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Abstract: The aim of this review is to provide overall information on Argentine propolis and to shed
light on its potential, especially the one from the Monte region so as to support future research in the
field. Around 1999, the Argentine propolis began to be chemically and functionally characterized
to give it greater added value. Because Argentina has a wide plant biodiversity, it is expected that
its propolis will have various botanical origins, and consequently, a different chemical composition.
To date, five types have been defined. Based on their functionality, several products have been
developed for use in human and veterinary medicine and in animal and human food. Because the
Argentine propolis with the greatest potential is that of the Monte eco-region, this review will describe
the findings of the last 20 years on this propolis, its botanical source (Zuccagnia punctata Cav.), its
chemical composition, and a description of markers of chemical quality (chalcones) and functionality.
Propolis can regulate the activity of various pro-inflammatory enzymes and carbohydrate and lipid
metabolism enzymes, as well as remove reactive oxygen and nitrogen species. Consequently, it can
modulate metabolic syndrome and could be used as a functional ingredient in food. Furthermore,
hydroalcoholic extracts can act against human and animal pathogenic bacteria and human yeast,
and mycelial pathogenic fungi. The ability to stop the growth of post-harvest pathogenic bacteria
and fungi was also demonstrated. For this reason, Argentine propolis are natural products capable
of protecting crops and increasing the lifespan of harvested fruit and vegetables. Several reports
indicate the potential of Argentine propolis to be used in innovative products to improve health,
food preservation, and packaging. However, there is still much to learn about these natural products
to make a wholesome use of them.

Keywords: Argentine propolis; Zuccagnia punctata; chalcones; metabolic syndrome; free radical
scavenging activity; antimicrobial and nematicidal; chalcones

1. Introduction

Propolis (bee glue) is a natural product produced by Apis mellifera from resins collected
from different parts of plants, namely, buds, young leaves, stems, and cracks in the bark,
by mixing with wax and saliva. Bees use it to block cracks and to cover the internal walls
of the hive as a defense system against microbial infections, parasites, and insects [1].

Propolis was widely used as phytomedicine for its anti-inflammatory, immunomodu-
latory, antioxidant, antimicrobial, antiparasitic, antiviral, antiaging, anesthetic, cytotoxic,
antitumoral, hypolipidemic, and hypoglycemic activity, among others [2–20]. The an-
timicrobial and antioxidant properties are valuable in the food industry because of its
positive effect on food-product stability and shelf life. Propolis has a potential as a natural
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food additive and functional food ingredient [21–26]. By the beginning of this century,
Marcucci [3] and Bankova et al. [27] reported more than 300 constituents in propolis, and
in the last twenty years, at least 550 new compounds have been isolated from it [28]. The
vegetation around the hives and the preference of honeybees toward specific available
botanical sources, determines its chemical diversity; hence, different propolis types exist. In
a given geographic region, bees usually show preference for one or two plants. Although
it is clear that they select specific sources, the cues used for finding a resin source are
virtually unknown [1]. Some studies suggest common plant sources and similar chemical
profiles for large geographical areas. Propolis from temperate regions in North America,
Europe, and non-tropical regions of Asia derive from poplars (Populus spp.) and birches
(Betula spp.) [27–31]. Clusia minor was described as the plant source of Venezuela propo-
lis [32]. A brown propolis from Clusia rosea resin and a red propolis from Dalbergia spp.
were described in Cuba [33]. The most popular propolis from Brazil are both green or
alecrim propolis, originating from Baccharis dracunculifolia, and red propolis, originating
from Dalbergia ecastaphyllum. Propolis of Brazil also come from Hyptis divaricata and Pop-
ulus nigra [29]. According to Koenig (1995) [34] and Montenegro et al. (2001) [35], the
most frequent botanical sources of propolis from central Chile are Salix humboldtiana and
Eucalyptus globulus.

The aim of this review is to provide overall information on Argentine propolis and to
shed light on their potential, placing special emphasis on propolis from the Monte region
in order to both promote their use and support future research.

2. Research on Argentine Propolis

Beekeeping is one of the main activities in Argentine economy. Around 1999, the
Argentine propolis began to be chemically and functionally characterized to enhance its
value. Because Argentina has a wide plant biodiversity with several phytogeographical
regions (Monte region, Gran Chaco region, Puna and Prepuna regions, and Yunga region),
it is expected that its propolis will have various botanical origins and, consequently, a
different chemical composition according to the place where the hives are placed. Because
of the chemical variability of propolis, the study was not limited to a single specimen
in each area. In addition, the studies on biological activities were also performed by
using different experimental models and samples from different years. The propolis
was classified according to collection sites in (a) propolis from Northwestern Argentina,
(b) propolis from northeastern Argentina, (c) propolis from Cuyo or Andean region, (d)
propolis from the central region, and (e) propolis from southern Argentina [36]. The
chemical composition of northwestern Argentine propolis (Provinces of Tucumán, Santiago
del Estero, Salta, Chaco, and Catamarca) was reported for the first time in 2005 [37].
Since then, more than 60 chemical components in propolis from this region have been
identified [37–48], with the propolis from the Monte region being the most widely studied.
Thirteen propolis components from the northeast (Provinces of Chaco and Misiones) were
recorded [37]; whereas around eleven components were detected in the Cuyo region
(Provinces of San Juan and Mendoza) [49–52]; five were identified in the central region,
in Santa Fe [53]; ten phenolic compounds in propolis from Buenos Aires [54]; three in La
Pampa; and thirteen in Entre Rios [52], Table 1. The chemical components of propolis from
the south of the country were also studied, specifically those from Rio Negro, where eleven
components were found [52], Table 1. Various propolis types have also been reported in
Argentina, depending on their botanical origin. The species Larrea nitida and Baccharis are
sources of propolis from the Andean region [55,56] and Zuccagnia punctata is a source of
propolis from the Monte ecoregion in northwestern Argentina [38,40,44–48,57–60]. The
Argentine propolis has several functional properties such as antibacterial, antifungal, anti-
inflammatory, antioxidant, nematicidic, and cytotoxic, among others, apart from being
an inhibitor of enzymes linked to metabolic syndrome [36–58,61–64]. Based on their
properties, several products have been developed to date for use in human and veterinary
medicine and in the food industry. Furthermore, Argentina has made progress in terms of
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quality control regulations of crude propolis and propolis extracts (IRAM-INTA15935-1
and -2 normative), and the propolis was included in the Argentine Food Code as a dietary
supplement in May 2008 [26].

Table 1. Chemical composition of Argentine propolis (province distribution).

Phenolic Components SE T CH S J C RN LP ER SJ M SF BA

Phenolic acid and derivates

Coumaric acid X X X X X X X ND X X X X

Caffeic acid ND ND ND ND ND ND X ND ND X X X

Ferulic acid X X X X ND X X ND X X ND X

Cinnamic acid X X X ND ND X ND X X ND ND ND

CAPE X X X ND ND X X ND X X ND ND

Flavanones

Pinobanksin X X X ND ND X X ND X X X ND ND

Pinocembrin X X X ND ND X X ND X X X ND X

Pinocembrin derivate ND ND ND ND ND ND ND ND ND ND ND ND X

Naringenin ND ND ND ND ND ND ND ND ND ND ND ND X

7-hydroxy-8-
methoxyflavanone ND ND ND ND ND ND ND ND ND X ND ND ND

Flavone

Apigenin X X X X X X X X X X ND X

Chrysin X X X ND ND X X X X X X X X

Tectochrysin X X X ND ND X X ND X X X ND ND

Flavonol

Galangin X X X ND ND X X ND X X X X X

Quercetin X X X ND ND X ND ND X ND X X

Kaempferol X X X ND ND X ND ND X ND ND ND

Kaempferide X X X ND ND X X ND X X ND ND

Lignans

3′methyl-
nordihydroguaiaretic acid

(MNDGA)
ND ND ND ND ND ND ND ND ND X ND ND ND

nordihydroguaiaretic
acid(NDGA) ND ND ND ND ND ND ND ND ND X ND ND ND

3 (4-[4-(4-hydroxy-phenyl)-2,3-
dimethyl-butyl]-benzene-1,2-

diol)
ND ND ND ND ND ND ND ND ND X ND ND ND

meso-(rel
7S,8S,7′R,8′R)-3,4,3′,4′-

tetrahydroxy7,7′-epoxylignan
ND ND ND ND ND ND ND ND ND X ND ND ND

5 (7S,8S,7′S,8′S)-3,3′,4′-trihy
droxy-4-methoxy-7,7′-

epoxylignan
ND ND ND ND ND ND ND ND ND X ND ND ND

SE: Santiago del Estero; T: Tucuman; C: Catamarca; CH: Chaco; J: Jujuy; S: Salta, RN: Rio Negro; SF: Santa Fe; LP: L Pampa; SJ: San Juan; M:
Mendoza; ER: Entre Rios; BA: Buenos Aires; ND: non detected.
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2.1. Propolis from the Monte Region in Argentina

The Monte ecoregion is exclusive to Argentina. It extends from the province of Jujuy
(Quebrada de Humahuaca) to the northeast of Chubut. The Monte region in northern
Argentina is a temperate and arid zone, where the predominant vegetation is xerophytic
and halophytic shrub-steppe. The climax community of the Monte is the “jarillal”, an
association of Zuccagnia punctata, Larrea divaricata, and Larrea cuneifolia (Figure 1).

