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CHAPTER 4 

MODELLING IMPACTS OF DRIVERS ON
BIODIVERSITY AND ECOSYSTEMS
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KEY FINDINGS
Models of biodiversity and ecosystem function are 
critical to our capability to predict and understand 
responses to environmental change (Section 4.2). 
Modelling is one way of helping policymakers assess the 
impacts of different drivers on biodiversity and ecosystems, 
as well as the feedbacks on drivers generated by those 
impacts (from Chapter 3). Modelling provides tools that can 
help project future dynamics based on scenarios of direct 
and indirect drivers. However, the capacity of biodiversity 
modelling to meet policymaking needs is still affected by a 
lack of data and knowledge, and by model complexity and 
uncertainties.

There is a need to match biodiversity and ecosystem 
function model development to stakeholder and policy 
needs (Section 4.3.2.1). Biodiversity and ecosystem 
models rely heavily on assumptions about key processes 
and input data. There is a need to involve both stakeholders 
and modellers in representing these processes and 
assumptions and in identifying critical drivers (i.e. outputs 
from scenarios, Chapter 3) and the biodiversity/ecosystem 
response variables that need to be addressed. It is also 
important that the underlying context, uncertainties, 
validity, specificity, and outputs of the models are clearly 
and transparently interpreted and explored jointly by the 
modellers and stakeholders. 

Biodiversity and ecosystem modelling depends heavily 
on our understanding of ecosystem structure, function 
and process and on their adequate representation in 
models (Section 4.2.1). Both understanding and adequate 
representation depend on data availability, so there is a need 
to generate and compile representative data for different 
biodiversity variables in different ecosystems at multiple 
locations and different scales. Observation networks, as well 
as long-term monitoring programmes, are therefore critical 
to assess the response of ecosystems to drivers of change 
such as climate change, land-use change, exploitation and 
pollution, and to inform model development. 

Uncertainty in ecosystem dynamics is inherent 
in ecosystem modelling (Section 4.6). Uncertainty, 
which is inherently associated with model processes, 
data limitations and environmental stochasticity, can be 
accounted for by using multi-model ensembles, quality 
assurance and quality control, and by generating data 
from long-term observations. Different models may provide 
results that should be interpreted within the context of the 
model assumptions and input data. The biodiversity and 
ecosystem functioning models currently available provide 
a range of options to assist policymakers in understanding 
relationships between drivers and impacts, and in designing 
efficient policies. 

The scientific community has recognised the importance 
of developing strategies to address the limitations of 

Purpose of this chapter: Explores key issues in 
modelling impacts of changes in direct drivers (from 
Chapter 3) on biodiversity and ecosystems; and 
critically reviews major types of models for generating 
outputs that are either directly relevant to assessment 
and decision-support activities, or are required as 
inputs to subsequent modelling of nature’s benefits to 
people (covered in Chapter 5).

Target audience: Aimed mostly at a more technical 
audience, such as scientists and practitioners wanting 
to identify appropriate biodiversity and ecosystem 
modelling approaches for particular applications. 
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current models and of suitably treating the different sources 
of uncertainty involved. Well-established guidelines are 
relevant because an assessment of available approaches 
to modelling biodiversity and ecosystem responses to 
environmental changes clearly concludes that there is 
no single modelling approach (or model category) that 
can serve all assessment needs and decision-making 
requirements. 

KEY RECOMMENDATIONS
Efforts should be made to ensure that experts 
involved in Intergovernmental Science-Policy Platform 
on Biodiversity and Ecosystem Services (IPBES) 
deliverables are aware of the important role that 
models of biodiversity and ecosystem functioning 
play in formalising the complexity of living systems 
(Section 4.2). In particular, it is important that experts 
in IPBES task forces and assessments recognise the 
complexities linking drivers of environmental change 
to ecosystem dynamics. It is also important that they 
acknowledge the value of modelling as a method to formally 
represent – and therefore simplify – such complexity, and 
as a scientific tool to support decision making. This can be 
facilitated by the selection of experts for IPBES deliverables 
who are familiar with the limitations and use of models 
of biodiversity and ecosystem functioning. In addition, 
follow-up activities in Deliverable 3c can provide additional 
guidance to experts in IPBES deliverables – especially the 
thematic, regional and global assessments – to assist in the 
interpretation and correct use of biodiversity models.

Encouraging stakeholder participation in scenario 
and model use as early as possible in assessments 
would provide substantial benefits for IPBES (Section 
4.7). This would maximise the correspondence between 
the objectives of the assessments and the outputs and 
limitations of the ecosystem modelling approach to be 
developed or interpreted. It is important that modellers and 
stakeholders interact in the different stages of modelling 
exercises concerning the selection of key questions, 
the context, assumptions, scale, time frame, and so on. 
Mechanisms for facilitating this dialogue are not yet explicitly 
laid out in the IPBES Work Programme.

Experts involved in IPBES assessments should 
critically evaluate the quality of the information used 
in modelling exercises. The task force on Knowledge, 
Information and Data could encourage long-term 
observations that would improve our understanding 
of biodiversity and ecological patterns (Section 4.3.2). 
This will enable models and outputs to be improved and 
to better fit IPBES objectives. IPBES needs to ensure 
that a quality chain between data type, model output and 

suitability for end-use exists in all assessments. Linkage 
of these components cannot be adequately implemented 
if data are scarce or of a low quality, thus leading to 
constraints in how model outputs feed into a given decision 
context (Chapter 8).

The development of consistent protocols is important 
for IPBES to ensure the quality of the use of models 
and their outputs in assessments (Section 4.3.2.2). 
Model intercomparison programmes would encourage 
increased collaboration among the modelling groups 
and with field ecologists to develop suitable protocols for 
modelling drivers impacting on biodiversity and ecosystem 
functions. An example could be to engage the scientific 
community to form model intercomparison groups similar 
to those developed in the context of the Intergovernmental 
Panel on Climate Change (IPCC) assessments, involving a 
large number of modelling groups working on biodiversity 
and ecosystem modelling. 

The explicit characterisation of uncertainty 
should be a priority in the presentation and use of 
biodiversity and ecosystem model outputs within 
IPBES (Section 4.6). Communication of outputs needs 
to adequately identify the uncertainties associated with 
scenario development (Chapters 2 and 3), as well as clearly 
describe and communicate issues directly related to the 
choice of biodiversity and ecosystem models. To enable 
robust decision making and to account for uncertainty 
in the outcomes of biodiversity models, the integration 
of multi-model techniques and ensembles of multiple 
models and scenarios that provide a range of projections 
could be promoted in assessments. These practices 
should be encouraged, including by engaging with the 
scientific community through the task force on Knowledge, 
Information and Data and through the follow-up activities of 
Deliverable 3c.

The development of guidelines for integrated 
ecosystem modelling would be highly beneficial 
for IPBES assessments. There is a need to develop 
integrated models that can be applied in marine, terrestrial 
and freshwater ecosystems to assess the impact of drivers 
and their feedbacks on biodiversity and ecosystems. These 
integrated models should consider both biophysical and 
socio-economic drivers and their feedbacks at scales 
relevant to ecological processes underlying biodiversity 
changes and to decision-making processes.
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4.1 INTRODUCTION 
AND CONCEPTUAL 
FRAMEWORK
Biodiversity and ecosystem dynamics are inherently 
complex, and so is their response to environmental drivers 
– including both natural and anthropogenic drivers. Models 
are powerful tools for addressing complex systems as they 
can be used to assess and predict the impacts of drivers 
on biodiversity and ecosystems, and hence the impacts on 
ecosystem services and human well-being. This chapter 
focuses on the approaches and methods currently available 
to explicitly link environmental changes with biodiversity and 
ecosystem responses, from changes in population size, to 
community composition and structure, to biogeochemistry 
fluxes. The aim is to identify the range of tools available for 
unravelling patterns and mechanisms of biodiversity and 
ecosystem change, and to incorporate this knowledge 
in models, allowing the projection of the future state of 
biodiversity and ecosystems in particular decision-making 
and management contexts (see Chapter 2). 

The chapter first provides an introduction to the context 
in which biodiversity and ecosystem models are to be 
developed, including the relevant aspects of biodiversity 
response to drivers and a typology of the main modelling 
approaches (Section 4.2). Next, an overview of available 
modelling approaches relevant to IPBES – at different levels 
of biological organisation – is provided (Section 4.3). This 
comprises an explanation of model structure, scope of 
application and illustrating examples. To further guide the 
use of the most appropriate models, this section includes a 
critical analysis of the different modelling tools available, of 
model limitations, and of existing information and capacity-
building needs.

Sections 4.4 to 4.6 cover the main issues in biodiversity 
modelling, which are modelling biodiversity feedbacks 
into environmental drivers, balancing model complexity 
and applicability, and addressing uncertainty. The issues 
associated with sources of uncertainty in model projections 
are of the utmost importance in the context of biodiversity 
projections for IPBES, and we describe this topic in depth in 
the context of biodiversity and ecosystem modelling. Finally, 
we identify the major challenges to biodiversity projections 
in the context of the IPBES programme, and highlight the 
main pathways available to policymakers at a range of 
administrative scales.

This chapter is directly linked to Chapter 3 (scenarios 
and models of indirect and direct drivers) and to Chapter 
5 (modelling nature’s benefits to people). The models 
discussed in this chapter provide a means of translating 
scenarios of drivers, as described in Chapter 3, into 
expected impacts on biodiversity and ecosystems. In turn, 

outputs (i.e. projections) from the models described in this 
chapter can serve as inputs to modelling changes in nature’s 
benefits to people (including ecosystem services), as 
discussed in Chapter 5. Moreover, because the engagement 
of stakeholders in biodiversity modelling exercises and the 
effective communication of results to policymakers are 
fundamental to the successful use of models, there is a two-
way link between the present chapter and Chapter 2.

The main external input when modelling biodiversity 
response to environmental change or pressures is the 
change in the state of drivers directly affecting biodiversity 
and ecosystems. In this chapter, we consider modelling 
approaches that assess the impacts of direct drivers of 
environmental change as identified by the Millennium 
Ecosystem Assessment (MA, 2005a): habitat change, 
climate change, overexploitation, pollution and invasive 
species. Scenario development and modelling methods for 
projecting future changes in direct drivers, to be used as 
inputs in biodiversity and ecosystems models, are described 
in detail in Chapter 3. 

As for connections and potential overlap with Chapter 5, 
it is important to note the multiple roles of biodiversity and 
ecosystems in the conceptual chain linking direct drivers 
to nature’s benefits to people. Specifically, biodiversity may 
either regulate the ecosystem processes that generate final 
ecosystem services, or itself constitute a final ecosystem 
service, or even provide a good that is directly enjoyed 
by people (Mace et al., 2012; Oliver et al., 2015). In the 
first case, biodiversity attributes affect the development 
and maintenance of ecosystem processes (Cardinale et 
al., 2012), such as nutrient cycling (Handa et al., 2014), 
primary productivity (Cardinale et al., 2007) or water 
infiltration (Eldridge and Freudenberger, 2005), which in 
turn give rise to final ecosystem services. In the second 
case, biodiversity elements are themselves material outputs 
with direct use value, such as medicinal plants or fish, but 
require human capital inputs (e.g. labour, transport) before 
being enjoyed by society. Finally, biodiversity elements 
may themselves be viewed as a good if directly enjoyed by 
people without any additional input, which is the case with 
the aesthetic enjoyment of nature, ecotourism, and so on. 
Therefore, outputs from biodiversity models (including future 
projections) can be used as inputs to ecosystem services 
models, or provide direct information on ecosystem services 
and goods, such as data on the distribution and abundance 
of charismatic species. It is worth noting that, often, 
ecosystem services models implicitly (e.g. by simplifying 
biodiversity components and ecosystem functions using 
surrogate information on land cover or use) or explicitly 
include biodiversity or ecosystem function sub-modules. A 
compilation of relevant cases is treated in further detail in 
Chapter 5. Moreover, although biotic and abiotic ecosystem 
components interact and are both essential to ecosystem 
functioning and therefore to modelling ecosystem services 
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– in particular regulating services – the focus of this chapter 
will be on the biotic components, represented by ‘nature’ 
in the IPBES Conceptual Framework (see Figure 1.2 in 
Chapter 1).

In accordance with the overall aim of Deliverable 3c to 
inform and guide other IPBES deliverables in the use of 
scenarios and models for biodiversity and ecosystem 
services, this chapter provides relevant information on:

 Modelling methodologies available for the IPBES 
Catalogue of Policy Support Tools for assessing the 
response of biodiversity and ecosystems to direct 
drivers (Deliverable 4c);

 Available modelling methodologies to evaluate scenarios 
of sustainable use of biodiversity and to assess 
responses to drivers of land degradation and to invasive 
species (Deliverable 3b);

 Caveats and good practices for assessments regarding 
the use of available data in modelling approaches and 
the use of modelling outputs in literature reviews and 
meta-analyses (Deliverables 2b, 2c, 3b);

 Capacity-building needs regarding the use of modelling 
approaches in decision-making processes and the 
engagement of stakeholders in modelling processes 
(Deliverables 1a, 2b);

 Current knowledge gaps, data needs and future 
research recommendations to improve the predictability 
and scope of application of models (Deliverable 1d);

 Involving indigenous and local knowledge in model 
development, testing and application (Deliverable 1c).

