. Vidal-Villarejo, M.; Freund, F.; Hanekamp, H.; von Tiedemann, A.; Schmid, K. Population history of the
Northern corn leaf blight fungal pathogen Setosphaeria turcica in Europe. bioRxiv 2020. [CrossRef]

92. Galiano-Carneiro, A.L.; Miedaner, T. Genetics of resistance and pathogenicity in the maize/Setosphaeria turcica
pathosystem and implications for breeding. Front. Plant. Sci. 2017, 8, 1490. [CrossRef]

93. Hanekamp, H. Europäisches Rassen-Monitoring und Pathogenesestudien zur Turcicum-Blattdürre
(Exserohilum turcicum) an Mais (Zea mays L.). [European Race Monitoring and Pathogenesis Studies
for Northern Corn Leaf Blight (Exserohilum turcicum) in maize (Zea mays L.)]. Ph.D. Thesis,
Georg-August-Universität, Göttingen, Germany, 2016.

94. Ding, J.; Ali, F.; Chen, G.; Li, H.; Mahuku, G.; Yang, N.; Narro, L.; Magorokosho, C.; Makumbi, D.; Yan, J.
Genome-wide association mapping reveals novel sources of resistance to northern corn leaf blight in maize.
BMC Plant. Biol. 2015, 15, 206. [CrossRef]

95. Welz, H.G.; Geiger, H.H. Genes for resistance to northern corn leaf blight in diverse maize populations.
Plant. Breed. 2000, 119, 1–14. [CrossRef]

96. Schechert, A.W.; Welz, H.G.; Geiger, H.H. QTL for resistance to Setosphaeria turcica in tropical African maize.
Crop. Sci. 1999, 39, 514–523. [CrossRef]

97. Kaefer, K.A.C.; Schuelter, A.R.; Schuster, I.; Marcolin, J.; Gruska Vendruscolo, E.C. Association mapping and
genetic control for northern leaf blight (Exserohilum turcicum) resistance in maize lines. Aust. J. Crop. Sci.
2017, 11, 1346–1353. [CrossRef]

98. Galiano-Carneiro, A.L.; Kessel, B.; Presterl, T.; Miedaner, T. Intercontinental trials reveal stable QTL for
northern corn leaf blight resistance in Europe and in Brazil. Theor. Appl. Genet. 2020. [CrossRef] [PubMed]

99. Balint-Kurti, P.J.; Yang, J.; Esbroeck, G.V.; Jung, J.; Smith, M.E. Use of a maize advanced intercross line for mapping of
QTL for northern leaf blight resistance and multiple disease resistance. Crop. Sci. 2010, 50, 458–466. [CrossRef]

100. Zwonitzer, J.C.; Coles, N.D.; Krakowsky, M.D.; Arellano, C.; Holland, J.B.; McMullen, M.D.; Pratt, R.C.;
Balint-Kurti, P.J. Mapping resistance quantitative trait loci for three foliar diseases in a maize recombinant
inbred line population—Evidence for multiple disease resistance? Phytopathology 2010, 100, 72–79. [CrossRef]
[PubMed]

101. Lennon, J.R.; Krakowsky, M.; Goodman, M.; Flint-Garcia, S.; Balint-Kurti, P.J. Identification of alleles
conferring resistance to gray leaf spot in maize derived from its wild progenitor species teosinte. Crop. Sci.
2016, 56, 209–218. [CrossRef]

102. Jamann, T.M.; Luo, X.; Morales, L.; Kolkman, J.M.; Chung, C.L.; Nelson, R.J. A remorin gene is implicated in
quantitative disease resistance in maize. Theor. Appl. Genet. 2016, 129, 591–602. [CrossRef] [PubMed]

103. Wiesner-Hanks, T.; Nelson, R. Multiple disease resistance in plants. Annu. Rev. Phytopathol. 2016, 54, 229–252.
[CrossRef]

104. McIntosh, R.A.; Wellings, C.R.; Park, R.F. Wheat Rusts: An. Atlas of Resistance Genes; Csiro Publishing:
Melbourne, Australia, 1995; ISBN 978-0-643-10302-3.

105. Singh, R.P.; Huerta-Espino, J.; Bhavani, S.; Herrera-Foessel, S.A.; Singh, D.; Singh, P.K.; Velu, G.; Mason, R.E.;
Jin, Y.; Njau, P.; et al. Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica 2011,
179, 175–186. [CrossRef]

106. Osman, M.; He, X.; Benedettelli, S.; Ali, S.; Singh, P.K. Identification of new sources of resistance to fungal
leaf and head blight diseases of wheat. Eur. J. Plant. Pathol. 2016, 145, 305–320. [CrossRef]

107. Gurung, S.; Bonman, J.M.; Ali, S.; Patel, J.; Myrfield, M.; Mergoum, M.; Singh, P.K.; Adhikari, T.B. New and
diverse sources of multiple disease resistance in wheat. Crop. Sci. 2009, 49, 1655–1666. [CrossRef]