Figure 1. (A) Jarillal in the Monte region, (B) Zuccagnia punctata. Leaflet anatomy. Adaxial epidermis.
Abaxial epidermis. Tg, capitate glandular trichome; e, epidermis.

2.1.1. Chemical Characterization of Propolis from the Monte Region

Phenolic acid, flavone, flavanone, and chalcones were isolated and identified in
propolis from the Monte region by using different technologies (Table 2). H NMR and
UV spectra were used to isolate and identify 12 phenolic compounds in propolis from
Catamarca in the Monte region, namely, flavanone (7-hydroxy-8-methoxyflavanone; 7,4′-
dihydroxy-5-methoxyflavanone; 3β,7-dihydroxy-5-methoxyflavanone; 7-dihydroxy-5,8-
dimethoxyflavanone), flavones (4′,5-dihydroxy-3,7,8-trimethoxyflavone; 5-hydroxy-4′,7-
dimethoxyflavone; 3,7-dihydroxy-8-methoxyflavone; 3,5-dihydroxy-7,8-dimethoxyflavone;
7-hydroxy-5,8 dimethoxyflavone), and chalcones (2′,4′-dihydroxychalcone; 2′,4′-dihydroxy-
3′-methoxychalcone; 2′,4′,4-trihydroxy-6′-methoxychalcone) [41]. UV-spectrum, mass
spectra and fragmentation patterns were used to identify nine compounds in propolis
samples from another site in Catamarca in the Monte region, namely, flavanone (3,5,7-
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trihydroxyflavanone (pinobanksin); 7-hydroxyflavanone; 5-hydroxy 7-methoxyflavanone;
7-hydroxy 8-methoxyflavanone), flavone (3,7-dihydroxy 8-methoxyflavone; 5,7-dihydroxy-
flavona (Chrysin); 3,5-dihydroxy 7,8-dimethoxy-flavone), and chalcones (2′,4′-dihydroxych-
alcone and 2′,4′-dihydroxy-3′-methoxychalcone) [45]. Various phenolic compounds were
identified in propolis from the Monte region in Tucuman, namely, phenolic acids and their
ester (cinnamic acid; caffeic acid prenyl ester; caffeoyl dihydrocaffeate; 3,4-dihydroxy-
β-phenylethyl caffeate or teucrol; 1-methyl-3-(4-hydroxyphenyl)-propyl caffeic acid; 1-
methyl-3-(3′,4′-dihydroxyphenyl)-propyl caffeic acid ester; 1-methyl-3-(4 -hydroxyphenyl)-
propyl p-coumaric acid ester; 4′-terbutyloxyphenyl p-coumaric acid ester; 1-methyl-3-(4′-
hydroxyphenyl)-propyl p-coumaric acid ester; 3,7-dimethyl-2,6-octadienyl caffeic acid ester
(geranyl caffeate); 1-methyl-3-(3′,4′-dihydroxyphenyl)-propyl ferulic acid ester; 2-methyl-3-
(3′-hydroxy-4′-methoxyphenyl)-propyl caffeic acid ester; flavanones (7-hydroxyflavanone
and 7-hydroxy-8-methoxyflavanone; 7,8-dihydroxyflavanone; 3,7-dihydroxyflavanone;
pinobanksin-5-methyl ether (3,7-dihydroxy-5-methoxyflavanone); 4′,7-dihydroxyflavanone
(liquiritigenin); 5,7-dihydroxyflavanone (pinocembrin); 5-hydroxy-7-methoxyflavanone
(pinostrobin)); flavones such as 7-O-methylgalangin (izalpinin); 3,5,7 trihydroxyflavone
(galangin); 3,4′,5-trihydroxy-7-methoxyflavone (rhamnocitrin); and 3-hydroxy-7,8-dimetho-
xyflavone; and two chalcones named as 2′,4′-dihydroxychalcone and 2′,4′-dihydroxy-3′-
methoxychalcone [40,44,46,47]. The two latter compounds were identified for the first time
in Argentine propolis, and they were considered as chemical markers of propolis sam-
ples previously analyzed from the Monte region [38,40,44]. Then, two dihydrochalcones
(4′-hydroxy-2′-methoxydihydrochalcone and 2′,4′-dihydroxydihydrochalcone) were also
identified [47]. Chalcones are not very common compounds in propolis in other parts of
the world. They were only identified in red propolis obtained from hives in the northern
region of Brazil [65] and in propolis from apiaries located in the central southern region of
Kangaroo Island [66].

Solorzano et al. (2019) [47] reported also minor compounds such as geranyl, pentenyl,
and benzyl caffeate and cinnamyl caffeate. The major volatile compounds reported in
Zuccagnia-type propolis was trans-linalool oxide (furanoid), cis-linalool oxide (furanoid),
linalool, chrysanthenone, p-cymen-8-ol, and 2,3,6-trimethylbenzaldehyde p-mentha-1,5-
dien-8-ol, (E)-anethole, α-terpineol, and cis-linalyl oxide (pyranoid) [48].

Table 2. Compounds occurring in propolis from the Argentine Monte region.

Compounds Geographical Sites References

Flavanones

7-hydroxyflavanone Tucumán, Catamarca Agüero et al., 2010; Solorzano et al., 2012; Solórzano et al., 2017

7,8-dihydroxyflavanone Catamarca. Tucumán Solórzano et al., 2017

3,7-dihydroxyflavanone Catamarca. Tucumán Solórzano et al., 2017

4′ ,7-dihydroxyflavanone (liquiritigenin) Tucumán Salas et al., 2016a

5,7-dihydroxyflavanone (pinocembrin) Catamarca, Tucumán Agüero et al., 2010, Solórzano et al., 2017

3,5,7-trihydroxyflavanone (pinobanksin) Catamarca Solorzano et al., 2012

3,7,8-trihydroxydihydroflavanone Catamarca, Tucumán Solórzano et al., 2017

5-hydroxy- 7- methoxyflavanone (pinostrobin) Tucumán, Catamarca Agüero et al., 2010, Solorzano et al., 2012

7-hydroxy- 8-methoxyflavanone Catamarca, Tucumán Vera et al., 2011; Agüero et al., 2010; Solorzano et al., 2012; Solórzano et al., 2017

7,4′-dihydroxy-5-methoxyflavanone Catamarca, Tucumán Vera et al., 2011, Agüero et al., 2010; Solorzano et al., 2017

3β, 7-dihydroxy-5-methoxyflavanone Catamarca Vera et al., 2011

7-hydroxy-5,8-dimethoxyflavanone Catamarca Vera et al., 2011

pinobanksin-5-methyl ether
(3,7-dihydroxy-5-methoxyflavanone) Catamarca, Tucumán Solórzano et al., 2017

Flavones

5,7-dihydroxyflavone (chrysin) Catamarca, Tucumán Solorzano et al., 2012; Solórzano et al., 2017

3,7-dihydroxyflavone Catamarca, Tucumán Solórzano et al., 2017

3,5,7-trihydroxyflavone (galangin) Catamarca, Tucumán Agüero et al., 2010, Vera et al., 2011; Solórzano et al., 2017

3-hydroxy-7,8-dimethoxyflavone Tucumán Agüero et al., 2010, Vera et al., 2011

7-hydroxy-5,8 dimethoxyflavone Catamarca Vera et al., 2011
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Table 2. Cont.