FIGURE 4.1
 
  

Summary of biodiversity state variables and processes affected at different organisational levels by different components of climate 
change (Modified from Bellard et al., 2012. Impacts of climate change on the future of biodiversity. Copyright © 2012 by John Wiley Sons, Inc. 

Reprinted by permission of John Wiley & Sons, Inc).
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4.2 STRUCTURE AND 
COMPONENTS OF 
BIODIVERSITY AND 
ECOSYSTEM MODELS 
Scientists and stakeholders supporting decision-making 
processes are always faced with the challenge of selecting 
the key processes and drivers leading to relevant impacts 
on their study object (Guisan et al., 2013), and this is the 
topic of this section. Decisions on how and what to include 
explicitly in the modelling process, and what can be simplified 
or ignored, are crucial as they will impact model outcomes. 
The role of biodiversity as a regulator of ecosystem processes 
or as a material output (either a final service or good) defines 
the variables of interest when assessing and projecting the 
impacts of direct drivers. For instance, community data such 
as functional or species diversity (Cardinale et al., 2007; Mace 
et al., 2012) or habitat structure (Eldridge and Freudenberger, 
2005) may be particularly important in assessing the impact 
of drivers when biodiversity has a regulatory role, while 
population data such as species distribution (Gaikwad et 
al., 2011) or population structure (Berkeley et al., 2004) 
would be more appropriate when biodiversity elements 
have a direct use value. It is also worth noting that, overall, a 
positive relationship exists between biodiversity attributes and 
ecosystem services (Harrison et al., 2014).

This recognition of the different roles of biodiversity follows 
an anthropocentric perspective that focuses on ecosystem 
services – the material and non-material benefits generated 
by nature. Like utilitarian values, biodiversity has its own 
intrinsic value that is independent of human demand 
or appreciation and that is difficult, or even impossible, 
to quantify through modelling, although its existence or 
evolutionary value may serve to maintain life. 

Biodiversity models, like other mathematical models in the 
environmental sciences, consist of a set of components, 
namely state variables, external variables, mathematical 
equations and parameters (Jørgensen and Bendoricchio, 
2001; Smith and Smith, 2007). Predictions of ecological 
responses to environmental changes should start with 
the specification of the major conceptual components of 
the model and the critical relationships between them. 
In the description of any model of this type, the following 
components should be identified: 

1. Elements describing the ecosystem 
characteristics. These are the target state variables 
used to describe the biophysical components of 
interest, such as biomass, species richness, functional 
diversity or habitat structure (see Figure 4.1). State 
variables should be included based on their ability to 
serve as indicators of system state, their sensitivity to 
pressures, and the stability of their response pattern, 
although the consideration of available versus ideal data 

FIGURE 4.2 
 
  

(a) Conceptual diagram of how dispersal and niche ‘filters’ select species from pools at different geographical and ecological scales. 
(b) Main processes that directly or indirectly impact the filtering process (Modified from Thuiller et al., 2013. A road map for integrating eco-

evolutionary processes into biodiversity models. Copyright © 2013 by John Wiley Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc). 
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often calls for a pragmatic approach given the costs and 
feasibility of data collection.

2. Environmental and biotic drivers. The spatial or 
temporal dynamics of these model components have 
a direct or indirect effect on the state variables. In the 
context of environmental change, changes in the value 
of environmental (e.g. climate change) and biotic drivers 
will affect the value of the state variables (e.g. species 
distributions).

3. Ecosystem/ecological processes. These model 
components allow the description of the changes in 
the stock and/or flow of materials or in the interactions 
between organisms and with their abiotic environment 
(Mace et al., 2012). Processes are relevant in 
determining changes in the biological component (e.g. 
changes in species distribution after colonisation and 
extinction dynamics). 

The impact of drivers on biological processes is key in 
determining the nature of the model and the inclusion of 
multidisciplinary expertise in the model-building process 
(Guisan et al., 2013). In the context of environmental 
change, the effect of environmental pressures on state 
variables can be direct (e.g. loss of tree cover after 
deforestation, changes in climate conditions) or mediated 
by biophysical processes (e.g. ocean acidification and 
warming affecting coral recruitment and growth, and hence 
coral abundance and reef structure). In addition, processes 
also mediate interactions among state variables (e.g. biotic 
interactions, trophic cascades). 

Using community structure as an example, the processes 
and scales that are important for modelling are illustrated 
in Figure 4.2, which shows how ‘filters’ select species 
from a global pool to obtain realised local communities 
(Thuiller et al., 2013). In other words, and in the context 
of biodiversity response to change, drivers (input data) 
create or change geographic or niche filters, thus leading to 
changes in community composition (output data). The filters 
(ecological processes involved) include biogeographic and 
environmental aspects of the real world, and are represented 
as components in biodiversity models. Species response 
to direct drivers (box a) is mediated by dispersal and niche 
filters through a series of processes (box b), which may or 
may not be explicitly considered in biodiversity models. 

4.2.1 Describing ecosystems 
in models: biological levels for 
modelling
Biodiversity and ecosystem responses to environmental 
change can assume many forms as a consequence of the 
inherent complexity; one way of addressing this diversity is 

to reduce it to a few meaningful dimensions. Biodiversity 
and ecosystem variables can be arranged along dimensions 
representing key aspects of biodiversity complexity: biological 
organisation levels (species, populations, ecosystems, 
etc.) and biodiversity attributes (composition, structure 
and function). These two dimensions define a conceptual 
space that can be useful for identifying relevant response 
variables (see Table 4.1). More specifically, composition and 
structural elements such as species richness or biomass 
correspond to state variables, and functional elements such 
as primary productivity, herbivory or competition correspond 
to processes. Composition and structure emerge from 
processes, but also affect them (Dale and Beyeler, 2001). 

From an ecological perspective, composition and 
structure variables describe the structural elements of 
ecosystems, while processes describe the fluxes of 
energy and matter and the interactions within and 
between organisation levels.

Ecosystems are open systems. They harness solar energy 
and transfer it through their various structural elements and 
organisation levels, via different biological and ecological 
processes. At the biosphere level, water and nutrients (e.g. 
carbon, nitrogen and phosphorus) are key structural elements 
of all living components, and key abiotic components of 
ecosystems. Their flux across the Earth system is described 
by the biogeochemical cycles. This flux of energy permits 
life on Earth and fuels the ecological functions that are 
useful for societies (i.e. ecosystem services). To model 
the dynamics of biodiversity, it is important that the major 
ecological processes involved in the transfer of energy 
through ecosystems are taken into account (Mokany et al., 
2015). These include production, consumption, respiration 
and recycling. Other processes such as regulation and 
evolution are critical to the maintenance of biodiversity and 
the resilience of ecosystems over time.

Primary production and respiration are major ecological 
processes, occurring at the organism level but affecting 
population dynamics and community structure. Organic 
matter from primary production forms the basis of all life 
on Earth. Numerous factors such as light, the availability 
of inorganic nutrients, water and temperature influence 
primary production. Respiration, which encompasses 
all the living processes using oxygen, is at the core of 
metabolism. While occurring at the organism level, both 
processes can be considered at every level of organisation. 
Primary productivity, for instance, is often used as an 
indicator of ecosystem functioning and modelled at the 
level of communities or ecosystems to assess the impacts 
of land-use change, climate change and management 
practices on vegetation. Regarding respiration, at the 
organism level respiration processes are influenced by 
many factors, including the species considered (body-size 
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scaling rules imply that many metabolic processes vary 
with the maximum size that a species can reach (Kearney 
et al., 2010), the size of individuals, their condition, the 
availability of food, oxygen levels and temperature. At the 
population level, respiration integrates the metabolism of all 
individuals. It is therefore highly dependent on the size and 
state structure of the population. At the community level, 
respiration integrates the metabolism of all populations and 
is therefore controlled by their relative abundance and the 
structure of the community. Consumption and recycling are 
the main processes associated with trophic interactions, and 
are therefore modelled at the community and ecosystem 
levels (Sarmiento and Gruber, 2006). Consumption 
constitutes a major process of ecosystem dynamics that 
transfers solar energy along food chains, from primary 
producers up to top predators. Trophic interactions are 
influenced by various factors, including the spatial-temporal 
co-occurrence of grazers/predators and their food/prey, 
which is often constrained by environmental features. 

In addition to the metabolic processes described above, 
processes related to biodiversity responses to environmental 
changes can be broadly divided into population and 
community responses (Lavergne et al., 2010). The first of 
these are mechanisms related to the ecology of the species 
populations, including dispersal, plasticity and population 
dynamics. These processes are primarily determined by 
biological traits expressing the capability of the target 
species to deal with environmental variability in space and 
time (e.g. Thuiller et al., 2013; Hanski et al., 2013). Secondly, 
species interactions can restrict or expand the set of places 
that the species is able to inhabit (Davis et al., 1998). 
Competition, facilitation or trophic relationships are site- and 
species-specific and account for a great deal of variability in 
the capability of a species to survive in a given environment. 

4.2.2 Introducing drivers of 
environmental change
The world has experienced global environmental change 
due to human activities, and this has encouraged research 
on scenarios and models to study the new challenges that 

biodiversity is exposed to (Pereira et al., 2010). Assessments 
of links between these drivers and biodiversity responses 
are central to IPBES. Change in biodiversity is determined 
both by changes in the environment and by the ecological 
and physiological processes contributing to the dynamics 
of these ecological systems (Lavergne et al., 2010). Thus, 
biodiversity change may be either related to changes in the 
environment itself, to the biological processes acting within 
ecosystems or, more frequently, to a combination of both 
(Leung et al., 2012). It is therefore important to distinguish 
between changes caused by anthropogenic drivers and 
changes emerging from the natural dynamics of ecological 
systems. This is particularly important because, although 
biodiversity and ecosystem services experience change 
due to natural causes, anthropogenic drivers increasingly 
dominate current environmental changes.

Following the IPBES Conceptual Framework, natural and 
anthropogenic drivers directly affect biodiversity. Both 
natural and anthropogenic direct drivers of impacts on 
ecosystem processes explicitly cause measurable changes 
in ecosystem properties. 

Natural direct drivers emerge from natural biophysical and 
geophysical processes, while anthropogenic drivers result 
from the trajectory and interactions of socio-economic 
drivers (indirect drivers).

Biodiversity models use variables describing properties 
of direct drivers as inputs to predict their impact on 
biodiversity variables. Historically, the largest impacts 
on biodiversity have been through land-use change in 
terrestrial ecosystems (Pereira et al., 2012) and through 
resource exploitation in marine ecosystems (MA, 2005b). 
Freshwater ecosystems have been strongly impacted 
by a range of factors including, most notably, habitat 
modification, invasive species and pollution. Climate and 
land-use changes have probably now reached a similar 
level of pressure on ecosystems, but during the last three 
centuries land-use change has exposed 1.5 times as many 
landscapes to significant modifications as climate change 
(Ostberg et al., 2015).

TABLE 4.1
Examples of biological levels for modelling (compositional, structural and functional biodiversity variables, from (Noss, 1990; 
Dale and Beyeler, 2001), selected to represent levels of biodiversity that warrant attention in environmental monitoring and 
assessment programmes.

Level Composition Structure Function

Individuals Genes Genetic structure Genetic processes, metabolism

Populations Presence, abundance, cover,  
biomass, density

Population structure, range, 
morphological variability

Demography, dispersion, phenology

Communities Species richness, evenness and  
diversity, similarity

Canopy structure, habitat structure Species interactions (herbivory, predation, 
competition, parasitism), decomposition

Ecosystems Habitat richness Spatial heterogeneity, fragmentation, 
connectivity

Ecosystem processes (hydrologic processes, 
geomorphic processes), disturbances
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Human impacts on the global environment are operating at a 
range of rates and spatial scales. Scaling issues are particularly 
important when assessing impacts on biodiversity and 
ecosystem services because drivers have different impacts 
at different scales. For example, while climate change is a 
driver that acts at the global scale, habitat modification has 
an impact on biodiversity and ecosystem services at regional 
and local scales. The consequences of habitat modification 
have been significant for many aspects of local, regional 
and global environments, including the climate, atmospheric 
composition, species composition and interactions, 
soil condition, and water and sediment flows. However, 
global-scale assessments typically mask critical sub-global 
variations, thus underestimating the effects of drivers acting at 
local scales. Local and regional case studies can provide the 
spatial and temporal resolution required to identify and account 
for major environmental sources of variation in cause-to-cover 
relationships and the consequence for biodiversity. Single-factor 
explanations, at the macro or the micro scale, have not proven 
adequate (Bellard et al., 2015). Many models assessing the 
impact of environmental drivers on terrestrial ecosystems and 
biodiversity elements, including those dealing with climate and 
trace-gas dynamics, require projections of land-cover change 
as inputs. In this context, Loreau et al. (2003) highlighted that 
knowledge of spatial processes across ecosystems at the local 
scale is critical to predict the effects of landscape changes on 
both biodiversity and ecosystem functioning and services. 