108. Jighly, A.; Alagu, M.; Makdis, F.; Singh, M.; Singh, S.; Emebiri, L.C.; Ogbonnaya, F.C. Genomic regions
conferring resistance to multiple fungal pathogens in synthetic hexaploid wheat. Mol. Breed. 2016, 36, 127.
[CrossRef]

109. Miedaner, T.; Akel, W.; Flath, K.; Jacobi, A.; Taylor, M.; Longin, F.; Würschum, T. Molecular tracking of
multiple disease resistance in a winter wheat diversity panel. Theor. Appl. Genet. 2020, 133, 419–431.
[CrossRef] [PubMed]

110. Bhatta, M.; Morgounov, A.; Belamkar, V.; Wegulo, S.N.; Dababat, A.A.; Erginbas-Orakci, G.; Bouhssini, M.E.;
Gautam, P.; Poland, J.; Akci, N.; et al. Genome-wide association study for multiple biotic stress resistance in
synthetic hexaploid wheat. Int. J. Mol. Sci. 2019, 20, 3667. [CrossRef] [PubMed]

http://dx.doi.org/10.1534/genetics.114.167486
http://www.ncbi.nlm.nih.gov/pubmed/25009146
http://dx.doi.org/10.1101/2020.09.18.303354
http://dx.doi.org/10.3389/fpls.2017.01490
http://dx.doi.org/10.1186/s12870-015-0589-z
http://dx.doi.org/10.1046/j.1439-0523.2000.00462.x
http://dx.doi.org/10.2135/cropsci1999.0011183X003900020036x
http://dx.doi.org/10.21475/ajcs.17.11.10.pne678
http://dx.doi.org/10.1007/s00122-020-03682-1
http://www.ncbi.nlm.nih.gov/pubmed/32995900
http://dx.doi.org/10.2135/cropsci2009.02.0066
http://dx.doi.org/10.1094/PHYTO-100-1-0072
http://www.ncbi.nlm.nih.gov/pubmed/19968551
http://dx.doi.org/10.2135/cropsci2014.07.0468
http://dx.doi.org/10.1007/s00122-015-2650-6
http://www.ncbi.nlm.nih.gov/pubmed/26849237
http://dx.doi.org/10.1146/annurev-phyto-080615-100037
http://dx.doi.org/10.1007/s10681-010-0322-9
http://dx.doi.org/10.1007/s10658-015-0843-0
http://dx.doi.org/10.2135/cropsci2008.10.0633
http://dx.doi.org/10.1007/s11032-016-0541-4
http://dx.doi.org/10.1007/s00122-019-03472-4
http://www.ncbi.nlm.nih.gov/pubmed/31720693
http://dx.doi.org/10.3390/ijms20153667
http://www.ncbi.nlm.nih.gov/pubmed/31357467


Int. J. Mol. Sci. 2020, 21, 9717 22 of 22

111. McMullen, M.D.; Simcox, K.D. Genomic organization of disease and insect resistance genes in maize.
Mol. Plant. Microbe Interact. 1995, 8, 811–815. [CrossRef]

112. Wisser, R.J.; Balint-Kurti, P.J.; Nelson, R.J. The genetic architecture of disease resistance in maize: A synthesis
of published studies. Phytopathology 2006, 96, 120–129. [CrossRef] [PubMed]

113. Rossi, E.A.; Ruiz, M.; Rueda Calderón, M.A.; Bruno, C.I.; Bonamico, N.C.; Balzarini, M.G. Meta-analysis of
QTL studies for resistance to fungi and viruses in maize. Crop. Sci. 2019, 59, 125–139. [CrossRef]

114. Lopez-Zuniga, L.O.; Wolters, P.; Davis, S.; Weldekidan, T.; Kolkman, J.M.; Nelson, R.; Hooda, K.S.; Rucker, E.;
Thomason, W.; Wisser, R.; et al. Using maize chromosome segment substitution line populations for the
identification of loci associated with multiple disease resistance. G3 Genes Genomes Genet. 2019, 9, 189–201.
[CrossRef]

115. Qiu, Y.; Cooper, J.; Kaiser, C.; Wisser, R.; Mideros, S.X.; Jamann, T.M. Identification of loci that confer
resistance to bacterial and fungal diseases of maize. G3 Genes Genomes Genet. 2020, 10, 2819–2828. [CrossRef]

116. Wisser, R.J.; Kolkman, J.M.; Patzoldt, M.E.; Holland, J.B.; Yu, J.; Krakowsky, M.; Nelson, R.J.; Balint-Kurti, P.J.
Multivariate analysis of maize disease resistances suggests a pleiotropic genetic basis and implicates a GST
gene. Proc. Natl. Acad. Sci. USA 2011, 108, 7339–7344. [CrossRef]