Compounds Geographical Sites References

5-hydroxy-4′ ,7-dimethoxyflavone Catamarca Vera et al., 2011

3,7-dihydroxy-8-methoxyflavone Catamarca, Tucumán Vera et al., 2011; Solorzano et al., 2012, Solórzano et al., 2017

3,5-dihydroxy-7-methoxyflavone (izalpinin) Tucumán Agüero et al., 2010

3,5-dihydroxy-7,8-dimethoxyflavone Catamarca, Tucumán Vera et al., 2011; Solorzano et al., 2012; Solórzano et al., 2017

4′ , 5-dihydroxy-3,7,8-trimethoxyflavone Catamarca Vera et al., 2011

3,4′ ,5-trihydroxy-7-methoxyflavone (rhamnocitrin) Catamarca, Tucumán Agüero et al., 2010; Solórzano et al., 2017

Chalcones

2′ ,4′-dihydroxychalcone (DHC) Catamarca, Tucumán Vera et al., 2011; Agüero et al., 2010; Solorzano et al., 2012, Salas et al., 2016a,b;
Solórzano et al., 2017

2′ ,4′-dihydroxydihydrochalcone Catamarca, Tucumán Solórzano et al., 2017

4′-hydroxy-2′-methoxydihydrochalcone Catamarca, Tucumán Solórzano et al., 2017

2′ ,4′-dihydroxy-3′-methoxychalcone (DHMC) Catamarca, Tucumán Vera et al., 2011; Agüero et al., 2010; Solorzano et al., 2012; Salas et al., 2016a,b;
Solórzano et al., 2017

2′ ,4′ ,4-trihydroxy-6′-methoxychalcone Catamarca, Tucumán Vera et al., 2011, Solórzano et al., 2017

Phenolic acids and esters

cinnamic acid Tucumán Salas et al., 2016b

1,1-dimethylallyl caffeic acid Catamarca, Tucumán Solórzano et al., 2017

caffeoyl dihydrocaffeate Tucumán Salas et al., 2016b

geranyl caffeate Catamarca, Tucumán Solórzano et al., 2019

pentenyl caffeate Catamarca, Tucumán Solórzano et al., 2019

benzyl caffeate Catamarca, Tucumán Solórzano et al., 2019

cinnamyl caffeate Catamarca, Tucumán Solórzano et al., 2019

methyl caffeate Catamarca Solórzano et al., 2019

caffeic acid prenyl ester Tucumán Salas et al., 2016b

3,4-dihydroxyphenethyl caffeic acid ester (teucrol) Tucumán Salas et al., 2016b

1-methyl-3-(4-hydroxyphenyl)-propyl caffeic acid
ester Catamarca Solórzano et al., 2017

1-methyl-3-(4 -hydroxyphenyl)-propyl p-coumaric
acid ester Catamarca Solórzano et al., 2017

1-methyl-3-(3′ ,4′-dihydroxyphenyl)-propyl caffeic
acid ester Catamarca Solórzano et al., 2017

4′-terbutyloxyphenyl p-coumaric acid ester Catamarca, Tucumán Solórzano et al., 2017

1-methyl-3-(4′-hydroxyphenyl)-propyl p-coumaric
acid ester Catamarca, Tucumán Solórzano et al., 2017

3,7-dimethyl-2,6-octadienyl caffeic acid ester
(geranyl caffeate) Catamarca, Tucumán Solórzano et al., 2017

1-methyl-3-(3′ ,4′-dihydroxyphenyl)-propyl ferulic
acid ester Catamarca, Tucumán Solórzano et al., 2017

2-methyl-3-(3′-hydroxy-4′-methoxyphenyl)-propyl
caffeic acid ester Catamarca, Tucumán Solórzano et al., 2017

Volatile compounds

trans-linalool oxide (furanoid) Tucumán Gonzalez et al., 2019

cis-linalool oxide (furanoid) Tucumán Gonzalez et al., 2019

(E)-anethole Tucumán Gonzalez et al., 2019

Linalool Tucumán Gonzalez et al., 2019

cis-linalyl oxide (pyranoid) Tucumán Gonzalez et al., 2019

p-cymen-8-ol Tucumán Gonzalez et al., 2019

2,3,6-trimethylbenzaldehyde Tucumán Gonzalez et al., 2019

Chrysanthenone Tucumán Gonzalez et al., 2019

p-mentha-1,5-dien-8-ol Tucumán Gonzalez et al., 2019
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2.1.2. Botanical Origin by Microscopic Analyses and Chemical Analysis

Determining the plant source is most important as it can help beekeepers select
the place to place the hives so as to increase the production of propolis and achieve its
standardization. The botanical source of propolis from the Monte region was determined
by two methods, one by microscopic analysis of a propolis sample in order to identify
fragments of leaves [57,58] of plant species that grow in this region. Z. punctata, L. divaricata
and L. cuneifolia are the most abundant species in the Monte region (Figure 1A). The former
was identified by the presence of compound leaf primordia with sub-opposite nanophyll
leaflets with acuminate apex, rounded, symmetrical base and entire margin, free leaflet
fragments with spherical to oval sunken capitate multicellular glandular trichomes and
unicellular non-glandular trichomes arranged on the adaxial base of the foliar surface and
on the foliar margins, leaflet epidermal cells with straight anticlinal walls, cyclocytic stoma,
rarely paracytic or anomocytic on both epidermal surfaces (Figure 1B). These features
respond to those described for Z. punctata in previous work [59,60]. Microscopic analyses
of propolis samples revealed the presence of Z. punctata leaf as a major plant species.

Although Larrea leaves [56] were not found, pollen of different plants from the region
was found, including pollen from Zuccagnia and Larrea [58]. To confirm the botanical
origin of propolis samples coming from the ecoregion of Monte of Sierras and Bolsones,
a chemical characterization by HPLC-DAD of resin extracts from three jarilla species
(Z. punctata, L. divaricata, and L. cuneifolia) was carried out and compared with propolis
extracts [40,57,58]. Major chemical components of the propolis and Z. punctata resin were
2′,4′-dihydroxychalcone (DHC) and 2′,4′-dihydroxy-3′-methoxychalcone (DHMC) and
were considered as chemical markers of Zuccagnia-type propolis samples [44]. Chemical
components, such as nordihydroguaiaretic acid, the major chemical compound of both
Larrea species, were not found in the propolis extracts.

According to the chemical results, the botanical origin of propolis samples from the
Monte region could be Z. punctata. Then, by using a liquid chromatography–diode array
detector–quadrupole time-of-flight system (LC-DAD-QTOF), Solorzano et al. (2017) [46]
identified some chemical components of the Monte region propolis and Z. punctata ex-
tracts, such as flavanones (7-hydroxyflavanone (HF) and 7-hydroxy-8-methoxyflavanone;
7,8-dihydroxyflavanone; 3,7-dihydroxyflavanone (DHF); pinobanksin-5-methyl ether (3,7-
dihydroxy-5-methoxyflavanone); 3,7,8-trihydroxy dihydroflavanone); chalcones (2′,4′-
dihydroxychalcone and 2′,4′-dihydroxy-3′-methoxychalcone), which were previously re-
ported; and two new dihydrochalcones (4′-hydroxy-2′-methoxy dihydrochalcone and 2′,4′-
dihydroxydihydrochalcone) and phenolic acid and esters: 1-methyl-3-(4-hydroxyphenyl)-
propyl caffeic acid; 1-methyl-3-(3′,4′-dihydroxyphenyl)-propyl caffeic acid ester; 1-methyl-
3-(4-hydroxyphenyl)-propyl p-coumaric acid ester; 4′-terbutyloxyphenyl p-coumaric acid
ester; 1-methyl-3-(4′-hydroxyphenyl)-propyl p-coumaric acid ester; 3,7-dimethyl-2,6-octadi-
enyl caffeic acid ester (geranyl caffeate); 1-methyl-3-(3′,4′-dihydroxyphenyl)-propyl ferulic
acid ester; 2-methyl-3-(3′-hydroxy-4′-methoxyphenyl)-propyl caffeic acid ester, see Table 2.

2.1.3. Pharmacological Activities

Argentine propolis from the Monte ecoregion has multiple pharmacological properties
(Figure 2), which have been reported in the last 20 years. These properties have made
significant progress.
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Figure 2. Functional properties of propolis from the Monte region.

2.1.3.1. Antibacterial Activity

The prevalence of multidrug resistant bacteria versus commercial antibiotics has left
healthcare systems with few treatment options, which are generally expensive therapies.
In recent years, alternative and more specific antimicrobials that complement conventional
therapy have been studied. Phenolic compounds of plant origin exhibit antibacterial ac-
tivity by mechanisms different from conventional drugs, thus rendering bacteria unable
to develop resistance [67]. Propolis from hives in the Monte region showed antibacterial
activity against antibiotic resistant Gram-positive and Gram-negative bacteria isolated from
skin and soft tissue infections [41,43–45,68]. These propolis showed greater activity against
Gram-positive bacteria than against Gram-negative bacteria with minimal inhibitory con-
centration (MIC) values between 10 and 100 µg/mL and between 400 and 1600 µg/mL,
respectively.