4.2.3 Dealing with processes: the 
model continuum from correlative 
to process-based approaches

There are a wide variety of ecological models available for 
assessing impacts of direct drivers on biodiversity and 
ecosystem functioning. These can be categorised based 

on their complexity and degree of formalisation, from 
expert-based systems that rely on experience (including 
in the form of local knowledge), to complex integrated 
ecosystem models.

Quantitative models are generally classified in two broad 
categories: correlative and process-based models (e.g. 
Pereira et al., 2010; Dormann et al., 2012). To distinguish 
between these model types, we follow the model definitions 
of Dormann et al. (2012). These state that correlative models 
are characterised by having parameters with no predefined 
ecological meaning, and for which processes are implicit, 
whereas process-based models use explicitly-stated 
mechanisms, and their parameters have a clear, predefined 
ecological interpretation.

In the literature, the terms process-based model and 
mechanistic model are often used as synonyms. Here, we 
use the term process-based for any model type with explicit 
implementation of ecological processes in the model (i.e. 
encompassing both process-based and purely mechanistic 
models), and we reserve the mechanistic category for the 
subset of models that are developed based on ecological 
theory only and that do not use correlative approaches 
at all for parameterisation. The primary difference along 
this modelling axis is the inductive versus deductive 
approach to processing information. The main advantage 
of correlative models, also termed phenomenological or 
statistical models, is that there is no need for a fundamental 
understanding of the ecosystem and relationships between 
system elements, as these are derived inductively from 
empirical observations. With process-based models, there 
is a deductive process involved in which the process is 
determined and the relationship derived, quantified and 
explicitly modelled (Jørgensen and Bendoricchio, 2001). At 
the other end of the formalisation gradient, pure mechanistic 
models – also called theoretical models – are axiomatic 
constructions (Gallien et al., 2010). As in theoretical physics, 

FIGURE 4.3
 
  

Schematic representation of the relationship between two observations of a species distribution in the ‘real world’, ‘correlative 
(statistical) models’ and ‘dynamic, process-based models’ (Modified from McInerny and Etienne, 2012. Ditch the niche – is the niche a useful 

concept in ecology or species distribution modelling? Copyright © 2012 by John Wiley Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc).
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they apply the hypothetico-deductive scientific method, 
starting from a hypothesis (the axiom) to deduce predictions 
that can be tested empirically, either to falsify or conversely 
to corroborate the hypothesis made (but never to prove or 
‘validate’ it).

To illustrate how models are both abstractions and 
representations of reality, Figure 4.3 shows how real-world 
processes change an entity (here a distribution) from one 
state to another. In a correlative model, the two distribution 
states are modelled with two alternative scenarios (e.g. 
before and after a forest fire). In the process-based dynamic 
model, the model builds on a set of initial conditions to 
derive a modelled distribution, which then is altered through 
specified processes that aim to replicate the real-world 
phenomena in order to predict the second modelled 
distribution. It must be noted that the real-world processes 
are often unknown and indeed never can be fully known or 
emulated. Process-based modelling therefore cannot be 
expected to fully replicate the real-world situation, but it may 
provide a useful approximation (McInerny and Etienne, 2012).

In practice, the categorisation of ecological models is 
rarely as clear-cut as depicted in Figure 4.3, but rather 
tends to fall along a continuum from correlative to 
process-based, depending on available data and 
parameters, purpose and model philosophy. This model 
continuum, however, forms the basis for the presentation 
here, which also describes a spectrum of how the broad 
model types rely on empirical data versus ecological 
knowledge.

Whether modelling is based on correlative or process-
based approaches (or any intermediate type), there are a 
number of issues that should be considered as part of the 

model building process (Table 4.2). For instance, statistical 
assumptions about error structure and unbiased sampling 
apply to both broad types of modelling approaches. The 
same is not true regarding the assumption that species are 
in equilibrium with their environment, which applies only to 
correlative models, at the risk of losing predictive ability.

4.2.3.1 Expert-based systems

The most common approach for evaluating impacts of 
alternative management procedures related to predictions 
and decision support is often based on information 
provided by experts (Cuddington et al., 2013). An expert is 
defined here as someone who has achieved a high level of 
knowledge on a subject through his or her life experience 
(Kuhnert et al., 2010), and may be a person with local 
knowledge or a scientist. It is assumed that the expert is a 
reliable source of information in a specific domain, though it 
appears that experts tend to be far more confident in their 
opinions than is warranted (Burgman, 2005).

Eliciting expert information usually involves dealing with 
multiple expert judgements, with different sources of bias 
and uncertainty around expert estimates (Martin et al., 
2012). For instance, expertise may vary geographically, with 
relevant information restricted to the region of interest of the 
experts (Murray et al., 2009). Structuring how multiple expert 
opinions are used, for example through a Delphi approach 
(MacMillan and Marshall, 2006), can make the modelling 
much more rigorous and less likely to result in arbitrary 
predictions (Sutherland, 2006).

The expert-based approach typically includes five steps: 
considering how the information will be used; deciding 
what to elicit; designing the process for the elicitation; the 

TABLE 4.2
Summary of aspects to be considered during the model building process (Modified from Dormann et al. (2012) Correlation and 
process in species distribution models: bridging a dichotomy. Copyright © 2012 by John Wiley Sons, Inc. Reprinted by permission of John 
Wiley & Sons, Inc).

Topic Relevant issues

Assumptions Error structure, structure of functional relationships, relevant processes/predictors, equilibrium  
with environment

Information required Data on distribution, populations, environments, environmental data, ecological and biological 
knowledge

Determination of model structure Variable selection, alternative functional relationships, submodels

Verification Technical correctness, model diagnostics

Validation Cross-validation, external validation, parameter validation, sensitivity, specificity

Sources of uncertainty in model predictions Input data, model misspecification, regression dilution, stochasticity

Equifinality Over-parameterization, collinearity, non-identifiability

Extrapolation Model domain, (micro-)evolution, stationarity of limiting factors and interactions, phenotypic plasticity

When to stop: accuracy versus complexity Deployment time, re-parameterization, sensitivity analysis

Communicability and model transparency Documentation, open source code/software

Knowledge potentially gleaned from the 
model

Surprise, emergence

Common errors and misuses Lack of uncertainty analysis, use beyond purpose, overconfidence in communication
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actual undertaking of the elicitation; and finally translating 
the elicited information into quantitative statements that can 
either be used directly or in an integrative or participatory 
modelling approach (Martin et al., 2012). 

Expert knowledge-based species-habitat relationships 
are used extensively to guide conservation planning, 
particularly when data are scarce (Iglecia et al., 2012). 
Expert knowledge is quite commonly utilised in conservation 
science (Janssen et al., 2010; Aizpurua et al., 2015), and 
has frequently been incorporated in aquatic habitat suitability 
modelling to link environmental conditions to the quantitative 
habitat suitability of aquatic species (Mouton et al., 2009). 

Indigenous and local knowledge (ILK)

Indigenous people, with collective knowledge of the land, 
sky and sea, are excellent observers and interpreters of 
changes in the environment. Their knowledge may offer 
valuable insights, complementing scientific data with 
chronological and landscape-specific precision and detail 
that is critical for verifying models and evaluating 
scenarios developed by scientists at much broader spatial 
and temporal scale. 

Moreover, ILK provides a crucial foundation for community-
based actions that sustain the resilience of social-ecological 
systems at the interconnected local, regional and global 
scales (Raygorodetsky, 2011). Indigenous and local 
observations and interpretations of ecological phenomena 
at a much finer scale have considerable temporal depth 
and highlight elements that may be marginal or even new to 
scientists. 

ILK can potentially supplement other scientific data in 
modelling, as input to the model but also in the interpretation 
and understanding of the outputs of model runs. Traditional 
or indigenous knowledge is a result of a long series of 
observations transmitted from generation to generation 
(Berkes et al., 1995). Such ‘diachronic’ observations 
(i.e. observations over time) can be of great value and 
complement the ‘synchronic’ observations (i.e. observations 
made at the same time, but at different locations) that are 
often used for model construction and testing (Gadgil et al., 
1993). Knowledge holders have not only developed a stake 
in conserving biodiversity, but also in understanding the 
complexities and interrelations among the varied entities that 
an ecosystem encompasses (Slobodkin, 1961). Modelling 
for biodiversity conservation and ecosystem services can 
therefore benefit significantly from the application of ILK, 
which may fill gaps in biodiversity modelling (Thaman et al., 
2013; WWF, 2013).

ILK thus has the potential to contribute to global 
environmental assessments, posing the challenge of how 
to integrate different scales and how to connect different 
knowledge systems to complement each other. One of 
the approaches of IPBES, the ‘Multiple Evidence Base 
approach’ was developed at the Stockholm Resilience 
Centre as a conceptual framework for connecting diverse 
knowledge systems (Tengö et al., 2013).

Integration of ILK in research techniques such as modelling 
and remote sensing can provide a robust contribution 
to informed decision making. An example is animal herd 
management in the Arctic, where remote satellite sensing, 
meteorology and modelling are complemented with the 
indigenous knowledge of Sami and Nenets reindeer herders 
to co-produce datasets. The indigenous observers are able 
to make sense of complex changes in the environment 
through the qualitative assessment of many factors, 
complementing the quantitative assessment of variables 
made by scientists (Magga et al., 2011). Case studies from 
Canada and New Zealand also provide evidence that a 
combination of traditional ecological knowledge and science 
to understand and predict population responses can greatly 
assist co-management for sustainable customary wildlife 
harvests by indigenous peoples (Moller et al., 2004).

4.2.3.2 Correlative models

Correlative models are generally easy to apply and do 
not require extensive knowledge of underlying processes, 
but instead use statistical methods to establish direct 
relationships between environmental variables and 
biodiversity data such as species richness, abundance or 
distribution (Morin and Lechowicz, 2008). These models 
produce information on biodiversity patterns and responses 
to drivers based on empirical observations, and do not 
attempt to explain the mechanisms underlying those 
patterns and responses (Rahbek et al., 2007). When using 
the correlative modelling approach, it is recognised that 
there are clear limitations to ecological knowledge for 
model development, and often the focus is on ensuring a 
pragmatic model implementation that will capture current 
existing ecological patterns, which often provides good – if 
narrow – projections (Araújo and Pearson, 2005; Elith and 
Leathwick, 2009).

Correlative models are frequently used to assess the 
impacts of human activities on biodiversity, forecast 
future impacts of environmental changes, support 
human productive activities (e.g. enhance agricultural 
production) and conservation actions (e.g. identify sites for 
translocations and reintroductions, or predict the location 
of rare and endangered species), and understand species’ 
ecological requirements, among other uses (Peterson, 
2006; de Souza Muñoz et al., 2011). Correlative models 
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have the advantage of being tractable and easy to interpret, 
and permit the predictability of phenomena that depend on 
differences between components – for example the invasive 
potential of a species depends on the difference between 
potential and actual distributional areas (Peterson, 2006). 

Correlative models can be applied at all spatial scales after 
careful assessment of relevant environmental predictors 
and response variables relevant to the question addressed 
(Elith and Leathwick, 2009; Guillera Arroita et al., 2015). For 
instance, the effect of climate variables is better assessed at 
large spatial extents, such as regions, and coarse resolution 
data may be acceptable, whereas the effect of land use or 
soil nutrients requires fine resolution data to cover fine-scale 
variations, and is usually modelled at smaller extents such 
as landscapes. When the selected environmental predictors 
act at different scales, hierarchical models with nested sub-
models can be used (Elith and Leathwick, 2009). Regarding 
temporal scales, correlative models are often static (i.e. 
assume that the species-environment relationships do 
not change over time), and therefore often fail to capture 
species or community dynamics such as species dispersal. 
Nevertheless, temporal predictors – such as variability 
of food resources – may be added to models to capture 
variation in the state of biodiversity variables. 

Correlative models should be used carefully when 
extrapolating biological descriptors to new spatial areas and 
time frames (i.e. hindcasting and forecasting applications). 
This is due to the possibility that conditions (e.g. climatic 
conditions) associated with the training data (i.e. the data 
used to fit the model) may not remain constant over time 
(Elith and Leathwick, 2009; Araújo and Peterson, 2012), 
or may be inadequate to represent the conditions found 
outside their area of distribution. Moreover, correlative 
models are data demanding, requiring robust datasets. 
However, because the data required by correlative models 
are often available across a range of scales, and because 
the models can implicitly capture many complex ecological 
responses, Elith et al. (2010) anticipate the continued use of 
correlative models for biodiversity projections.

