Facebook
Twitter
YouTube
Instagram
    • español
    • English
  • Contacto
  • español 
    • español
    • English
  • Mi Cuenta
Acerca deAutoresTítulosTemasColeccionesComunidades☰
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ver ítem 
    xmlui.general.dspace_homeCentros Regionales y EEAsCentro Regional Tucumán - Santiago del EsteroEEA FamailláArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
  • Inicio
  • Centros Regionales y EEAs
  • Centro Regional Tucumán - Santiago del Estero
  • EEA Famaillá
  • Artículos científicos
  • Ver ítem

Stress response and detoxification mechanisms involved in non-target-site herbicide resistance in sunflower

Resumen
The nature of non-target-site herbicide resistance (NTSR) to imidazolinone (IMI) in HA425 sunflower (Helianthus annuus L.) has not yet been fully characterized but could be related to xenobiotic metabolism. The objective of this study was to evaluate the role of cytochrome P450 monooxygenases (P450s) and other detoxification-related proteins in NTSR in sunflower. Two sunflower inbred lines were used: HA 425, which is IMI resistant (Imisun), and HA 89, [ver mas...]
The nature of non-target-site herbicide resistance (NTSR) to imidazolinone (IMI) in HA425 sunflower (Helianthus annuus L.) has not yet been fully characterized but could be related to xenobiotic metabolism. The objective of this study was to evaluate the role of cytochrome P450 monooxygenases (P450s) and other detoxification-related proteins in NTSR in sunflower. Two sunflower inbred lines were used: HA 425, which is IMI resistant (Imisun), and HA 89, which is IMI susceptible. The growth response to the IMI herbicide imazethapyr in combination with the P450 inhibitors 1-aminobenzotriazole (ABT) or piperonyl butoxide (PBO) was evaluated in 15-d-old sunflower plantlets. Roots were collected, and label-free quantitation (LFQ) proteomic analysis was carried out to characterize the NTSR mechanisms involved in the IMI resistance trait in sunflower. The increased phytotoxicity of imazethapyr observed in the resistant line when ABT or PBO were present agrees with the hypothesis that NTSR mechanisms may contribute to herbicide resistance in sunflower. The herbicide treatment also led to changes in the levels of biotic and abiotic stress-related proteins, glutathione S-transferases, and cytochrome P450s, among others. Plant growth and root protein expression response to IMI herbicides in sunflower would be a combination of stress-related and detoxification mechanisms. Understanding the basis of NTSR becomes helpful to exploit this trait in sunflower crop and to develop xenobiotic-resistant, soil-remediating cultivars. [Cerrar]
Thumbnail
Autor
Vega, Tatiana;   Gil, Mercedes;   Martin, Gabriela;   Moschen, Sebastian Nicolas;   Picardi, Liliana;   Nestares, Graciela;  
Fuente
Crop Science 60 (4) : 1809-1822 (July-August 2020)
Fecha
2020-08
Editorial
Wiley
ISSN
1435-0653
URI
http://hdl.handle.net/20.500.12123/11724
https://acsess.onlinelibrary.wiley.com/doi/abs/10.1002/csc2.20138
DOI
https://doi.org/10.1002/csc2.20138
Formato
pdf
Tipo de documento
artículo
Palabras Claves
Girasol; Sunflowers; Herbicidas; Herbicides; Resistencia a los Herbicidas; Herbicide Resistance; Estres; Stress; Desintoxicación; Detoxification; Helianthus annuus;
Derechos de acceso
Restringido
Descargar
Compartir
  • Compartir
    Facebook Email Twitter Mendeley
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Metadatos
Mostrar el registro completo del ítem