The propolis also showed antibacterial activity against microorganism isolates from ca-
nine otitis such as Staphylococcus haemolyticus, S. aureus, and S. intermedius with MIC values
between 75 and 150 µg/mL, and minimal bactericidal concentration (MBC) values between
of 200 and 600 µg/mL. According to the results of the in situ bioautographic tests, DHC
and DHMC would be responsible for the inhibition of the growth of Gram-positive bacteria,
principally Staphylococcus aureus isolated from human and animal infections [43,45,62].

The antibacterial activity exerted by the propolis extracts against common human and
animal pathogenic strains suggests their potential application in the treatment of infectious
processes.

2.1.3.2. Antifungal Effect

Fungal infections are very difficult to treat and long-term treatments with commercial
antifungal products have side effects; therefore, it is necessary to avoid adverse effects.
Zuccagnia-type propolis extracts were inhibitors of the growth of dermatophytes (Mi-
crosporum gypseum, Trichophyton mentagrophytes, and Trichophyton rubrum) with MIC values
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between 16 and 125 µg/mL [40]. The main identified antifungal compounds were two
chalcones, DHC and DHMC with MIC and minimal fungicidal concentration (MFC) values
between 1.9 and 2.9 µg/mL.

The anti-Candida activity was also demonstrated (MIC of 125–500 µg/mL and MFC
of 375–750 µg/mL) [44]. The anti-Candida activity of propolis was similar to that of dry
extracts of Z. punctata [69] and could be attributed to DHC and DHMC [69,70]. Both
chalcones could moderate fungal colonization and suppress the invasive mechanism of
Candida, for example, by acting as an inhibitor of germ tube formation as well as biofilm
formation and acting on exoenzyme activity [69]. According to the MIC obtained and
considering the Tangarife-Castaño et al. classification, the extracts of the Zuccagnia-type
propolis can be considered strong antifungals [71].

2.1.3.3. Nematicidal Activities

The Zuccagnia-type propolis showed an effect on adult Caenorhabditis elegans [44]. The
LC50, defined as the concentration required for killing half of the C. elegans population
within 24 h, was 70 µg/mL close to what the drug levamisole, a known anthelmintic drug
(LC50 4.7 µg/mL), required.

2.1.3.4. Antioxidant Capacity

The reactive species of oxygen and nitrogen such as hydroxyl radical (HO•), hydrogen
peroxide (H2O2), superoxide radical (O2

•-), and nitric oxide (NO•) are a health hazard,
since they can oxidize proteins, sugars, nucleic acids, and lipids. These free radicals
contribute to several pathologies associated with oxidative stress such as inflammatory
process, carcinogenesis, and metabolic syndrome.

Zuccagnia-type propolis extracts from Catamarca were active as HO• scavengers
(Free radicals half scavenging concentration, SC50 values around 25 ± 5 µg/mL), showed
high potential as an H2O2 scavenger and as O2

•- scavengers with SC50 values of 115 and
205 µg/mL, and showed a remarkable capacity to scavenge nitrogen-reactive species such
as NO• [58].

Zuccagnia-type propolis from Catamarca and Tucuman showed scavenging activity
on ABTS•+ with SC50 values between 14 and 33 µg/mL [44,58], similar to the antioxidant
capacity of Z. punctata extracts [72–75]. Other authors also evidenced the free-radical-
scavenging activity of Monte region propolis extract on DPPH• (SC50 values between 10
and 43 µg/mL) [41,45,63,64].

The Zuccagnia-type propolis protected lipids from oxidation (inhibitory concentration
of lipid oxidation in 50%, IC50 between 2 and 29 µg/mL) [44,64]. Avila et al. and Morán
Vieyra et al. [76,77] reported the antioxidant properties and mechanisms of three struc-
turally related flavonoids present in Zuccagnia-type propolis, 7-HF, DHC, and 3,7-DHF. The
ABTS•+ and DPPH• scavenging reactivity trend was DHF > DHC > HF, which correlated
with the electron donor capacity of the flavonoids. However, the O2 scavenging in aqueous
buffered solution was significantly controlled by the fraction of neutral flavonoids through
concerted proton-coupled electron transfer. The radical-scavenging reactivity trend was
DHC > DHF > HF.

2.1.3.5. Effects on Pro-Inflammatory Mediators

The arachidonic acid (AA) pathway is involved in the inflammatory reactions. The
best treatment for the inflammatory process would be to inhibit the pathway at several
levels [78], for instance, phospholipase (PLA2), cyclooxygenases (COX2), and lipoxygenases
(LOX), reducing the concentrations of prostanoids and leukotrienes. Specific inhibitors of
the proinflammatory enzymes have side effects that prevent their consumption for long
periods of time [79]. Several phenolic compounds were reported as inhibitors of COX2 and
LOX [80,81]. In the present review, the findings of anti-inflammatory activity research of
propolis from the Monte region have been summarized. The bioassays are focused on two
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most important topics: the effect on AA metabolizing enzymes and NOS, and the effect on
the expression of proinflammatory enzymes.

The Zuccagnia-type propolis were effective as LOX activity inhibitors, with IC50 values
of 70 ± 10 µg/mL), and COX inhibitors, with IC50 values around 100 ± 4 µg/mL [44].
These results are very promising; they inhibit LOX in percentages and concentrations
similar to commercial anti-inflammatories, though at two levels of the AA pathway. The
effect of a major component, 2′,4′ dihydroxy chalcone, present in propolis extract on COX2,
was assayed. DHC was a potent inhibitor on COX2 and showed a dose-dependent response
between 4 and 190 µM [82]. The inhibition of pro-inflammatory enzymes by DHC and its
antioxidant capacity support the potential use of propolis as a medicine, which could be
used to prevent the development of chronic inflammatory pathologies. Cell stimulation
with bacterial lipopolysaccharide (LPS) induces pro-inflammatory cytokine production
and iNOS protein expression in macrophages; consequently, it caused significant increase
in NO production. Pretreatment of cells with Zuccagnia-type propolis extract inhibited
NO overproduction in a dose-dependent manner (IC50 around 10 ± 0.5 µg/mL) and the
iNOS expression with IC50 values around 30 µg/mL, while the COX2 expression was not
affected [44]. This is the only report on anti-inflammatory activity for Argentine propolis;
this activity was also reported to Brazilian, Chilean, Korean and Chinese propolis through
other mechanisms [83].

2.1.3.6. Inhibitory Capacity of Enzymes Related to Metabolic Syndrome

Metabolic syndrome (MetS) is a clinical state that gathers several metabolic risk factors,
including central obesity, i.e., excess of visceral adiposity, insulin resistance, hyperglycemia,
hypertension, or dyslipidemia, characterized by high triglycerides level. Therapeutics
for MetS are mainly based on lifestyle changes, often accompanied by pharmacological
treatments. The modulation of inflammatory process and oxidative status in MetS is
necessary to control this disorder, as well as the inhibition of enzymes involved in sugar
and lipid metabolism [84]. Zuccagnia-type propolis extract showed strong antioxidant and
anti-inflammatory activity (see Sections 2.1.3.4 and 2.1.3.5), which can help reduce oxidative
stress in MetS. It also showed inhibitory activity for α-glucosidase and lipase, followed
by α-amylase [58]. Two chalcones, DHC and DHMC, chemical markers of Zuccagnia-type
propolis and Z. punctata resin extract, were active, inhibiting lipase and α-glucosidase
enzymes. Other authors reported that chalcones are potent α-glucosidase, α-amylase,
and lipase inhibitors [85–88]. Oral administration of Z. punctata extract (plant source of
Zuccagnia-type propolis) improves lipidic profile, reduces oxidative process and avoids
vascular dysfunction in hypercholesterolemic rabbits [89,90].

2.1.4. Crop Protection and Post Harvesting Use
Antibacterial Activity

The Zuccagnia-type propolis were also active on phytopathogenic bacteria (Pseu-
domonas syringae, Pseudomonas corrugata, Xanthomonas campestris, and Erwinia carotovora),
which are serious problems regarding crops or processed and fresh market tomatoes (Ly-
copersicon esculentum L.) [91] with MIC values between 5 and 40 µg gallic acid equivalent
per milliliter GAE/mL. The main isolated antibacterial compound from this propolis was
identified as DHC. Propolis-aqueous solutions, sprayed on tomato fruits, reduce the symp-
toms of disease. The effect of a propolis solution sprayed prior to or after inoculation with
P. syringae pvar. tomato was similar, showing both curative and preventive effects. The
bactericidal effect of propolis in vivo leads us to consider potential uses in agribusiness.