4.2.3.3 Process-based models

Process-based models are generally more complex to 
develop than correlative models as they require more 
knowledge of the processes that shape biodiversity 
patterns, including an explicit consideration of selecting 
which processes to include. These models nevertheless 
allow a more explicit representation than correlative 
approaches of ecological processes mediating biodiversity 
and ecosystem responses to environmental drivers. As 
they tend to build on a formal framework with varying levels 
of theoretical underpinning, they are also more capable 
of explaining why biodiversity patterns occur, rather than 

simply demonstrating that they do. The golden standard 
for modelling, however, frequently includes the degree to 
which models can be used for predictive purposes, and 
while this is an area in which process-based models may 
have an advantage over correlative models, it should also 
be acknowledged that the capabilities of process-based 
models with regard to predicting the consequences of 
anthropogenic impacts for biodiversity and ecosystems are 
uncertain and under continuous development. In response 
to climate change, species may change their climatic niches 
along three non-exclusive axes: time (e.g. phenology), 
space (e.g. range) and self (e.g. physiology), as described 
by Bellard et al. (2012). Of these, the physiological axis 
in particular calls for the capacity to handle evolutionary 
adaptations (see for more detail Section 4.3.1.1). It should 
also be noted that data availability generally places limits on 
how reliably models can be parameterized. 

One example of an approach used to overcome the 
limitations of correlative methods is the dynamic energy 
budget theory (e.g. Kooijman, 2009). This is a good example 
of mechanistic theory that aims to capture the quantitative 
aspects of metabolism at the organism level from a small 
set of key assumptions (Sousa et al., 2008). The dynamic 
energy budget theory makes it possible to account for the 
effects of environmental variability on organisms through 
food and temperature changes and captures the diversity 
of all possible living forms on Earth in a single mechanistic 
framework. This allows the representation of the energetics 
and major life history traits of all possible species in a 
community with the same set of unspecific taxa-dependent 
dynamic energy budget parameters. 

Overall, process-based models are limited by the number 
of processes that are explicitly included, the sensitivity of 
the system dynamics to the mathematical form used to 
represent the process, the sensitivity to the data used to 
estimate the parameters, and the limited capacity to predict 
beyond the range of observed conditions. Despite the wide 
use of process-based ecosystem models in biology and 
ecology they, as do all other model developments, suffer 
from fundamental and practical limitations. 

Various strategies and approaches for process formalisation 
can be distinguished among the available process-based 
models:

Box models. This is the simplest and most developed 
category. It describes ecosystem dynamics using a set 
of state variables (e.g. fish biomass) that are connected 
together by fluxes (e.g. consumption or predation) based 
on given functional responses that are either predefined 
(Holling, 1959) or emergent properties (Ahrens et al., 2012). 
The most common use of this type of model is to simulate 
mass balances and energy fluxes at the scale of the 
system represented, and this is one of its main advantages. 



THE METHODOLOGICAL ASSESSMENT REPORT ON SCENARIOS AND MODELS OF BIODIVERSITY AND ECOSYSTEM SERVICES 

4.
 M

O
D

E
L
L
IN

G
 I
M

P
A

C
T

S
 O

F
 D

R
IV

E
R

S
 O

N
 B

IO
D

IV
E

R
S

IT
Y

A
N

D
 E

C
O

S
Y

S
T

E
M

S

132

On the other hand, they tend to use highly aggregated 
representations of state variables (e.g. lumping all fish 
species at a trophic level together) and therefore neglect 
phenomena such as the importance of size in controlling 
metabolism, predator-prey interactions and life history 
omnivory (i.e. dietary changes as organisms grow).

Age/stage/size-structured models. These models are 
box models that are structured along a dimension that 
is assumed to be functionally important. They explicitly 
account for some processes of metabolism such as growth, 
reproduction and the age-dependence of respiration. Age/
stage-structured models are widely used for fisheries 
management (see Hilborn and Walters, 1992), as well 
as for food web models (e.g. Walters et al., 2010). Size-
structured models emphasise the impact of size as a 
structuring element in ecosystems. In marine and freshwater 
ecosystems, size is usually a good predictor of trophic level 
at the community level (Jennings et al., 2001) because many 
predators are size-selective, leading to this biological trait to 
exert a strong influence on predation and metabolism. Size-
based models are easier to parameterise than functional 
group or age/stage-structured food-web models, though 
in particular applications there may be more interest for 
species than for size per se. Size-structured models can, 
however, be constructed with explicit species considerations 
to make them more suitable for addressing questions of 
direct relevance to biodiversity research (Shin and Cury, 
2001; Blanchard et al., 2014).

4.2.3.4 Hybrid models: combining 
correlative and process-based 
modelling

Hybrid models combine correlative and process-based 
modelling approaches (Schurr et al., 2012) in order to 
represent complex, integrated systems with a focus on 
biophysical as well as human components (Parrott, 2011). 
Such models tend to be highly data-driven and help build 
on our understanding of important factors and synthesise 
knowledge, as well as providing a structural link between 
data sources and decision-support systems. Hybrid 
model development takes a pathway in which some of the 
ecological processes defining the ecological system under 
study (e.g. the realised niche) are modelled explicitly (i.e. 
process-based), while others are based on correlative niche 
modelling (Thuiller et al., 2013). Hybrid approaches derive 
from the interest to balance realism and flexibility in model 
building with limited knowledge, but this approach also 
comes with important challenges. 

How different models are integrated into hybrid approaches 
is often a difficult issue. Gallien et al. (2010) indicate that one 
of the current limitations of the hybrid approach is the form 
and strength of the relationship between habitat suitability 

and demographic parameters. Changes in habitat suitability 
are normally integrated with population processes by limiting 
carrying capacity. Furthermore, the response of ecological 
processes (e.g. growth, dispersal and thermal tolerance) to 
environmental changes is unclear, and is often assumed to 
be unimodal or linear. Non-linear functional response could 
make the model more complex. 

Broadly speaking, mechanisms determining ecosystem 
dynamics can be related to the ecology of species, species 
interactions and evolutionary processes (Lavergne et al., 
2010). Any biological process of interest should have an 
explicit link with the components formulated in the model. 
However, this link does not need to be one-on-one (Lurgi 
et al., 2015). The implementation of these processes in 
the model may be carried out in a wide variety of ways 
spanning a broad range of complexities, from cellular 
automata (Iverson and Prasad, 2001), meta-population 
models (e.g. Wilson et al., 2009) and structured meta-
population models (Akçakaya et al., 2004), to spatially-
explicit population models (e.g. Cabral and Schurr, 2010), 
individual-based models (e.g. Grimm et al., 2005), trophic 
models (e.g. Albouy et al., 2014) and reaction-diffusion 
models (e.g. Wikle, 2003; Hui et al., 2010). For example, 
the recently introduced ‘dynamic range modelling’ 
framework (Pagel and Schurr, 2012), based on a Bayesian 
approach, overcomes several of these limitations as it 
uses species distribution data and time series of species 
abundance to statistically estimate both distribution 
dynamics and the underlying response of demographic 
rates to the environment. This approach is particularly 
relevant when dispersal limitation or source-sink dynamics 
cause disequilibrium between species distributions and 
environmental conditions (Pulliam, 2000). 

The dynamic bioclimate envelope model developed by 
Cheung et al. (2008b) simulates changes in the relative 
abundance of marine species through changes in 
population growth, mortality, larval dispersal and adult 
movement following the shifting of the bioclimate envelopes 
induced by changes in climatic variables. The model does 
not account for species interactions and potential food web 
changes, which are however considered in a combined 
food web and habitat capacity model (Christensen et al., 
2014). Dynamic bioclimatic envelope models are also being 
developed to account for effects of ocean biogeochemistry, 
such as oxygen level and pH, on the eco-physiology and 
distribution of marine fish (Stock et al., 2011). Models with 
emergent dynamics may also include species interactions 
(e.g.Albert et al., 2008) or abiotic processes included via 
feedbacks (e.g. wildfires versuss vegetation growth; Grigulis 
et al., 2005). 
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4.3 AVAILABLE 
APPROACHES TO 
MODELLING THE 
IMPACT OF DRIVERS ON 
BIODIVERSITY AND
ECOSYSTEM 
FUNCTIONING

4.3.1 Modelling approaches 
addressing biological levels of 
particular relevance to IPBES

4.3.1.1 Individual-level models and 
evolutionary adaptation

Populations are not static, but evolve. As a consequence, 
species may be able to adapt to conditions different from 
those previously experienced (Hoffmann and Sgrò, 2011). 
As introduced in Figure 4.2, evolution can alter dispersal 
patterns, physiology and biotic interactions (Thuiller et 
al., 2013), and this poses a clear problem for predictive 
modelling at all levels, from genes to ecosystems: how to 
make predictions that go beyond current conditions? 

There has been considerable research aimed at addressing 
this question, notably theoretical models that explicitly 
account for biological processes such as mutation, dispersal 
and interactions within and between species (e.g. mating 
and competition) (Bürger, 2000). Such models can account 
for environmental change and allow projections about future 
scenarios, beyond the range of what is currently observed. 
They also provide a means of assessing the robustness of 
predictions across uncertain parameters and processes.

Short-term evolutionary projections focus on the response 
to selection within a population based on the initial 
(‘standing’) genetic variance, and can account for selection 
acting on multiple traits (Lande and Arnold, 1983). Assuming 
that several genes underlie these traits, quantitative genetic 
models can accurately predict short-term evolutionary 
responses to a changing environment, given information 
about the genetic variance for each trait, the covariance 
among traits, and the strength of selection induced on 
each trait (see, for example, Shaw and Etterson, 2012). In 
practice, this information is unavailable for most species and 
over large spatial extents. Thus, ranges of plausible values 
must be inferred – with uncertainty – based on data from 
other species.

Longer-term projections are made difficult by the need to 
account for the dynamics of genetic variation. Processes 

such as mutation and migration that build genetic variance 
must be modelled (Barton and Turelli, 1989). Selection 
itself causes allele frequency changes that can increase or 
decrease genetic variance (de Vladar and Barton, 2014).

While many of these models assume a stable population 
size, more relevant to our understanding of biodiversity 
change are models that explicitly account for the feedback 
between population dynamics and evolutionary change. One 
theoretical approach focuses on key ecological traits (e.g. 
resource acquisition traits) that impact population dynamics 
and whose optimum values shift in a changing environment 
(Pease et al., 2008; Duputié et al., 2012). Such models 
that account for population dynamics are essential for 
addressing the extinction risk faced by a population. How far 
and how fast can a population be pushed by environmental 
change before it collapses (Bürger and Lynch, 1995; Lande 
and Shannon, 1996; Gomulkiewicz and Houle, 2009)? 
These models identify the critical speed of environmental 
change above which evolutionary lags grow over time until 
populations can no longer persist.

While the above models focus on standing genetic variance, 
some environmental changes require novel genetic 
solutions. Recent models have asked when new mutations 
can ‘rescue’ a population before it goes extinct following an 
environmental perturbation (e.g. Bell and Collins, 2008; Bell, 
2013). These models provide key insights into the factors 
that promote evolutionary rescue, including the population 
size, the severity of environmental degradation, and the 
array of possible rescue mutations (Carlson et al., 2014). 
Results from these combined evolutionary and population 
dynamic models can be counterintuitive. For example, 
while evolutionary adaptation generally works best when 
the environment changes slowly, evolutionary rescue can 
be more likely when an environmental shift occurs rapidly, 
because the release from density-dependent competition 
helps establish rescue mutations (Uecker et al., 2014).

While the simplest evolutionary models are not spatially 
explicit, models are increasingly examining how the 
arrangement of populations and migration rates among 
them influence evolutionary processes in the face of a 
changing environment. For example, models have explored 
the process of evolution to a new or altered environment 
in the face of migration from the rest of the species range 
(Gomulkiewicz et al., 1999). Such models can inform policy 
decisions about the maintenance of gene flow and the 
importance of migration corridors. Other models explore 
how the geographical range of a species evolves over time 
in the face of environmental change. Interestingly, these 
models are highly sensitive to assumptions made about 
the dynamics of genetic variance and whether it is held 
fixed, allowed to evolve deterministically, or subjected to 
random genetic drift (Polechová et al., 2009, Polechová and 
Barton, 2015). The latter paper clarifies how demographic 
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and evolutionary processes combine to predict whether a 
species will persist or undergo range contraction when the 
environment varies over space.

Many evolutionary models focus on genetic changes 
within a single species. Clearly, it is useful to clarify what 
might happen in simplified scenarios before adding the 
complexity of species interactions. To fully account for 
evolution in climate change models, however, we need 
to account for interactions among species co-occurring 
within a community. Those models that have considered 
species interactions suggest that evolutionary responses 
to environmental change can be fundamentally altered. For 
example, interspecific competition can hinder evolutionary 
adaptation and drive extinct a species that would be able 
to persist if it were on its own (Johansson, 2008). Other 
models demonstrate that accurate predictions require an 
understanding of how selection is shaped by both species 
interactions and environmental change (Osmond and de 
Mazancourt, 2013; Mellard et al., 2015). 

The results of any model, particularly evolutionary models, 
are sensitive to the details assumed. What are the 
selection processes and life strategies? How far do 
individuals migrate? How patchy is the environment? 
Which mutations are neutral or functional? These details 
matter when predicting whether a species will persist or 
become extinct.

