Ver ítem
- xmlui.general.dspace_homeCentros Regionales y EEAsCentro Regional Buenos Aires SurEEA BarrowArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
- Inicio
- Centros Regionales y EEAs
- Centro Regional Buenos Aires Sur
- EEA Barrow
- Artículos científicos
- Ver ítem
Constitutive overexpression of EPSPS by gene duplication is involved in glyphosate resistance in Salsola tragus
Resumen
Background: Glyphosate-resistant Salsola tragus accessions have been identified in the USA and Argentina; however, the mechanisms of glyphosate resistance have not been elucidated. The goal of this study was to determine the mechanism/s of glyphosate resistance involved in two S. tragus populations (R1 and R2) from Argentina.
Results: Both glyphosate-resistant populations had a 6-fold lower sensitivity to glyphosate than the S population (i.e. resistance
[ver mas...]
Background: Glyphosate-resistant Salsola tragus accessions have been identified in the USA and Argentina; however, the mechanisms of glyphosate resistance have not been elucidated. The goal of this study was to determine the mechanism/s of glyphosate resistance involved in two S. tragus populations (R1 and R2) from Argentina.
Results: Both glyphosate-resistant populations had a 6-fold lower sensitivity to glyphosate than the S population (i.e. resistance index). No evidence of differential absorption, translocation or metabolism of glyphosate was found in the R1 and R2 populations compared to a susceptible population (S). No EPSPS mutations were detected, but S. tragus R1 and R2 plants had approximately 14-fold higher EPSPS gene relative copy number compared to the S counterpart. In R1 and R2, EPSPS duplication entailed a greater constitutive EPSPS transcript abundance by about 7-fold and a basal EPSPS activity approximately 3-fold higher than the S population.
Conclusion: The current study reports EPSPS gene duplication for the first time as a mechanism of glyphosate resistance in S. tragus populations. The increase of glyphosate dose needed to kill R1 and R2 plants was linked to the EPSPS transcript abundance and level of EPSPS activity.
This evidence supports the convergent evolution of the overexpression EPSPS gene in several Chenopodiaceae/Amaranthaceae species adapted to drought environments and the role of gene duplication as an adaptive advantage for plants to withstand stress.
[Cerrar]
Autor
Yanniccari, Marcos;
Palma Bautista, Candelario;
Vázquez García, José Guadalupe;
Gigon, Ramon;
Mallory-Smith, Carol Ann;
de Prado, Rafael;
Fuente
Pest Management Science (First published: 03 November 2022)
Fecha
2022-11
Editorial
Wiley
ISSN
1526-498X
1526-4998
1526-4998
Documentos Relacionados
Formato
pdf
Tipo de documento
artículo
Proyectos
(ver más)
INTA/2019-PE-E4-I086-001/2019-PE-E4-I086-001/AR./Monitoreo, caracterización y manejo de plagas resistentes a fitosanitarios y organismos geneticamente modificados
Palabras Claves
Derechos de acceso
Embargado
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)