Antifungal Activity

The antifungal activity of the Zuccagnia-type propolis and the films containing ethano-
lic extract of this propolis against Penicillium digitatum, Penicillium expansum, Penicil-
lium italicum, Alternaria alternata, Aspergillus carbonarius and Botrytis cinerea was
assayed [92]. All the tested fungal pathogens were sensitive toward the propolis ex-
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tract. The most striking effect could be seen on the growth of P. digitatum and B. cinerea,
with MIC values of 0.14 and 0.17 mg/mL, respectively followed. A moderate effect was
observed for Alternaria alternata, P. italicum, and A. carbonarius, with MIC values of
around 0.40 mg/mL. The lowest sensitivity was exhibited by P. expansum (MIC values
of 0.58 mg/mL). The sporulation of all fungal pathogens tested was affected by using
0.05 mg/mL of propolis extract [92].

2.1.5. Toxicity of Propolis from the Monte Region

Propolis did not show toxicity to model organisms such as Artemia salina and Al-
lium cepa at concentrations where they showed biological activities. Genotoxicity was not
found against the Salmonella typhimurium strains with and without metabolic activator, but
they could inhibit the mutagenesis produced by two mutagens, isoquinoline and 4-nitro
o-phenylenediamine. Similar results were reported for DHC, the main component of
propolis from the Monte region in Argentina, evincing the potential of these bee products
as anticancer agents [38]. Propolis extracts were not toxic against RAW 254.7 cell lines [44].

No toxicity studies were performed for Zuccagnia-type propolis extracts on experimen-
tation animals; however, they were done for extracts of aerial parts from Zuccagnia punctata,
from whose resins this propolis derives. The toxic effect on the liver and kidney of Z. punc-
tata extract (1 mg/mice) was analyzed in mice. The activities of alanine transaminase and
aspartate transaminase hepatic enzymes, as well as the levels of creatinine and urea in
blood, were not changed with the administration of Z. punctata extract as compared with
that of the control mice. Therefore, the report showed that the intake once or twice a day
of 1 mg of plant extract for seven days did not result in toxicity [93]. Oral administration
of Zuccagnia punctata extract at a dose of 2.5 mg/day to a hypercholesterolemic rabbit
was not toxic as regards the kidney, and both the hepatic function and the hematological
parameters did not change in relation with rabbit controls [89,90].

2.1.6. Fields of Application of Propolis from the Monte Region

Several reports indicate the great value of propolis to be used in the development of
innovative products to improve health, functional food, food preservation, food packag-
ing, and textile materials for biomedical application, to name but a few [6,94,95]. Several
products containing propolis, such as medical devices, health foods, beverages, and cos-
metics, among others, have been developed and commercialized. This is largely due to
the numerous beneficial pharmacological properties of bee glue, i.e., its anti-inflammatory,
anti-obesity, antitumor, antimicrobial, and antioxidant properties. A pharmaceutical prod-
uct, ear drops containing Zuccagnia-type propolis extract as a bioactive, was developed
for use in otitis [62]. The ear drops were standardized chemically, functionally, and micro-
biologically. The formulation showed inhibitory activity on pro-inflammatory enzymes,
such as LOX (IC50 values 90 and 100 µg/mL), free-radical-scavenging effect (SC50 values
23 and 30 µg/mL), anthelmintic (LC50 values 70 and 71 µg/mL), anti-Candida (400 µg/mL),
and antimicrobial activity against Gram-positive bacteria (200 µg/mL) during six month-
storage. The content of chalcones, chemical markers of Zuccagnia-type propolis was
quantified (DHC 3.54 mg/mL and DHMC 4.54 mg/mL) and its level was kept while stored
at room temperature. The ear drops were not toxic. The results are noteworthy since the
Zuccagnia-type propolis extract and ear drops developed could be an option for use in
alternative medicine as an antibacterial, anti-Candida, anthelmintic, anti-inflammatory, and
antioxidant.

In the last few years, propolis extracts were used in the conservation of food during
storage. The propolis extracts can be added directly to foods or are administered superfi-
cially or in the form of edible films enriched in propolis extracts. These procedures reduce
or eliminate pathogens or saprophytic microorganism from fish, fruit, vegetables, fruit
juice, and milk. The propolis can contribute to keeping the quality of fruit, vegetables,
meat, and fish during storage [24].
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Edible, gelatin-based films containing Zuccagnia-type propolis were recently devel-
oped. They revealed remarkable antifungal activity against P. digitatum and B. cinerea and
reduced the incidence of infection in raspberries stored at refrigerated temperatures for a
long period of time [93].

3. Concluding Remarks and Future Trends

In this review, the wide potential of Argentine propolis is shown, especially the one
whose botanical origin is Zuccagnia punctata, an endemic medicinal species of Argentina
with unique characteristics. Additionally, substantial work has been done not only in
determining its functional properties but also in its standardization from the chemical
perspective. However, it is necessary to deepen the knowledge of chemical and functional
properties, as well as the development of pharmaceutical, food, and cosmetic products
derived from Argentine propolis.

4. Materials and Methods

This biographic research started in 1970 and ended at the end of November 2020; elec-
tronic databases such as http://www.scopus.com; http://www.scirus.com; http://scholar.
google.com.ar; http://www.ncbi.nlm.nih.gov/pubmed; and http://www.sciencedirect.
com were used. Searches were made by using key word combinations: propolis, Zuccagnia-
type propolis, Argentine propolis, Zuccagnia punctata, Larrea, jarilla, biological activities,
phytochemicals, toxicity, 2′,4′-dihydroxy chalcone, 2′,4′-dihydroxy-3′-methoxychalcone,
antibacterial, antifungal, antioxidant, antibacterial, anti-inflammatory, chemo-preventive,
antiulcer, and anti-biofilms, among others. The data were selected from systematic reviews
and articles published in English. The bibliography was categorized according to its scope,
namely botanical source, geographical origin, chemical composition, biological activity, or
field of application. Data extraction was performed by all researchers, and the reported
conclusions were achieved by consensus.
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24. Pobiega, K.; Kraśniewska, K.; Gniewosz, M. Application of propolis in antimicrobial and antioxidative protection of food
quality—A review. Trends Food Sci. Technol. 2019, 83, 53–62. [CrossRef]

25. Sadhana, N.; Lohidasan, S.; Mahadik, K. Marker-based standardization and investigation of nutraceutical potential of Indian
propolis. J. Integr. Med. 2017, 15, 483–494. [CrossRef]

26. Argentine Food Code. 2009 Cap. XVII. Art. 1384. Available online: http://www.anmat.gov.ar/alimentos/codigoa/Capitulo_
XVII.pdf (accessed on 12 December 2020).

27. Bankova, V.; De Castro, L.; Marcucci, M.C. Propolis recent advances in chemistry and plant origin. Apidologie 2000, 31, 3–15.
[CrossRef]

28. Šturm, L.; Poklar Ulrih, N. Review Advances in the Propolis chemical composition between 2013 and 2018: A Review. eFood 2020,
1, 24–37. [CrossRef]

29. Salatino, A.; Teixeira, E.W.; Negri, G.; Message, D. Origin and chemical variation of Brazilian propolis. Evid. Based Complementary
Altern. Med. 2005, 2, 33–38. [CrossRef] [PubMed]

30. Greenaway, W.; Scaysbrook, T.; Whately, F.R. The composition and plant origin of propolis: A report of work at Oxford. Bee World
1990, 71, 107–118. [CrossRef]

31. Lotti, C.; Campo Fernández, M.; Piccinelli, A.L.; Cuesta-Rubio, O.; Márquez Hernández, I.; Rastrelli, L. Chemical constituents of
red Mexican propolis. J. Agric. Food Chem. 2010, 58, 2209–2213. [CrossRef]

32. Tomas-Barberán, F.A.; Garcia-Viguera, C.; Vitolivier, P.; Ferreres, F.; Tomás-Lorente, F. Phytochemical evidence for the botanical
origin of tropical propolis from Venezuela. Phytochemistry 1993, 34, 191–196. [CrossRef]