Evolutionary processes thus raise a great deal of uncertainty 
in our projections of future biodiversity change in the 
face of major environmental drivers. Models such as 
those described above allow us to explore the range of 
possibilities. Not accounting for evolutionary change is, 
in most cases, the most conservative assumption for the 
maintenance of biodiversity (Shaw and Etterson, 2012). 
On the other hand, allowing evolutionary change under 
generous assumptions about current and future levels of 
genetic variance allows us to delimit the most optimistic 
scenarios for biodiversity in the face of human-caused 
environmental change.

4.3.1.2 Species- or population-level 
models 

Populations are groups of organisms, all of the same 
species, that live in a given area and interact. Biodiversity 
change at the species or population level is often measured 
using data on population demography and species 
distribution (i.e. the distribution of populations within a 
species). Populations change in size and distribution 
due to the interaction between internal (e.g. growth rate, 
reproduction) and external (e.g. resources, predation, 
diseases) factors. Models building from the simple 

exponential function, including the logistic population 
model, life table matrix modelling, the Lotka-Volterra 
models of community ecology, meta-population theory, and 
the equilibrium model of island biogeography and many 
variations thereof, are the basis for ecological population 
modelling to predict changes over time (Gotelli, 2008).

Without the influence of external factors (thus in a density-
independent situation), population growth can be modelled 
as exponential (Vandermeer and Goldberg, 2004). However, 
as the population size increases, density-dependence 
factors – such as resource limitation, competition or 
disease – frequently impact population growth because 
births and deaths are dependent on population size. Under 
density-dependence, growth rates slow down and reach 
a maximum, depicting a sigmoid curve of population size 
against time, in other words logistic growth. In the logistic 
model, the maximum number of individuals in the population 
is based on the carrying capacity of the system. 

The logistic model is frequently used to study the impact 
of harvesting a population by removing individuals from 
it (Giordano et al., 2003). Important modifications to the 
original model include the introduction of critical threshold 
densities, fluctuations in the carrying capacity and discrete 
population growth. A popular, but also much debated, 
example of the logistic growth model is the application 
to managing fisheries by finding the optimal strategy that 
maximises the population growth rate and the long-term 
yields achieving the maximum sustained yield (Gotelli, 2008). 
Discussions around this concept are large and include the 
importance of including species interactions to calculate 
this reference point in the context of fisheries management 
(Walters et al., 2005).

Because species do not occur in isolation, the dynamics 
of any one species affects the dynamics of other sympatric 
species. In these cases, the logistic equation can be 
modified to consider the interaction of a population with 
interspecific competitors, with predators and with prey (Otto 
and Day, 2007). Lotka and Volterra models for interspecific 
competition and prey-predator interactions are the classical 
initial frameworks for competition and predation studies in 
ecology. These models build from the logistic equations 
and incorporate the interactions with other populations 
of competitors, predators and prey, modifying population 
growth rates. A classic example of the predator-prey 
interactions Lotka-Volterra model is the prediction of the 
regular cycling of the population size of Canada lynx (Lynx 
canadensis) and the snowshoe hare (Lepus americanus) 
(Sinclair and Gosline, 1997). An important concept in 
predator-prey interactions is the functional response of the 
predator as a function of the prey abundance. This response 
can be represented as a linear function of prey abundance 
(called the Type I response). More realistic assumptions 
incorporate handling time, under which the response of 
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the predator increases to a maximum prey consumption 
rate (Type II response). A variation of the latter incorporates 
switching with an acceleration of the feeding rate at 
intermediate prey density and a decrease at high prey density 
as an asymptote is reached (Type III; Holling, 1959). These 
responses are key elements when modelling the ability of 
predator species to control prey populations (Gotelli, 2008).

Additionally, populations are often not closed, so that 
individuals tend to move between populations, influencing 
their persistence and survival. Different ways to model sets 
of populations (or meta-populations) exist. This approach 
is applied to study linkages of populations at the landscape 
scale, both in terrestrial and aquatic systems. Methodologies 
quantify the fraction of all population sites that are occupied, 
and have been notably applied to study the impacts of 
protected areas to inform biodiversity conservation (Royle 
and Dorazio, 2008; Kritzer and Sale, 2010). In addition, the 
number of species interacting in a specific place depends 
on the area available for those species to survive and 
the relationship between species and area holds in most 
assemblages of organisms worldwide. 

This is at the origin of island biogeography that states 
that the larger an island, the more species it will hold, and 
the more potential interactions there will be. The original 
explanation for this pattern was related to habitat types, 
considering that larger islands include a higher diversity of 
habitats, and thus species restricted to those habitat types 
will only occur on larger islands (Gotelli, 2008). However, 
an alternative hypothesis developed with the equilibrium 
model of island biogeography includes the immigration of 
new species and the extinction of resident species as the 
main force behind the relationship between area, habitat 
heterogeneity and the number of species in a community 
(Simberloff, 1976; Allouche et al., 2012). 

When survival and fecundity rates depend on the age of 
individuals affecting population growth, age-structured 
models using the analysis of life table matrices are applied 
(Otto and Day, 2007; Gotelli, 2008). However, many other 
parameters can affect vital rates and their variability in 
space and time, which is at the core of estimating the risk of 
extinction or decline of a population. 

Population viability analysis, a form of risk assessment 
analysis, estimates these risks by identifying major threats 
faced by a population and by evaluating the likelihood of 
future population persistence (Beissinger and 
McCullough, 2002; Morris and Doak, 2002). 

Population viability analyses are often applied to the 
conservation and management of threatened or rare species 
(Akçakaya et al., 2004), with the aim to evaluate options 
for how to improve the chance of survival of populations 

or species at risk (Akçakaya and Sjögren-Gulve, 2000; 
Drechsler and Burgman, 2004). 

Species occurrence and abundance are often modelled 
using correlative methods generally described as species 
distribution models. Species distribution models are 
mainly used to evaluate 1) overall species distributions; 
2) historic, present and future probability of occurrence; 
and 3) to gain an understanding of ecological niche limits, 
which is why this approach is also called ecological niche 
modelling (Aguirre-Gutiérrez et al., 2013). 

Species distribution models are widely used to model the 
effects of environmental changes on species distribution 
across all realms (Pearson and Dawson, 2003; Brotons, 
2014). The multiple applications of species distribution 
models are reflected in the diversity of designations used to 
refer to this type of modelling approach, including ecological 
niche models, bioclimatic envelope models, and habitat 
(suitability) models (Elith and Leathwick, 2009). Modelling 
approaches that incorporate species abundance data along 
with species distribution data, for a joint prediction of the 
effects of environmental drivers on population demography 
and consequently on the overall species distribution, are 
also being pursued (Ehrlén and Morris, 2015). 

Research that incorporates expert knowledge into species 
distribution models is relatively limited. However, in a study 
on species distribution modelling, Niamir et al. (2011) 
incorporated existing knowledge into a Bayesian expert 
system to estimate the probability of a bird species being 
recorded at a finer resolution than the original atlas data. 
They noted that knowledge-based species distribution 
maps produced at a finer scale using a hybrid model/
expert system had a higher discriminative capacity than 
conventional approaches, even though such an approach 
might be limited to well-known species. Furthermore, 
in a study to evaluate trade-offs for using species 
occurrence data in conservation planning, Rondinini et al. 
(2006) noted that the geographic range data of species 
generated by expert knowledge had the advantage of 
avoiding the potential propagation of errors through data 
processing steps.

4.3.1.3 Community-level models 

Community-level modelling offers an opportunity to move 
beyond species-level predictions and to predict broader 
impacts of environmental changes (e.g. Hilbert and 
Ostendorf, 2001; Peppler-Lisbach and Schröder, 2004; 
D’Amen et al., 2015), which may be relevant in certain 
decision-making contexts. 
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For example, it can be used to predict the impact of losing 
a top predator in the structure of a trophic network or 
the impacts of land-use change in native communities. 
Community-level approaches are also recommended when 
time and financial resources are limited, when existing data 
are spatially sparse or when the knowledge on individual 
species distribution is limited (Ferrier et al., 2002a) or even 
absent, as in the case of non-described species in highly 
diverse environments, and when species diversity is beyond 
what can feasibly be modelled at the individual species level. 
Overall, assessing changes in community composition, 
including both species presence and abundance, and 
how those changes affect ecosystem processes, provides 
a more detailed understanding of the impacts of drivers 
(Newbold et al., 2015). Moreover, species richness – a 
community-level metric – is a commonly used biodiversity 
indicator (Mace et al., 2012). 

Community-level distribution models, as for species 
distribution models, use environmental data to predict the 
distribution of species assemblages or communities. Data 
input needs are similar to species distribution model inputs 
but model outputs are more diverse and can be classified 
into five main types (Ferrier and Guisan, 2006): community 
types (groups of locations with similar species composition), 
species groups (groups of species with similar distributions), 

axes or gradients of compositional variation (reduced 
space dimensions of compositional patterns), levels of 
compositional dissimilarity between pairs of locations, and 
various macro-ecological properties (e.g. species richness) 
and even phylogenetic diversity. 

Ferrier and Guisan (2006) and D’Amen et al. (2015) identify 
three approaches to community-level modelling (Figure 
4.4): 1) ‘assemble first, predict later’, whereby species 
data are first combined with classification or ordination 
methods and the resulting assemblages are then modelled 
using machine learning or regression-based approaches, 
2) ‘predict first, assemble later’, whereby individual species 
distributions are modelled first and the resulting potential 
species distributions are then combined (i.e. the result 
is in fact the summation of individualistic models), and 
3) ‘assemble and predict together’, whereby distributions 
of multiple species are modelled simultaneously using both 
environmental predictors and information on species co-
occurrence patterns. 

These approaches have different strengths (D’Amen et 
al., 2015). The first and third approach are more able to 
capture overall patterns of response and are better options 
if rare species, for which distribution data may be scarce, 
represent a significant fraction of the species assemblage. 

FIGURE 4.4
 
  

Main approaches to community-level distribution models (Modified from Ferrier and Guisan, 2006. Spatial modelling of biodiversity at the 

community level. Copyright © 2006 by John Wiley Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc). 
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However, the second approach allows more flexibility in 
how different species respond to different environmental 
factors, though it may fail to produce reliable projections of 
rare species distributions (Ferrier and Guisan, 2006). Similar 
reasoning can be used when deciding whether to use 
species distribution models or community-level models to 
assess community responses. Species distribution models 
can provide more reliable predictions of well-sampled 
species, but may fail with rare species and are resource-
demanding when applied at the community level.

The strengths and weaknesses of community-level 
modelling approaches and the applicability of community 
models are discussed by Ferrier et al. (2002b) and by Ferrier 
and Guisan (2006). More recently, D’Amen et al. (2015) 
have highlighted potential research avenues and proposed 
novel integrative frameworks to encourage the state-of-
the-art in spatial predictions at the community level. As in 
species distribution models, correlative community-level 
distribution models can also integrate ecological processes 
such as meta-community dynamics and species interactions 
(Mokany and Ferrier, 2011) to enhance their predictive ability 
(D’Amen et al., 2015).

4.3.1.4 Ecological interaction networks

Ecological interaction networks include, among other 
examples, trophic webs and plant-pollinator webs (Ings et 
al., 2009). Species interactions within communities can be 
explicitly modelled using process-based approaches that 
describe the links between species and the dynamics that 
determine species coexistence in the network, such as 
predator-prey oscillations (Verhoef and Olff, 2010). 

Network topology is also an important consideration 
when building interaction models, since the links between 
elements may follow a non-random pattern. In food webs, 
interactions patterns are shaped by body size, which 
justifies the use of size-structured models (Woodward et al., 
2005; Loreau, 2010). 

Correlative approaches are also frequent in studies of 
interaction networks, due to their lower information 
requirements, but Ings et al. (2009) advocate against the 
use of inferential approaches and recommend pursuing 
more mechanistic approaches that build on first principles 
and ecological theory. Similarly, applications in modelling 
marine ecosystems will require the coupling of different 
trophic levels that may have different characterisations. One 
way to represent biodiversity in complex marine systems 
would be to concentrate the detail of representation at 
the target species level and their main interactions at the 
community level (FAO, 2008). Community interaction 

network approaches have been used to assess the impacts 
of, for example, invasive species (Woodward and Hildrew, 
2001), the overfishing of top predators (e.g. Bascompte et 
al., 2005), biodiversity and ecosystem function relationships 
(Fung et al., 2015), freshwater pollution (e.g. Scheffer et al., 
1993) and global warming (Petchey et al., 1999).