117. Yang, Q.; He, Y.; Kabahuma, M.; Chaya, T.; Kelly, A.; Borrego, E.; Bian, Y.; El Kasmi, F.; Yang, L.; Teixeira, P.;
et al. A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple
pathogens. Nat. Genet. 2017, 49, 1364–1372. [CrossRef]

118. Lv, X.; Song, M.; Cheng, Z.; Yang, X.; Zhang, X.; Zhou, Z.; Zhang, C.; Zheng, L.; Li, Y.; Lei, K.; et al. qGLS1.02,
a novel major locus for resistance to gray leaf spot in maize. Mol. Breed. 2020, 40, 59. [CrossRef]

119. Kuki, M.C.; Scapim, C.A.; Rossi, E.S.; Mangolin, C.A.; Do Amaral, A.T.; Barth Pinto, R.J. Genome wide
association study for gray leaf spot resistance in tropical maize core. PLoS ONE 2018, 13, 3e0199539.
[CrossRef]

120. Chung, C.-L.; Longfellow, J.M.; Walsh, E.K.; Kerdieh, Z.; Van Esbroeck, G.; Balint-Kurti, P.; Nelson, R.J.
Resistance loci affecting distinct stages of fungal pathogenesis: Use of introgression lines for QTL mapping
and characterization in the maize—Setosphaeria turcica pathosystem. BMC Plant. Biol. 2010, 10, 103.
[CrossRef] [PubMed]

121. Wiesner-Hanks, T. Micro and Macro Views of the Maize-Setosphaeria turcica Pathosystem. Ph.D. Thesis,
Cornell University, New York, NY, USA, 2020.

122. Chung, C.-L.; Jamann, T.; Longfellow, J.; Nelson, R. Characterization and fine-mapping of a resistance locus
for northern leaf blight in maize bin 8.06. Theor. Appl. Genet. 2010, 121, 205–227. [CrossRef] [PubMed]

123. Strigens, A.; Schipprack, W.; Reif, J.C.; Melchinger, A.E. Unlocking the genetic diversity of maize landraces
with doubled haploids opens new avenues for breeding. PLoS ONE 2013, 8, e57234. [CrossRef] [PubMed]

124. Galiano-Carneiro, A.L. Genomics-Assisted Breeding Strategies for Quantitative Resistances to Northern
Corn Leaf Blight in Maize (Zea mays L.) and Fusarium Diseases in Maize and in Triticale (×Triticosecale
Wittm.). Ph.D. Thesis, University of Hohenheim, Stuttgart, Germany, 2020.

125. Auinger, H.-J.; Schönleben, M.; Lehermeier, C.; Schmidt, M.; Korzun, V.; Geiger, H.H.; Piepho, H.-P.;
Gordillo, A.; Wilde, P.; Bauer, E.; et al. Model training across multiple breeding cycles significantly improves
genomic prediction accuracy in rye (Secale cereale L.). Theor. Appl. Genet. 2016, 129, 2043–2053. [CrossRef]
[PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1094/MPMI-8-0811
http://dx.doi.org/10.1094/PHYTO-96-0120
http://www.ncbi.nlm.nih.gov/pubmed/18943914
http://dx.doi.org/10.2135/cropsci2018.05.0330
http://dx.doi.org/10.1534/g3.118.200866
http://dx.doi.org/10.1534/g3.120.401104
http://dx.doi.org/10.1073/pnas.1011739108
http://dx.doi.org/10.1038/ng.3919
http://dx.doi.org/10.1007/s11032-020-01134-8
http://dx.doi.org/10.1371/journal.pone.0199539
http://dx.doi.org/10.1186/1471-2229-10-103
http://www.ncbi.nlm.nih.gov/pubmed/20529319
http://dx.doi.org/10.1007/s00122-010-1303-z
http://www.ncbi.nlm.nih.gov/pubmed/20217383
http://dx.doi.org/10.1371/journal.pone.0057234
http://www.ncbi.nlm.nih.gov/pubmed/23451190
http://dx.doi.org/10.1007/s00122-016-2756-5
http://www.ncbi.nlm.nih.gov/pubmed/27480157
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Genetics of Quantitative Disease Resistance (QDR) 
	Basic Techniques for Genomics-Assisted Breeding 
	Advantages and Challenges in Genomics of Quantitative Pathosystems 
	Fusarium Head Blight in Small-Grain Cereals 
	The Septorias in Wheat 
	Gibberella and Fusarium Ear Rots in Maize 
	Northern Corn Leaf Blight (NCLB) in Maize 

	Detection of Multi-Disease Resistance (MDR) 
	Integration of Genomic Data in the Ongoing Breeding Process 
	Introgression of Genetic Resources 
	Improvement within Elite Materials 

	Conclusions 
	References