33. Cuesta-Rubio, O.; Piccinelli, A.L.; Campo Fernandez, M.; Marquez Hernandez, I.; Rosado, A.; Rastrelli, L. Chemical characteriza-
tion of Cuban propolis by HPLC-PDA, HPLC-MS, and NMR: The brown, red, and yellow cuban varieties of propolis. J. Agric.
Food Chem. 2007, 55, 7502–7509. [CrossRef]

http://doi.org/10.1016/j.jep.2010.10.032
http://doi.org/10.1186/1752-153X-8-28
http://doi.org/10.1016/j.sjbs.2018.08.013
http://www.ncbi.nlm.nih.gov/pubmed/31762646
http://doi.org/10.1016/j.sjbs.2020.09.016
http://www.ncbi.nlm.nih.gov/pubmed/33100868
http://doi.org/10.1016/j.ctim.2020.102380
http://www.ncbi.nlm.nih.gov/pubmed/32444060
http://doi.org/10.1016/j.jep.2020.113159
http://doi.org/10.1016/j.jpba.2020.113814
http://doi.org/10.1016/j.jep.2020.113387
http://doi.org/10.1016/j.foodres.2020.109802
http://doi.org/10.1016/j.biopha.2020.110622
http://doi.org/10.1016/j.molliq.2020.114514
http://doi.org/10.1021/jf901951z
http://doi.org/10.1016/j.fbp.2012.08.006
http://doi.org/10.1016/j.tifs.2018.11.007
http://doi.org/10.1016/S2095-4964(17)60360-1
http://www.anmat.gov.ar/alimentos/codigoa/Capitulo_XVII.pdf
http://www.anmat.gov.ar/alimentos/codigoa/Capitulo_XVII.pdf
http://doi.org/10.1051/apido:2000102
http://doi.org/10.2991/efood.k.191029.001
http://doi.org/10.1093/ecam/neh060
http://www.ncbi.nlm.nih.gov/pubmed/15841276
http://doi.org/10.1080/0005772X.1990.11099047
http://doi.org/10.1021/jf100070w
http://doi.org/10.1016/S0031-9422(00)90804-5
http://doi.org/10.1021/jf071296w


Metabolites 2021, 11, 76 14 of 16

34. Koenig, B. Plant sources of propolis. Bee World 1995, 66, 136–139. [CrossRef]
35. Montenegro, G.; Peña, R.C.; Mujica, A.M.; Pizarro, R. Botanical resources for propolis in an apiary network in central Chile.

Phyton Int. J. Exp. Bot. 2001, 70, 191–201.
36. Isla, M.I.; Nieva Moreno, M.I.; Zampini, I.C.; Solórzano, E.; Danert, F.; Vera, N.; Sayago, J.E.; Bedascarrabure, E.; Maldonado, L.;

Ordoñez, R. Argentine propolis: Its flavonoid and chalcone content and its relation with the functional properties. In Beneficial
Effects of Propolis on Human Health and Chronic Diseases; Farooqui, T., Farooqui, A., Eds.; Nova Science Publisher: Hauppauge, NY,
USA, 2011; Volume 8, pp. 161–169.

37. Isla, M.I.; Paredes Guzman, J.F.; Nieva Moreno, M.I.; Koo, H.; Park, Y.K. Some chemical composition and biological activity of
Northern Argentine propolis. Some chemical composition and biological activity of Northern Argentine propolis. J. Agric. Food
Chem. 2005, 53, 1166–1172. [CrossRef] [PubMed]

38. Nieva Moreno, M.I.; Zampini, I.C.; Ordóñez, M.; Vattuone, M.A.; Isla, M.I. Evaluation of the cytotoxicity, mutagenicity and
antimutagenicity of propolis from Amaicha del Valle, Tucumán, Argentina. J. Agric. Food Chem. 2005, 53, 8957–8962. [CrossRef]

39. Chaillou, L.; Nazareno, M. Bioactivity of propolis from Santiago del Estero, Argentina, related to their chemical composition LWT.
Food Sci. Tech. 2009, 42, 1422–1427.

40. Agüero, M.B.; González, M.; Lima, B.; Svetaz, L.; Sánchez, M.; Zacchino, S.; Feresin, G.; Schmeda-Hirschmann, G.; Palermo, J.;
Wunderlin, D.; et al. Argentinean propolis from Zuccagnia punctata Cav. (Caesalpinieae) exudates: Phytochemical characterization
and antifungal activity. J. Agric. Food Chem. 2010, 58, 194–201.

41. Vera, N.; Solórzano, E.; Ordóñez, R.; Maldonado, L.; Bedascarrasbure, E.; Isla, M.I. Chemical composition of Argentinean propolis
collected in extreme regions and its relation with antimicrobial and antioxidant activities. Nat. Prod. Commun. 2011, 6, 823–827.
[CrossRef]

42. Danert, F.C.; Zampini, C.; Ordoñez, R.; Maldonado, L.; Bedascarrasbure, E.; Isla, M.I. Argentinean Propolis as non conventional
functional foods. Nutritional and functional composition. Nat. Prod. Commun. 2014, 9, 167–170.

43. Salas, A.L.; Ordóñez, R.M.; Silva, C.; Maldonado, L.; Bedascarrasbure, E.; Isla, M.I.; Zampini, I.C. Antimicrobial activity of
Argentinean propolis against Staphylococcus isolated of canine otitis. J. Exp. Biol. Agric. Sci. 2014, 2, 197–207.

44. Salas, A.L.; Alberto, M.R.; Zampini, I.C.; Cuello, A.S.; Maldonado, L.; Ríos, J.L.; Isla, M.I. Biological activities of polyphenols-
enriched propolis from Argentina arid regions. Phytomedicine 2016, 23, 27–31. [CrossRef]

45. Solórzano, E.; Vera, N.; Cuello, S.; Ordóñez, R.; Zampini, C.; Maldonado, L.; Bedascarrasbure, E.; Isla, M.I. Chalcones in bioactive
Argentine propolis collected in arid environments. Nat. Prod. Commun. 2012, 7, 879–882. [CrossRef] [PubMed]

46. Solórzano, E.R.; Bortolini, C.; Bogialli, S.; Di Gangi, I.M.; Favaro, G.; Maldonado, L.; Pastore, P. Use of a LC-DAD-QTOF system
for the characterization of the phenolic profile of the argentinean plant Zuccagnia punctata and of the related propolis: New
biomarkers. J. Func. Foods 2017, 33, 425–435. [CrossRef]

47. Solorzano, E.R.; Di Gangi, I.M.; Roverso, M.; Favaro, G.; Bogialli, S.; Pastore, P. Low level of allergens in the Argentinean plant
Zuccagnia punctata Cav.: Screening and Quality Control of North-Western Propolis Using an LC-DAD-QTOF System. Appl. Sci.
2019, 9, 3546. [CrossRef]

48. González, M.; García, M.E.; Slanis, A.; Bonini, A.; Fiedler, S.; Fariña, L.; Dellacassa, E.; Condurso, C.; Lorenzo, D.; Russo, M.; et al.
Phytochemical findings evidencing botanical origin of new propolis type from north-west Argentina. Chem. Biodivers. 2019, 16,
e1800442. [CrossRef] [PubMed]

49. Lima, B.; Tapia, A.; Luna., L.; Fabani, M.P.; Schmeda-Hirschmann, G.; Podio, N.S.; Wunderlin, D.A.; Feresin, G.E. Flavonoids,
DPPH activity, and metal content allow determination of the geographical origin of propolis from the Province of San Juan
(Argentina). J. Agric. Food Chem. 2009, 57, 2691–2698. [CrossRef]

50. Lozina, L.; Peichoto, M.; Acosta, O.; Granero, G. Standarization and organoleptic and physicochemical characterization of 15
Argentinean Propolis. Lat. Am. J. Pharm. 2010, 29, 102–110.

51. Isla, M.I.; Carrasco Juárez, B.; Nieva Moreno, M.I.; Zampini, I.; Ordóñez, R.; Sayago, J.; Cuello, S.; Alberto, M.R.; Bedescarrabure, E.;
Alvarez, A.; et al. Effect of seasonal variations and collection form on antioxidant activity of propolis from San Juan, Argentina. J.
Med. Food 2009, 12, 1334–1342. [CrossRef]

52. Kumazawa, S.; Ahn, M.R.; Fujimoto, T.; Kato, M. Radical-scavenging activity and phenolic constituents of propolis from different
regions of Argentina. Nat. Prod. Res. 2010, 24, 804–812. [CrossRef]

53. Tosi, E.A.; Re, E.; Ortega, M.E.; Cazzoli, A.F. Food preservative based on propolis: Bacteriostatic activity of propolis polyphenols
and flavonoids upon Escherichia Coli. Food Chem. 2007, 104, 1025–1029. [CrossRef]

54. Busch, V.M.; Pereyra-Gonzalez, A.; Segatin, N.; Santagapita, P.R.; Ulrih, N.P.; Buera, M.P. Propolis encapsulation by spray drying:
1 characterization and stability. LWT 2017, 75, 227–235. [CrossRef]

55. Agüero, M.B.; Svetaz, L.; Sánchez, M.; Luna, L.; Lima, B.; López, M.L.; Zacchino, S.; Palermo, J.; Wunderlin, D.; Feresin, G.E.
Argentinean Andean propolis associated with the medicinal plant Larrea nitida Cav. (Zygophyllaceae). HPLC-MS and GC-MS
characterization and antifungal activity. Food Chem. Toxicol. 2011, 49, 1970–1978.