Outputs from community-level distribution models can 
be used to inform species traits approaches, assessing 
the composition of impacted communities. Species traits 
approaches can also be linked to interaction network models 
to predict how changes in community traits will affect 
ecosystem functioning (Harfoot et al., 2014b). Species traits 
approaches move the focus from species composition in a 
community to the distribution of traits or average trait values 
in the community. Species traits underlie species responses 
to drivers, that is, their ability to cope with environmental 
change, but also their role in environmental processes. 
Therefore, the distribution of trait values in a community (e.g. 
root depth, body size or forage range) may not only inform 
on the vulnerability of the community to changes in drivers, 
but also on the effects of community compositional change 
to ecosystem functioning, and consequently to ecosystem 
services (Lavorel and Garnier, 2002; Suding et al., 2008; 
Oliver et al., 2015). Trait-based ecological risk assessment is 
an example of a trait-based approach to assess ecological 
responses to natural and anthropogenic stressors based 
on species characteristics related to their functional roles in 
ecosystems (Baird et al., 2008). 

Another approach commonly used to assess community 
change over time is through species-area relationship 
models. These are used to predict species richness as a 
function of habitat area. Species-area relationship models 
have been tested and applied to a wide range of taxa and 
across all scales, from local to global (e.g. Brooks et al., 
2002; Brooks et al., 1997). Species-area relationship models 
are often used to predict the impacts of changes in habitat 
availability, driven by land-use change (e.g. van Vuuren et al., 
2006; Desrochers and Kerr, 2011) or climate change (e.g. 
Malcolm et al., 2006; van Vuuren et al., 2006), on community 
richness, but also to assess the impacts of direct exploitation 
on community parameters such as species turnover rates 
(e.g. Tittensor et al., 2007). Reviews on the use of species-
area relationships can be found in Rosenzweig (2010), 
Drakare et al. (2006) and Triantis et al. (2012). 

The most common species-area relationship model is 
the power function (Arrhenius, 1921), S=cAz, where S is 
species richness, A is habitat area, and c and z are model 
parameters (Rosenzweig, 2010). Notwithstanding the 
general use of the power function, species-area relationship 
models may be best described by other functions or by 
averaging the predictions of alternative models (i.e. multi-
model species-area relationship approaches) when there 
is no single best model (Guilhaumon et al., 2008). Another 
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important caveat relates to the risk that species-area 
relationship models may overestimate predicted species 
loss due to habitat loss (Pereira and Daily, 2006). This 
limitation can be addressed through the use of modified 
species-area relationship approaches that better represent 
community dynamics, such as the species-fragmented 
area relationship (Hanski et al., 2013) – which considers the 
effects of habitat fragmentation on species diversity patterns 
– and the countryside species-area relationship (Proença 
and Pereira, 2013) – which accounts for the differential use 
of habitats in a landscape by different species groups. 

4.3.1.5 Ecosystem-level models and 
integrated models

Ecosystem-level models may focus on the biophysical 
dimension of ecosystems (e.g. dynamic global vegetation 
models), or they can be developed to also include economic 
and social aspects (e.g. EwE models, see Chapter 5). 

Dynamic Global Vegetation Models (DGVMs) are process-
based models that simulate various biogeochemical, 
biogeophysical and hydrological processes such as 
photosynthesis, heterotrophic respiration, autotrophic 
respiration, evaporation, transpiration and decomposition.

DGVMs are the most advanced tool for estimating the 
impact of climate change on vegetation dynamics at the 
global scale (Smith et al., 2001). They simulate shifts in 
potential vegetation and the associated biogeochemical and 
hydrological cycles as a response to shifts in climate. DGVMs 
use time series of climate data and, given the constraints 

of latitude, topography and soil characteristics, simulate 
monthly or daily dynamics of ecosystem processes. DGVMs 
are most often used to simulate the effects of future climate 
change on natural vegetation and carbon and water cycles, 
and are increasingly being coupled with atmosphere-ocean 
general circulation models to form Earth system models.

The basic structure of a DGVM is shown in Figure 4.5.

DGVMs capture the transient response of vegetation to 
a changing environment using an explicit representation 
of key ecological processes such as establishment, tree 
growth, competition, death and nutrient cycling (Shugart, 
1984; Botkin, 1993). Plant functional types are central to 
DGVMs as, on the one hand, they are assigned different 
parameterisations with respect to ecosystem processes 
(e.g. phenology, leaf thickness, minimum stomatal 
conductance, photosynthetic pathway, allocation and 
rooting depth) while, on the other hand, the proportion 
of different plant functional types at any point in time and 
space defines the structural characteristics of the vegetation 
(Woodward and Cramer, 1996).

The key advantages of using DGVMs include the capacity 
to simultaneously model the transient responses related 
to dynamics of plant growth, competition and, in a few 
cases, migration. As such, this allows the identification of 
future trends in ecosystem functioning and structure and 
these models can be used to explore feedbacks between 
biosphere and atmospheric processes (Bellard et al., 
2012). DGVMs are, however, focused on a limited number 
of plant functional types, which induces a high level of 
abstractedness (Thuiller et al., 2013).

FIGURE 4.5
 
  

Structure of Dynamic Global Vegetation Models (Modified from: http://seib-dgvm.com/oview.html).
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Adding a further level of complexity beyond ecosystem 
modelling is achieved through integrated assessment 
models (IAMs, see Figure 4.6), which were defined in the 
IPCC Third Assessment Report (IPCC, 2001) as ‘an 
interdisciplinary process that combines, interprets, and 
communicates knowledge from diverse scientific 
disciplines from the natural and social sciences to 
investigate and understand causal relationships within 
and between complicated systems’. 

It is generally agreed that there are two main principles to 
integrated assessment: integration over a range of relevant 
disciplines, and the provision of information suitable for 
decision making (Harremoes and Turner, 2001). IAMs 
therefore aim to describe the complex relationships between 
environmental, social and economic drivers that determine 
current and future states of the system and the effects of 
climate change, in order to derive policy-relevant insights 
(van Vuuren et al., 2009). One of the essential characteristics 
of integrated assessment is the simultaneous consideration 
of the multiple dimensions of environmental problems. 
At the global level, IAMs could potentially be a valuable 
tool for modelling biodiversity dynamics under different 
drivers; however, current IAMs are not developed for this 
application (Harfoot et al., 2014a). Existing IAMs are largely 
used for modelling climate change and investigating options 
for climate mitigation. Key outputs from IAMs include 
anthropogenic greenhouse gas emissions. However, these 

also provide projections for other variables, such as land 
cover and land use (including deforestation rates).

One of the most noticeable limitations of IAMs is that 
they focus largely on terrestrial systems, not marine or 
freshwater aquatic ecosystems (as shown in Figure 4.6, 
which provides a schematic representation of a typical 
IAM). Another notable limitation is the lack of feedback 
from changes in biodiversity, ecosystem functions and 
terrestrial ecology on other drivers such as climate change 
and land-use change. For example, actions that reduce 
the number or composition of species in natural systems 
may compromise ecosystem functioning, as the ability of 
ecosystems to provide services may depend on both these 
aspects (Tilman et al., 2001; Loreau et al., 2001; Hooper 
et al., 2005; Isbell et al., 2011). At the European level, 
CLIMSAVE not only integrates sectoral models, but also 
has feedbacks and can be used to explore the impacts of 
selected adaptation options (Harrison et al., 2015).

IAMs typically describe the cause-effect chain from 
economic activities and emissions to changes in climate 
and related impacts on, for example, ecosystems, human 
health and agriculture, including some of the feedbacks 
between these elements. To make their construction and 
use tractable, many IAMs use relatively simple equations 
to capture relevant phenomena, for example for the 
climate system and carbon cycle (Goodess et al., 2003). 
However, the behaviour of these components can have a 

FIGURE 4.6
 
  

Schematic representation of a typical full-scale integrated assessment model. Red labels and arrows represent existing model 
components and interactions, while grey labels and greydashed arrows indicate important components and interactions not currently 
included (Modified from Harfoot et al., 2014a. Integrated assessment models for ecologists: the present and the future. Copyright © 2014 by John 

Wiley Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc).

Oceans

IN OUT

Humans

Vegetation

Atmosphere

Marine ecology

Terrestrial ecology 
(heterotrophs)

EnergyIndustry

Agriculture

Scenario 
assumptions

(e.g., GDP, 
population, 

technology, policy)

Projections
(e.g., greenhouse 

gas (GHG) 
emissions, 

atmospheric GHG 
concentrations, 
land-use and 
land-cover 
changes)



THE METHODOLOGICAL ASSESSMENT REPORT ON SCENARIOS AND MODELS OF BIODIVERSITY AND ECOSYSTEM SERVICES 

4.
 M

O
D

E
L
L
IN

G
 I
M

P
A

C
T

S
 O

F
 D

R
IV

E
R

S
 O

N
 B

IO
D

IV
E

R
S

IT
Y

A
N

D
 E

C
O

S
Y

S
T

E
M

S

140

significant impact on IAM results and the quality of policy 
advice, with the possibility of simplifications in the Earth 
system projections leading to imprecision (or even error) in 
projecting impacts and costs of mitigation.

Over the last decade, IAMs have expanded their 
coverage in terms of land use and terrestrial carbon cycle 
representation, non-CO2 gases and air pollutants, and by 
considering specific impacts of climate change. Some 
IAMs have a stronger focus on economics, such as multi-
sectoral computable general equilibrium models that are 
combined with climate modules and models focused on 
cost-benefit analysis; others focus on physical processes 
in both the natural system and the economy (integrated 
structural models/biophysical impact models). Examples 
of IAMs are IMAGE (Integrated Model to Assess the 
Global Environment), DICE (Dynamic Integrated model of 
Climate and the Economy), FUND (Climate Framework 
for Uncertainty, Negotiation and Distribution) and MERGE. 
All of these models include key drivers of change such as 
population and macro-economy that can be derived from 
various external and internal sources. 

However, as IAMs aim to integrate different aspects of 
the environment, they run the risk of becoming extremely 
complex. The developers of such models therefore have to 
make decisions about the focus of their study and how to 
express the impacts they estimate, whether it is through the 
reporting of physical changes in emissions, shifts in land-use 
activity or mortality rates, or through cost-benefit analyses 
of damages resulting from climate change (Goodess et al., 
2003). The data requirements for these IAMs are also large 
and not always feasible.

4.3.2 Modelling options, strengths 
and limitations

4.3.2.1 Meeting policy information needs

Models allowing the assessment of impacts of changes 
in drivers on biodiversity or ecosystem processes are 
important tools to support decision making (Table 4.3). To 
be effective, models should be able to address the policy 
or decision-making needs that motivate their use. A formal 
and accurate definition of the decision-making context is 
therefore essential in this process (Guisan et al., 2013). A 
precise definition of the policy or decision context should 
inform the selection of modelling framework, including 
model complexity, spatial and temporal scales or response 
variables and data requirements (Chapter 2). State variables 
should be sensitive to the pressures underlying alternative 
management scenarios or addressed by policies and, if 
possible, be responsive at temporal and spatial scales 
that are relevant for policy strategies. For example, small 

farmland birds are responsive to agro-environmental 
schemes implemented at the field scale, while large 
farmland birds are more affected by activities over larger 
spatial scales (Concepción and Díaz, 2011). Moreover, state 
variables should also be representative of the biodiversity 
attributes underpinning the benefits of nature that are valued 
in a given decision-making context.

Regarding model scope, models should be adjusted to 
the specific requirements of the decision-making context. 
Models could rely on observed data to describe the 
relationship between pressures and response variables, 
explicitly describe the processes linking those variables, 
or follow an intermediate approach. The explicit inclusion 
of mechanisms in modelling approaches will be relevant 
whenever the understanding of the underlying dynamics 
is necessary to guide management and where changing 
environmental conditions call for a mechanistic approach 
(Gustafson, 2013; Collie et al., 2014). The use of correlative 
approaches, on the other hand, is suitable where there 
is limited knowledge about the underlying mechanisms 
or when model outputs are able to capture the dominant 
response patterns that are needed to inform policy, such as 
the evaluation of large-scale conservation initiatives (Araújo 
et al., 2011; Dormann et al., 2012). 

As for model complexity, input data requirements should 
be balanced against data availability and quality – namely 
the spatial and temporal resolution of available data – as 
a lack of adequate input data may compromise model 
feasibility and the quality of results (Collie et al., 2014). The 
ongoing development of new technologies and remote 
sensing to monitor species and ecosystems, as well as 
platforms for data sharing, is encouraging as it is resulting 
in increased data availability and accessibility (Pimm et al., 
2014). The integration of local observations and remote 
sensing products can provide a more complete view of 
the responses of biodiversity to environmental change and 
can improve the modelling of ecosystem processes across 
scales (Pereira et al., 2013; Pimm et al., 2014).

4.3.2.2 Predictability

No model can capture the full complexity of ecosystems 
and perfectly predict biodiversity patterns and ecosystem 
function as impacted by a suite of drivers, such as through 
climate change or habitat modification (Bellard et al., 2015). 
However, models are useful to synthesise data, evaluate 
alternative hypotheses, and provide projections about 
potential future states. 

This is illustrated by the study of Bellard et al. (2012), 
who reviewed the approaches most commonly used for 
estimating future biodiversity at global and regional scales. 
They found that projections from the different approaches 
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vary considerably, depending on method, taxonomic group, 
biodiversity loss metrics, spatial scales and time periods. 
Nevertheless, the overall projections from the majority of 
the models indicated that future trends for biodiversity were 
alarming. This reiterates a general finding from the IPCC, 
which is that projections from individual models should not 
be taken at face value. Instead, an ensemble approach 
accommodating uncertainty in multi-model prediction 
is required for interpreting trends and for comparisons 
between models. Comparisons that involve applying 
numerous models to evaluate a given policy question 
(e.g. related to the efficiency of alternative measures for 
minimising the impact of climate change) provide a means 
not just for evaluating uncertainty, but just as importantly 
for studying why the models produce different answers. 
This may indeed lead to feedback that impacts not just the 

individual models, but also the underlying theory that is used 
to develop the models (see Figure 4.7). 

It is becoming standard practice in many research fields 
for model fitting and statistical procedures to test model 
predictions on a known, typically simulated, data set in 
order to assess model behaviour and characteristics (e.g. 
in fisheries assessment, Hilborn and Walters, 1992). For 
models of complex natural systems, it is often not possible 
to test model predictions against simulated data, but a 
minimum requirement is that the models are ‘validated’ by a 
demonstration of each model’s capability to at least exhibit 
the same behaviour as that which has been observed 
historically (Rykiel, 1996). Validation here means consistency 
with observation (for instance as tested through time series 
fitting with formal information criteria evaluation).

TABLE 4.3
Summary of major biodiversity models and modelling approaches.

Model

Level of 
organiza-
tion Model type

Level of 
integration

Required 
level of 
expertise Examples References

Evolutionary 
models

Organisms Mixed 
(hybrid)

Integrated 
models

High How demographic and evolutionary 
processes combine to predict whether 
a species will persist or not

Polechová and Barton, 2015; 
Barton, 2001

Dynamic 
Energy Budget 
models

Organisms Mechanistic Integrated 
models

High To understand evolution of metabolic 
organisation

Kooijman, 2009

Aquatic 
habitat 
suitability

Community Expert-
based 
models

Single 
model

Basic To link environmental conditions to 
the quantitative habitat suitability of 
aquatic species

Mouton et al., 2009

Species 
Distribution 
Models

Species/
Populations

Mainly 
correlative

Single or 
integrated 
models

Basic – 
Moderate

Used to model the effects of 
environmental change on species 
distribution

Pearson and Dawson, 2003; 
Elith and Leathwick, 2009; 
Stockwell and Peters, 1999; 
Phillips et al., 2006

Dynamic 
bioclimate 
envelope 
model

Species/
Populations

Mixed 
(hybrid)

Integrated 
models

Moderate Changes in the relative abundance of 
marine species induced by change in 
climatic variables

Cheung et al., 2008a, 
2008b, 2011; Gallego-Sala, 
2010; Notaro et al., 2012; 
Fernandes et al., 2013

Age/stage-
structured 
models

Species/
Populations

Correlative Single 
model

Basic Widely used for fisheries management Hilborn and Walters, 1992;  
Getz, 1988; Barfield et al., 
2011 

Food web 
models

Ecosystems Process-
based

Integrated 
models

Moderate Widely used for ecosystem-based 
management 

Christensen and Walters, 
2011

Size-based 
models

Community Correlative Single 
model

Basic Impact of size in marine and 
freshwater ecosystems management

Duplisea et al., 2002;  
Rochet et al., 2011 

Species-Area 
Relationship 
models

Community Correlative Single 
model

Moderate Used to predict the impacts of 
changes in habitat availability, driven 
by land use change or climate change

van Vuuren et al., 2006; 
Desrochers and Kerr, 2011; 
Pereira et al., 2013; Huth and 
Possingham, 2011

Biodiversity 
metric models

Community Correlative Integrated 
models 

Moderate A quantitative and integrated 
approach to assess the biodiversity 
with multiple indicators

Janse et al., 2015 

Lotka-Volterra Community Process-
based

Integrated 
models 

High For interspecific competition and 
prey-predator interactions

Sinclair and Gosline, 1997

Dynamic 
Global 
Vegetation 
Models

Ecosystem Process-
based

Integrated 
models

High To estimate the impact of climate 
change on vegetation dynamics at 
global scale and its carbon and water 
cycles

Botkin, 1993; Bellard et al., 
2012; Cramer et al., 2001

General 
ecosystem 
model

Global Process-
based

Integrated 
models 

High Uses a unified set of fundamental 
ecological concepts and processes for 
any ecosystem to which it is applied, 
either terrestrial or marine, at any 
spatial resolution

Harfoot et al., 2014a

Integrated 
Assessment 
Models 

Global and 
regional

Integrated Multiple 
models

High Interdisciplinary assessment Harremoos and Turner, 2001; 
Tilman et al., 2001 
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As an example of a comprehensive model validation 
exercise, Elith and Graham (2009) constructed the 
distribution of an artificial plant species based on its affinity 
along three axes, related to preference for moisture, 
aspect (‘southness’) and geology, to obtain a ‘true’ spatial 
distribution for the plant. They constructed a spatial 
subsample of parameters (along the three axes), and 
used this to parameterize five different, commonly applied 
Species Distribution Models. By next predicting the full 
distribution for each method, they were able to validate 
model performance using true-false positive and negative 
patterns as well as the evaluation of predictions versus 
true values. This study, in addition to the direct evaluation 
of model performance, also demonstrated that model 
comparisons can be used to evaluate why different models 
give different predictions – which can be used for the 
further development of models as well as the refinement of 
ecological theory (see Figure 4.7).

While model comparisons are both needed and feasible, 
as demonstrated by the study of Elith and Graham (2009), 
they are difficult to conduct by any one research group as 
soon as the models involved are complex and in practice 
require both specific capacity and experience to be run 
optimally. For this reason, it is extremely important to build 
capabilities for inter-model comparisons, following in the 
footsteps of the Coupled Model Intercomparison Projects 
(CMIP) of the IPCC. Similar activities are now underway 
for biodiversity research as part of the Inter-Sectoral 
Impact Model Intercomparison Project (ISI-MIP), which is 
a community-driven modelling effort that brings together 
impact models across sectors and scales to create 
consistent and comprehensive projections of climate 
change impacts.

4.4 MODELLING 
FEEDBACKS AND 
INTERACTIONS

Both human and non-living environmental drivers 
influence biodiversity and ecosystem functions through a 
number of processes. In turn, biodiversity exerts 
feedbacks on both systems (Figure 4.8). Consideration of 
the feedbacks is important as they may cause non-
linearity in interaction dynamics, which can potentially 
move a system beyond thresholds and tipping points (e.g. 
regime shift: Lenton, 2011). 

Changes in biodiversity interact with different drivers of 
biodiversity change (e.g. climate change, disturbance 
regimes such as forest fires, invasive species and pests, and 
ecosystem processes) over different temporal and spatial 
scales. Changes in biodiversity and shifts in the distribution 
of plant traits can influence the climate at global and regional 
scales. For instance, General Circulation Models based 
on simulations indicate that the widespread replacement 
of deep-rooted tropical trees by shallow-rooted pasture 
grasses would reduce evapotranspiration and lead to a 
warmer, drier climate (Shukla et al., 1990). Similarly, the 
replacement of snow-covered tundra by a dark conifer 
canopy at high latitudes may increase energy absorption 
sufficiently to act as a powerful positive feedback to regional 
warming (Foley et al., 2000). 

Feedbacks between drivers and biodiversity or ecosystem 
levels usually involve a high level of complexity in the models 
because changes in state variables at different levels (either 

FIGURE 4.7
 
  

An overview of relationships between ecological theory, models, comparison and management. There may be numerous models to 
represent a given theory, and both the model comparisons and the management outcome may provide feedback to theory (Modified 
from Cuddington et al., 2013. Process-based models are required to manage ecological systems in a changing world. Copyright © 2013 by John 
Wiley Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc).
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biological or others) should be able to interact and cause 
emergent dynamics. Changes in biodiversity, for instance, 
can impact disturbance regimes such as fire, which in turn 
are strongly determined by climate (Pausas and Keeley, 
2009) and fire-suppression efforts (Brotons et al., 2013). 

Biodiversity and ecosystem models as discussed in 
Section 4.3 describe the impact of abiotic drivers such 
as climate, nutrient cycling, atmospheric concentration of 
greenhouse gases including CO2, water resources, fire, and 
land use on the biotic systems, including their biodiversity 
and ecosystem services. Many of the modelling approaches 
are capable of simulating the feedback of the biotic system 
on abiotic and human drivers as well. For example, many of 
the process-based models simulate carbon sequestration 
in vegetation and soils, and thus the impact on atmospheric 
greenhouse gas concentrations. Process-based models 
can also simulate feedbacks, from vegetation change to 
forest fires (LANDIS). Furthermore, many of the Dynamic 
Global Vegetation Models (ex-IBIS Foley et al., 1996; 
Kucharik et al., 2000; Sitch et al., 2003) are able to simulate 
feedback between the biotic system and water resources. 
However, only a few Dynamic Global Vegetation Models 
include detailed feedback to nutrient cycling. Dynamic 
Global Vegetation Models have been also used to study 
feedback between vegetation and past climate. General 
Circulation Models/ Atmosphere-Ocean General Circulation 
Models too include vegetation feedbacks to climate. Neither 
the process-based models (including Dynamic Global 

Vegetation Models) nor the General Circulation Models/ 
Atmosphere-Ocean General Circulation Models include 
the feedback of biodiversity and ecosystems to human 
societies. However, IAMs are capable of simulating impacts 
of changes in biodiversity and ecosystems on human 
systems, including economic activities.

4.5 MODEL COMPLEXITY 

Matching model complexity to policy and decision-
making needs while keeping the model as simple as 
possible is a major challenge in the future development of 
biodiversity and ecosystem models (Merow et al., 2014). 
We here describe three general strategies that should help 
limit model complexity: model what matters, adopt 
hierarchical modular modelling approaches, and 
standardise protocols for model communication. 

The first general strategy is the formulation of critical 
biological processes directly relevant to the question 
addressed or the problem to be dealt with. Avoiding 
unnecessary increases in model complexity requires a 
careful assessment of the biological processes that most 
directly affect species distributions at the spatial and 
temporal scales of interest for each particular study (Guisan 
and Thuiller, 2005). Although there is no general recipe 

FIGURE 4.8
 
  

Schematic diagram of interactions between biodiversity, the human system and the non-living environment used for evaluating 
feedbacks related to species invasions. The figure represents feedbacks between biodiversity, drivers of biodiversity change and the 
interactions between these drivers (Modified by permission from Macmillan Publishers Ltd: [Nature] Chapin et al., 2000, 405, 234-242, copyright 

2000). 
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to select the relevant biological processes, those related 
to species auto-ecology will always have a central role. 
Habitat selection and population dynamics in species-level 
models may be formulated with more or less detail, but 
are fundamentally important to predict species distribution 
dynamics (Willis et al., 2009; Kunstler et al., 2011). 

Biological processes should only be modelled explicitly 
and internally (i.e. using process-based models) if they are 
critical for the question at hand. The remaining processes 
can be modelled externally and formulated into the model 
by means of input spatial layers or parameters modified by 
additional modelling frameworks (Smith et al., 2001). Such 
an approach may facilitate the flexible structuring of models 
by allowing sub-models to be plugged into one another 
(e.g. McRae et al., 2008). In this modular structure, the 
upper levels provide external contextual information (and 
hence external dynamics) to the lower ones. Hierarchical 
modular structures have the advantage of 1) being easier to 
integrate across different spatial and temporal scales (e.g. 
to downscale the results of processes formulated at higher 
levels (del Barrio et al., 2006)), and 2) being able to assess 
the levels of uncertainty added at each stage (Larson et al., 
2004; Chisholm and Wintle, 2007). However, modularity 
may be limited for those target species that modify their 
environment or interact with other biotic entities (Midgley et 
al., 2010). Research is needed to compare the outputs of 
models with different degrees of complexity in the light of 
validation data appropriate to the process or driver under 
study (Roura Pascual et al., 2010). Only in this case will it be 
possible to build a body of reference regarding the minimum 
acceptable levels of complexity to analyse a given problem.

4.6 ACCOUNTING FOR 
UNCERTAINTY

Policymaking related to biodiversity and ecosystem 
functioning must take place based on the currently 
available knowledge. It must also be done recognising 
that uncertainty is associated with all science, including 
modelling, due to data limitations, the representation of 
processes, and the resolution of the ecosystem scale. 
Environmental complexity is an emergent property of the 
environment – it is not just that our models have 
limitations. 

The fact remains that the environment is incredibly complex 
and interconnected. However, policymakers have to make 
decisions even in the face of uncertainty, to act on drivers in 
order to conserve ecosystems and biodiversity. To support 
decision making, models aim to synthesise this complexity 
into a reasonable number of dimensions.