56. Mercado, M.I.; Moreno, M.A.; Ruiz, A.I.; Rodríguez, I.F.; Zampini, C.I.; Isla, M.I.; Ponessa, G.I. Morphoanatomical and
histochemical characterization of Larrea species from Northwestern Argentina. Rev. Bras. Farmacogn. 2018, 28, 393–401. [CrossRef]

57. Salas, A.; Mercado, M.I.; Zampini, I.C.; Ponessa, G.I.; Isla, M.I. Determination of botanical origin of propolis from Monte region of
Argentina by histological and chemical methods. Nat. Prod. Commun. 2016, 11, 627–630. [CrossRef]

http://doi.org/10.1080/0005772X.1985.11098844
http://doi.org/10.1021/jf040130h
http://www.ncbi.nlm.nih.gov/pubmed/15713035
http://doi.org/10.1021/jf0513359
http://doi.org/10.1177/1934578X1100600618
http://doi.org/10.1016/j.phymed.2015.11.007
http://doi.org/10.1177/1934578X1200700718
http://www.ncbi.nlm.nih.gov/pubmed/22908570
http://doi.org/10.1016/j.jff.2017.04.003
http://doi.org/10.3390/app9173546
http://doi.org/10.1002/cbdv.201800442
http://www.ncbi.nlm.nih.gov/pubmed/30725525
http://doi.org/10.1021/jf803866t
http://doi.org/10.1089/jmf.2008.0286
http://doi.org/10.1080/14786410802615270
http://doi.org/10.1016/j.foodchem.2007.01.011
http://doi.org/10.1016/j.lwt.2016.08.055
http://doi.org/10.1016/j.bjp.2018.05.012
http://doi.org/10.1177/1934578X1601100518


Metabolites 2021, 11, 76 15 of 16

58. Salas, A.S.; Mercado, M.I.; Orqueda, E.; Correa Uriburu, F.; García, M.E.; Pérez, J.; Alvarez, M.; Ponessa, G.; Maldonado, L.;
Zampini, I.C.; et al. Zuccagnia-type Propolis from Argentina: A potential functional ingredient in food to pathologies associated
to metabolic syndrome and oxidative stress. J. Food Sci. 2020, 85, 2578–2588. [CrossRef]

59. Lersten, N.R.; Curtis, J.D. Survey of leaf anatomy, especially secretory structures, of tribe Caesalpinieae (Leguminosae, Caesalpin-
ioideae). Plant Syst. Evol. 1996, 200, 1–39. [CrossRef]

60. Mercado, M.I.; Ruiz, A.I.; Zampini, I.C.; Nuño, G.; Cuello, S.; Isla, M.I.; Ponessa, G.I. Arquitectura y morfoanatomía foliar y
caulinar de Zuccagnia punctata (Fabaceae). Histolocalización de compuestos bioactivos. Lilloa 2013, 50, 58–68.

61. Nieva Moreno, M.I.; Isla, M.I.; Cudmani, N.G.; Vattuone, M.A.; Sampietro, A.R. Screening of antibacterial activity of Amaicha del
Valle (Tucumán, Argentina) propolis. J. Ethnopharmacol. 1999, 68, 97–102. [CrossRef]

62. Salas, A.; Zampini, I.C.; Maldonado, L.; Isla, M.I. Development of a bioproduct for medicinal use with extracts of Zuccagnia-type
propolis. Nat. Prod. Commun. 2018, 13, 167–170. [CrossRef]

63. Nieva Moreno, M.I.; Isla, M.I.; Vattuone, M.A.; Sampietro, A.R. Comparison of the free radical-scavenging activity of propolis
from several regions. J. Ethnopharmacol. 2000, 71, 109–114. [CrossRef]

64. Isla, M.I.; Nieva Moreno, M.I.; Vattuone, M.A.; Sampietro, A.R. Antioxidant activity of argentine propolis extracts. J. Etnopharmacol.
2001, 76, 165–170. [CrossRef]

65. Oldoni, T.L.; Cabral, I.; D’Arce, M.; Rosalen, P.; Ikegaki, M.; Nascimento, A.; Alencar, S. Isolation and analysis of bioactive
isoflavonoids and chalcone from a new type of Brazilian propolis. Sep. Purif. Technol. 2011, 77, 208–213. [CrossRef]

66. Tran, V.H.; Duke, R.; Abu-Mellal, A.; Duke, C. Propolis with high flavonoid content collected by honey bees from Acacia paradoxa.
Phytochemistry 2012, 81, 126–132. [CrossRef] [PubMed]

67. Biharee, A.; Sharma, A.; Kumar, A.; Jaitak, V. Antimicrobial flavonoids as a potential substitute for overcoming antimicrobial
resistance. Fitoterapia 2020, 146, 104720. [CrossRef] [PubMed]

68. Cardoso, R.L.; Maboni, F.; Machado, G.; Alves, S.H.; de Vargas, A.C. Antimicrobial activity of propolis extract against Staphy-
lococcus coagulase positive and Malassezia pachydermatis of canine otitis. Vet. Microbiol. 2010, 142, 432–434. [CrossRef]
[PubMed]

69. Nuño, G.; Alberto, M.; Zampini, I.; Cuello, S.; Ordoñez, R.; Sayago, J.; Baroni, V.; Wunderlin, D.; Isla, M.I. The effect of Zuccagnia
punctata Cav, an Argentina medicinal plant, on virulence factors from Candida species. Nat. Prod. Commun. 2014, 9, 933–936.

70. Isla, M.I.; Moreno, A.; Nuño, G.; Carabajal, A.; Aberto, M.R.; Zampini, I.C. Zuccagnia punctata Cav.: A review of its traditional
uses, phytochemistry, pharmacology and toxicology. Nat. Prod. Commun. 2016, 11, 1749–1755.

71. Tangarife-Castaño, V.; Correa-Royero, J.; Zapata-Londoño, B.; Durán, C.; Stanshenko, E.; Mesa-Arango, A.C. Anti-Candida
albicans activity, cytotoxicity and interaction with antifungal drugs of essential oils and extracts from aromatic and medicinal
plants. Infection 2011, 11, 160–167. [CrossRef]

72. Carabajal, M.P.A.; Isla, M.I.; Zampini, I.C. Evaluation of antioxidant and antimutagenic activity of herbal teas from native plants
used in traditional medicine in Argentina. South Afr. J. Bot. 2017, 110, 258–265. [CrossRef]

73. Carabajal, M.P.A.; Isla, M.I.; Borsarelli, C.D.; Zampini, I.C. Influence of in vitro gastro-duodenal digestion on the antioxidant
activity of single and mixed three “Jarilla” species infusions. J. Herb. Med. 2020, 19, 100296. [CrossRef]

74. Carabajal, M.P.A.; Perea, M.C.; Isla, M.I.; Zampini, I.C. The use of jarilla native plants in a Diaguita-Calchaquí indigenous
community from northwestern Argentina: An ethnobotanical, phytochemical and biological approach. J. Ethnopharmacol. 2020,
247, 112258. [CrossRef]

75. Moreno, M.A.; Gómez-Mascaraque, L.; Arias, M.; Zampini, I.C.; Sayago, J.E.; Pino Ramos, L.L.; Schmeda-Hirschmann, G.;
López-Rubio, A.; Isla, M.I. Electrosprayed chitosan microcapsules as delivery vehicles for vaginal phytoformulations. Carbohydr.
Polym. 2018, 201, 425–437. [CrossRef] [PubMed]

76. Avila, V.; Bertolotti, S.G.; Criado, S.; Pappano, N.; Debattista, N.; García, N.A. Antioxidant properties of natural flavonoids:
Quenching and generation of singlet molecular oxygen. J. Food Sci. Technol. 2001, 36, 25–33. [CrossRef]

77. Morán Vieyra, F.; Boggetti, H.; Zampini, I.; Ordoñez, R.; Isla, M.; Alvarez, R.; De Rosso, V.; Mercadante, A.; Borsarelli, C. Singlet
oxygen quenching and radical scavenging capacities of structurally related flavonoids present in Zuccagnia punctata Cav. Free Rad.
Res. 2009, 43, 553–564. [CrossRef] [PubMed]

78. Hwang, S.H.; Wecksler, A.T.; Wagner, K.; Hammock, B.D. Rationally designed multitarget agents against inflammation and pain.
Curr. Med. Chem. 2013, 20, 1783–1799. [CrossRef] [PubMed]

79. Lucas, L.; Russell, A.; Keast, R. Molecular mechanisms of inflammation. Antiinflammatory benefits of virgin olive oil and the
phenolic compound oleocanthal. Curr. Pharm. Des. 2011, 17, 754–768. [CrossRef]

80. Kim, H.; Son, K.; Chang, H.; Kang, S. Anti-inflammatory plant flavonoids and cellular action mechanisms. J. Pharm. Sci. 2004, 96,
229–245. [CrossRef]

81. Yadav, V.R.; Prasad, S.; Sung, B.; Aggarwal, B.B. The role of chalcones in suppression of NF-κB-mediated inflammation and cancer.
Int. Immunopharmacol. 2011, 11, 295–309. [CrossRef]

82. Alberto, M.R.; Nieva Moreno, M.I.; Zampini, I.C.; Isla, M.I. Anti-inflammatory activity of structurally related natural flavonoids.
Bol. Latinoam. Caribe Plantas Med. Aromát. 2007, 6, 308–309.

83. Alvarenga, L.; Cardozo, L.F.; Borges, N.A.; Chermut, T.R.; Ribeiro, M.; Leite, M.; Mafra, D. To bee or not to bee? The bee extract
propolis as a bioactive compound in the burden of lifestyle disease. Nutrition 2020, 83, 111094. [CrossRef]

http://doi.org/10.1111/1750-3841.15323
http://doi.org/10.1007/BF00984746
http://doi.org/10.1016/S0378-8741(99)00051-3
http://doi.org/10.1177/1934578X1801300214
http://doi.org/10.1016/S0378-8741(99)00189-0
http://doi.org/10.1016/S0378-8741(01)00231-8
http://doi.org/10.1016/j.seppur.2010.12.007
http://doi.org/10.1016/j.phytochem.2012.06.002
http://www.ncbi.nlm.nih.gov/pubmed/22784552
http://doi.org/10.1016/j.fitote.2020.104720
http://www.ncbi.nlm.nih.gov/pubmed/32910994
http://doi.org/10.1016/j.vetmic.2009.09.070
http://www.ncbi.nlm.nih.gov/pubmed/19913365
http://doi.org/10.1016/S0123-9392(11)70080-7
http://doi.org/10.1016/j.sajb.2016.10.006
http://doi.org/10.1016/j.hermed.2019.100296
http://doi.org/10.1016/j.jep.2019.112258
http://doi.org/10.1016/j.carbpol.2018.08.084
http://www.ncbi.nlm.nih.gov/pubmed/30241838
http://doi.org/10.1046/j.1365-2621.2001.00428.x
http://doi.org/10.1080/10715760902912264
http://www.ncbi.nlm.nih.gov/pubmed/19431060
http://doi.org/10.2174/0929867311320130013
http://www.ncbi.nlm.nih.gov/pubmed/23410172
http://doi.org/10.2174/138161211795428911
http://doi.org/10.1254/jphs.CRJ04003X
http://doi.org/10.1016/j.intimp.2010.12.006
http://doi.org/10.1016/j.nut.2020.111094


Metabolites 2021, 11, 76 16 of 16

84. Pastor-Villaescusa, B.; Sanchez Rodriguez, E.; Rangel-Huerta, O. Polyphenols in obesity and metabolic syndrome. Obesity 2018,
213–239. [CrossRef]

85. Mahapatra, D.K.; Asati, V.; Bharti, S.K. Chalcones and their therapeutic targets for the management of diabetes: Structural and
pharmacological perspectives. Eur. J. Med. Chem. 2015, 92, 839–865. [CrossRef] [PubMed]

86. Mahapatra, D.K.; Bharti, S.K. Therapeutic potential of chalcones as cardiovascular agents. Life Sci. 2016, 148, 154–172. [CrossRef]
[PubMed]

87. Cai, C.Y.; Rao, L.; Rao, Y.; Guo, J.X.; Xiao, Z.Z.; Cao, J.Y.; Wang, B. Analogues of xanthone-chalcones and bis-chalcones as
α-glucosidase inhibitors and anti-diabetes candidates. Eur. J. Med. Chem. 2017, 130, 51–59. [CrossRef] [PubMed]

88. Bale, A.T.; Khan, K.M.; Salar, U.; Chigurupati, S.; Fasina, T.; Ali, F.; Perveen, S. Chalcones and bis-chalcones: As potential
α-amylase inhibitors; synthesis, in vitro screening, and molecular modelling studies. Bioorg. Chem. 2018, 79, 179–189. [CrossRef]
[PubMed]

89. Roco, J.; Alarcon, G.; Medina, M.; Zampini, C.; Isla, M.I.; Jerez, S. Beneficial effects of hydroalcoholic extract and flavonoids from
Zuccagnia punctata in a rabbit model of vascular dysfunction induced by high cholesterol diet. Med. Chem. Res. 2017, 26, 1–9.
[CrossRef]

90. Roco, J.; Zampini, C.; Isla, M.I.; Jerez, S. Oral administration of Zuccagnia punctata extract improves lipid profile, reduces oxidative
stress and normalizes vascular function in hypercholesterolemic rabbits. Phytomedicine 2018, 48, 104–111. [CrossRef] [PubMed]

91. Ordóñez, R.; Zampini, I.C.; Nieva Moreno, M.I.; Isla, M.I. Potential application of Argentine propolis to control some phy-
topathogenic bacteria. Microbiol. Res. 2011, 166, 578–584. [CrossRef] [PubMed]

92. Moreno, A.; Vallejo, A.M.; Ballester, A.R.; Zampini, C.; Isla, M.I.; Lopez-Rubio, A.; Fabra, M.J. Antifungal edible coatings
containing Argentinian propolis extract and their application in raspberries. Food Hydrocoll. 2020, 107, 105973. [CrossRef]

93. Zampini, I.C.; Villena, J.; Salva, S.; Herrera, M.; Isla, M.I.; Alvarez, S. Potentiality of standardized extract and isolated flavonoids
from Zuccagnia punctata for the treatment of respiratory infections by Streptococcus pneumoniae: In vitro and in vivo studies. J.
Ethnopharmacol. 2012, 140, 287–292. [CrossRef] [PubMed]

94. Khan, S. Recent advances in role of propolis as natural additive in poultry nutrition. J. Apic. Sci. 2017, 61, 2. [CrossRef]
95. Bankova, V.; Popova, M.; Trusheva, B. New emerging fields of application of propolis. Maced. J. Chem. Chem. Eng. 2016, 35, 1–11.

[CrossRef]

http://doi.org/10.1016/B978-0-12-812504-5.00011-8
http://doi.org/10.1016/j.ejmech.2015.01.051
http://www.ncbi.nlm.nih.gov/pubmed/25638569
http://doi.org/10.1016/j.lfs.2016.02.048
http://www.ncbi.nlm.nih.gov/pubmed/26876916
http://doi.org/10.1016/j.ejmech.2017.02.007
http://www.ncbi.nlm.nih.gov/pubmed/28242551
http://doi.org/10.1016/j.bioorg.2018.05.003
http://www.ncbi.nlm.nih.gov/pubmed/29763804
http://doi.org/10.1007/s00044-017-1934-6
http://doi.org/10.1016/j.phymed.2018.05.008
http://www.ncbi.nlm.nih.gov/pubmed/30195868
http://doi.org/10.1016/j.micres.2010.11.006
http://www.ncbi.nlm.nih.gov/pubmed/21237629
http://doi.org/10.1016/j.foodhyd.2020.105973
http://doi.org/10.1016/j.jep.2012.01.019
http://www.ncbi.nlm.nih.gov/pubmed/22285202
http://doi.org/10.1515/jas-2017-0020
http://doi.org/10.20450/mjcce.2016.864

	Introduction 
	Research on Argentine Propolis 
	Propolis from the Monte Region in Argentina 
	Chemical Characterization of Propolis from the Monte Region 
	Botanical Origin by Microscopic Analyses and Chemical Analysis 
	Pharmacological Activities 
	Crop Protection and Post Harvesting Use 
	Toxicity of Propolis from the Monte Region 
	Fields of Application of Propolis from the Monte Region 


	Concluding Remarks and Future Trends 
	Materials and Methods 
	References