In biodiversity and ecosystem modelling, the uncertainty 
arises from two primary sources: model uncertainty and 
uncertainty in the input parameters (or scenario uncertainty). 
Different models represent different physical processes 
differently, and to varying extents and levels of detail. This 
leads to model uncertainty. Input parameters, for example 
climate projections, add to the modelling uncertainty. An 
example of model uncertainty is that models generally 
do not take into account tipping points and non-linearity 
(Whiteman et al., 2013). Additionally, many models generally 
leave out the natural processes and feedbacks that are 
difficult to model given the current state of knowledge, 
even though these processes may cause large impacts. 
An example of uncertainty arising from input parameters 
is the uncertainty inherent in climate or land-use change 
projections. In addition, existing impact assessment studies 
– including the biophysical and integrated assessment 
models (IAM) – generally tend to work with the mean of 
the probability distribution of projected impacts, neglecting 
the low-probability, high-impact tails of the distribution 
(Weitzman, 2009; Ackerman et al., 2010; Marten et al., 
2012). Impact studies generally focus on single-sector or 
single region-based assessments. The potential interactions 
among sectors and regions, which can adversely impact 
biodiversity and ecosystems, are therefore not adequately 
included in the quantitative estimates (Warren, 2011). 

Similarly, the ambient policy and management practices 
and socio-economic stresses leading to the degradation 
of natural resources are also not included in most sectoral 
impact assessment models. Also, although key human-
related issues such as armed conflict, migration and loss 
of cultural heritage have a lot of potential to impact natural 
ecosystems, impact assessment models do not include 
these human system-related stresses (Hope, 2013). 
IAM-based economic analyses of impacts are generally 
conservative, as these studies make optimistic assumptions 
about the scale and effectiveness of adaptation (Marten 
et al., 2012; Hope, 2013). In this section, we present 
the sources of uncertainty in models of biodiversity and 
ecosystems, some options to address uncertainty, and 
approaches to communicating uncertainty.

4.6.1 Sources of uncertainty

Link et al. (2012) and Leung et al. (2012) highlighted 
six major sources of uncertainty confronting ecosystem 
modellers (Figure 4.9). 

4.6.1.1 Natural variability

Natural variability or stochasticity includes biological 
differences among individuals, either within the same 
environment (genetic differences) or between environments 



THE METHODOLOGICAL ASSESSMENT REPORT ON SCENARIOS AND MODELS OF BIODIVERSITY AND ECOSYSTEM SERVICES 

4.
 M

O
D

E
L
L
IN

G
 I
M

P
A

C
T

S
 O

F
 D

R
IV

E
R

S
 O

N
 B

IO
D

IV
E

R
S

IT
Y

A
N

D
 E

C
O

S
Y

S
T

E
M

S

145

(plasticity), differences among populations within a 
community, changes in spatial distributions with time, 
density-dependent or independent variation in a vital rate, 
seasonal or inter-annual variability in realised environmental 
conditions, or shifts in productivity regimes. Natural 
variability increases ecosystem model uncertainty by 
reducing the precision of parameter estimates.

4.6.1.2 Observation error

Observation error is inevitable when studying organisms in 
either a single species or an ecosystem context (e.g. Morris 
and Doak, 2002; Ives et al., 2003, as cited in: Link et al. 
(2012)). The environmental characteristics of a particular 
area (even those that we can measure fairly accurately) 
are difficult to relate directly to the full experience of mobile 
organisms that move into and out of that area. Thus, 
natural variability can actually exacerbate observation 
error. Observation error adds uncertainty to ecosystem 
models through reduced precision, misspecified parameter 
distributions, and biased parameter estimates.

4.6.1.3 Structural complexity

The structural complexity of a model arises from many 
factors, such as the number of parameters it includes; 
the number of ecosystem components and processes it 
simulates; the temporal scale; the nonlinearities, log effects, 
thresholds and cumulative effects incorporated in those 
processes; and whether or not it includes features such 
as spatial dynamics or stochasticity (Fulton et al., 2003). 

Structurally complex ecosystem models are gaining in 
use, in part due to improved computing capabilities and 
also due to the intricate, multi-sector, cross-disciplinary 
questions commonly being addressed in ecosystem-based 
management.

Ecosystem models are diverse in terms of scope and 
approach, but share the general feature of a large number 
of parameters with complex interactions. These models 
are necessarily built with imperfect information. Given these 
inevitable uncertainties, large and complex ecosystem 
models must be evaluated through sensitivity analyses with 
independent data before their output can be effectively 
applied to conservation problems (McElhany et al., 2010). 
Uncertainty in climate change scenarios arises from 
different greenhouse gas emission storylines and from 
differences between climate models, even if driven with the 
same storylines (McElhany et al., 2010). This can be partly 
addressed by using climate change scenario data from 
several emission storylines, but also by using results from 
multi-model studies (i.e. an ensemble of climate models). 
Process-based models are widely used to assess the impacts 
of climate change on forest ecosystems (McElhany et al., 
2010). Climate change impact studies that do not integrate 
parameter uncertainty may overestimate or underestimate 
climate change impacts on forest ecosystems. 

4.6.2 Options for reducing 
uncertainty
All model types carry multiple uncertainties, but there are 
potential options for reducing uncertainty, as discussed by 

FIGURE 4.9
 
  

A conceptual diagram of the flow of information and actions in a typical Living Marine Resources management system. Rectangles 
represent components of the system, solid arrows indicate flows of information and actions between components, and ellipses 
represent major sources of uncertainty (Modified from Link et al., 2012. Dealing with uncertainty in ecosystem models: The paradox of use for 
living marine resource management. Copyright © 2012 by John Wiley Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc).
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Beale and Lennon (2011). It is important to establish the 
full range of model behaviours by carrying out a sensitivity 
analysis and considering different combinations of models 
and parameters. Sensitivity analysis is useful to determine 
the importance of each source of uncertainty. Apart from 
the sensitivity analysis of the model parameters, it is also 
important to consider the interaction between models and 
the data. Furthermore, running each model multiple times 
can assess the full range of model behaviour, parameter 
uncertainty and natural variability. One way of assessing 
uncertainty is to apply a mixed approach to uncertainty 
assessment comprising both the model and scenario 
uncertainty (Dunford et al., 2014). In addition, bifurcation 
points and decision nodes in models and scenarios need 
to be identified, and this should be supplemented by 
monitoring the system as it approaches these nodes to 
verify system behaviour. Monitoring can reduce the model 
and scenario uncertainty by adjusting the model in the light 
of the observations through a process of ‘data assimilation’. 

One way of reducing uncertainty is to use multi-model 
ensembles (averages/weighted average), where it is 
suggested to avoid averaging model results unless the 
distribution of results suggested by all models is unimodal. 
Multi-model ensemble is not the only way of combining 
multiple model types, as different model types can also be 
joined statistically. For example, niche-based models and 
demographic- or process-based models could be integrated 
across spatial scales in a hierarchical framework or, more 
simply, Dynamic Global Vegetation Model output could feed 
into species distribution models to better predict the reliance 
of species on particular biomes. 

4.6.3 Communicating uncertainty

An important consideration is the effective communication 
of these uncertainties when presenting assessment and 
modelling results. The purpose of the study strongly 
determines what uncertainty information is relevant and 
when to communicate uncertainty to policymakers and 
decision makers, and it is important to convey at least 
the robust main messages from a modelling assessment 
(Kloprogge et al., 2007).

The main challenge in developing a generic guideline 
for communicating uncertainty is that each assessment 
or decision-support context is unique. For example, in 
the case of species distribution modelling, Gould et al. 
(2014) report that the spatial distribution of uncertainty 
is not homogeneous and can vary substantially across 
the predicted habitat of a species, and that this depends 
on how the uncertainty impacts the model specification. 
Furthermore, modellers often encounter situations in which 
a number of potential sources of uncertainties cannot 
be quantified. In these situations, Gould et al. (2014) 

recommend that all potential sources of uncertainty should 
at least be systematically reported, along with model 
outputs.

Communicating uncertainty not only involves reporting on 
the uncertain aspects of the models themselves, but also 
provides insight into these aspects by elaborating on 
questions such as: Where do the uncertainties originate? 
What significance or implications do they have in a given 
policy or decision context? How might a reduction in 
uncertainty affect the decisions to be made? Can 
uncertainty be reduced? And how is uncertainty dealt with 
in the assessment or decision-support activity?

Communicating uncertainty to policymakers is different 
from communicating with scientists as far as the content 
and the form of presentation is concerned. Knowing the 
target audience and what matters to them is therefore 
important. Furthermore, the policy relevance of information 
on specific types of uncertainty depends on the phase of 
the policy cycle. Early in the cycle, for example, the focus 
would probably be on the nature and causes of a problem, 
while later on the focus may shift to the effects and costs of 
intervention options (Kloprogge et al., 2007). 

It is important to adopt a systematic approach to 
the provision of information, for example through the 
‘progressive disclosure of information‘ (PDI; Kloprogge et 
al., 2007). Under this approach, a report and associated 
publications are subdivided into several ‘layers’. The ‘outer’ 
layer consists of the press releases, executive summaries, 
and so on. Here, it is advisable that non-technical 
information be presented with uncertainties integrated into 
the main messages and with the context emphasised. 
An example is the emphasis on the significance and 
consequences of assessment findings by the IPCC in 
summaries for policymakers. The ‘inner’ layers, comprising 
of appendices, background reports, and so on, can then 
provide detailed technical information and elaborate on the 
types, sources and extent of uncertainty. With regard to any 
of these layers, bear in mind when writing the purpose of the 
layer the purpose of the uncertainty communicated within 
it, the information needs of the target group, and the target 
group’s expected interest in the layer. It is desirable that the 
target community’s views are canvassed while designing 
the scenarios and recommendation as to what level of 
uncertainty is acceptable, both to the target community and 
scientifically. 
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4.7 WAYS FORWARD 
IN BIODIVERSITY AND 
ECOSYSTEM MODELLING
Modelling allows policymakers to assess the implications 
of scenarios of drivers and policy options for the future 
of biodiversity and ecosystems (Pereira et al., 2010). A 
diverse range of modelling approaches, from local to 
global scales, and from individual to ecosystem levels, 
have been developed to assess the impacts of direct 
drivers on biodiversity and ecosystem functioning and to 
investigate the feedback effects of biodiversity on these 
drivers. However, important challenges still remain in the 
link between biodiversity modelling and policymaking due to 
model complexity, uncertainty, and the lack of available data 
and knowledge (Mouquet et al., 2015). 

Despite the availability of modelling approaches and 
applications developed in recent years, the biodiversity 
community needs to develop a common road map to better 
integrate predictive modelling with the challenges and needs 
derived from the current biodiversity crisis. A good example 
is seen in climate change research, where Global Circulation 
Models and Earth System Models have helped significantly 
in advancing understanding of the role of greenhouse gas 
emissions in driving the future climate. 

Petchey et al. (2015) have introduced a road map for 
ecological predictability research. The road map describes 
the feedbacks and interactions between fundamental 
research on which the models are based, the data feeding 
into such models, and using evaluation of model outputs to 
inform development of new models, thereby improving the 
accuracy and usefulness of predictions. These feedbacks 
and interactions point to the need for an integrated 
approach to making models that meet the predictive 
requirements of stakeholders and policy (Figure 4.10).

IPBES needs to recognise the complexities linking drivers 
of environmental change to biodiversity and ecosystem 
dynamics, and acknowledge the value of modelling as 
a method of producing a formal abstraction of such 
complexity and as a scientific tool for supporting decision 
making. When adequately framed, modelling approaches 
can be used as robust policy support (Guisan et al., 2013). 
However, IPBES also needs to keep in mind the significant 
capacity constraints and important gaps in the formalisation 
of the links between ecosystem models and policymaking. 
Therefore, future efforts should strongly encourage 
stakeholder participation as early as possible. This should 
be done to maximise the correspondence between the 
assessment objectives and the outputs and limitations of 
the modelling approaches (Guillera Arroita et al., 2015). 
Furthermore, the contextual interpretation of the modelling 

FIGURE 4.10
 
  

Schematic outline for improving model predictability in ecological research. The indirect interactions and feedbacks (e.g. between 
fundamental research and data and predictive models) are left implicit, yet are extremely important (Modified from Petchey et al., 2015. 
The ecological forecast horizon, and examples of its uses and determinants. Copyright © 2015 by John Wiley Sons, Inc. Reprinted by permission 
of John Wiley & Sons, Inc).
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results and model uncertainty needs to be a joint activity of 
modellers and decision makers.

Finally, biodiversity and ecosystem modelling urgently 
requires adequate guidance regarding the typology of 
models used in isolation or combined in each of the 
assessments. Model intercomparison programmes should 
lead to increased collaboration among modelling groups and 
also with field ecologists to develop suitable protocols for 
modelling impacts of drivers on biodiversity and ecosystem 

functions, for example regarding scale, time frame, data 
collection and validation protocols, agreed processes, 
uncertainty analysis, and standardised outputs of the 
modelling studies. The promotion of model intercomparison 
groups will be vital for developing consistent protocols and 
standardised data, parameters and scenarios, as well as for 
incorporating long-term observation data and addressing 
and communicating uncertainty.
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