
Ecological Indicators 126 (2021) 107663

Available online 12 April 2021
1470-160X/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Rhythm of change of trend-cycles of vegetation dynamics as an early 
warning indicator for land management 

O. Bruzzone , M.H. Easdale * 

Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB, INTA-CONICET), Av. Modesta Victoria 4450 (8400), San Carlos de Bariloche, Río Negro, 
Argentina   

A R T I C L E  I N F O   

Keywords: 
Adaptive management 
NDVI 
Patagonia 
Rangelands 
Time series analysis 

A B S T R A C T   

The use of time series of vegetation indices obtained from satellites has become a highly relevant source of data 
in studies of land degradation assessment and monitoring. However, information about future vegetation dy-
namics, which is key for early warnings oriented at land management decisions, is still lacking. Trend-cycle was 
recently proposed as an indicator that represents a smoothed version of a seasonally adjusted data series, which 
provides information on long-term movements (trend) while including changes in direction underlying the series 
(cycles). The aim was to estimate the direction and speed of change of the Normalized Difference Vegetation 
Index (NDVI) trend-cycles as a complementary information of the rhythm of change between cyclic phases of 
vegetation productivity. In particular, we estimate the first and second derivative of the end-point of the trend- 
cycle function, as a measure of the direction the function is going and the speed of change, respectively. The 
potential advantage of our proposal is the fast processing for large areas and its sensitivity to capturing shifts in 
temporal dynamics for short time series data. This information can be used as a proxy to build scenarios of the 
future behaviour of vegetation dynamics, which is a relevant issue to move forward in the development of early 
warning tools for adaptive land management.   

1. Introduction 

The observation and early detection of land degradation is a major 
aim for policy organisations such as the United Nations Convention to 
Combat Desertification, under the current Land Degradation Neutrality 
program (LDN; Grainger, 2015). One main challenge relates to the need 
for relevant indicators for monitoring LDN as part of the Sustainable 
Development Goals (Hák et al., 2016). The timely and early detection of 
degradation processes are at the core of demands to prevent the 
continuing deterioration of land (Higginbottom and Symeonakis, 2014), 
with much advance in the development of indicators for land degrada-
tion. However, there is a need for developments of early warning signals 
aimed at predicting critical points at which a sudden shift to a con-
trasting dynamical regime may occur (Scheffer et al., 2009). Whereas 
there is advance in methods for spatial patterns (Kéfi et al., 2014), 
identifying critical temporal transitions using real data, short time and 
noisy series is still challenging (Lade and Gross, 2012; Liu et al., 2015). 

The use of time series of satellite data has become a highly relevant 
source of information in studies of land degradation assessment and 
monitoring. Changes in vegetation primary productivity can be tackled 

by analysing long-term trends of spectral indexes such as the Normalized 
Difference Vegetation Index (NDVI) estimated with satellite-sensed data 
series (Tucker, 1979). However, studies aimed at monitoring land 
degradation are still dominated by approaches focusing on the analysis 
of linear trends of NDVI as proxies for land degradation (Wessels et al., 
2007). For instance, global tools initiatives such as Trends. Earth (sup-
ported by the UNCCD) evidence the operationalisation of this approach, 
which is used as source of information to support country reporting 
needs and in research study cases (e.g. Mariathasan et al., 2019). An 
overlooked ecosystem feature is that temporal productivity behaves in 
cyclic dynamics due to both internal factors and external drivers, which 
promote inertial responses (Westman, 1978; Qiu et al., 2016). Based on 
this concept of cyclic dynamics, it is increasingly acknowledge that long- 
term trends of NDVI hardly exhibit unidirectional or monotonic 
behaviour, but much often, a more cyclic or non-monotonic dynamics, 
which needs to be adequately captured (Jamali et al., 2014; Easdale 
et al., 2018). 

Trend-cycle was recently proposed as an indicator that represents a 
smoothed version of a seasonally adjusted data series, which provides 
information on long-term movements (trend) while including changes in 
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direction underlying the series (cycles) (Easdale et al., 2019). A main 
result of this study was that contrary to what is generally seen in the 
literature, monotonic or linear patterns were marginally recorded, 
whereas the greater proportion of the study area was classified as re-
covery and relapsing patterns, which refer to phases of a cyclic behav-
iour (i.e. non-monotonic dynamics). On the other hand, as any trend 
analysis, it provides information about past behaviour. However, in-
formation about future vegetation dynamics, which is key for early 
warnings oriented at adaptive land management, is still lacking. The aim 
was to estimate the direction and speed of change of NDVI trend-cycles 
as a complementary information of the rhythm of change between cyclic 
phases. In particular, we estimate the first and second derivative of the 
end-point of the trend-cycle function, as a measure of the direction the 
function is going and the speed of change, respectively. This comple-
mentary information can be used as a proxy to informing the future 
behaviour of vegetation dynamics, which is a relevant issue to move 
forward in the development of early warning tools for adaptive land 
management. 

2. Materials and methods 

2.1. Study area 

North Patagonia is located between latitude 35◦ and 42◦ S. There is a 
west-east biophysical gradient in terms of altitude (from 2,000 to 400 m. 
a.s.l.) and rainfall (from 1,000 to 200 mm yr− 1), which defines 13 bio-
zones (Paruelo et al., 1992; León et al., 1998). Whereas the Andean 
region is dominated by rainforest (Nothofagus spp.), the extra-Andean 
region is mostly dominated by arid and semi-arid rangelands, mostly 
grass-shrub and shrub steppes (Fig. 1; Bran et al., 2005). The largest 
biozones are the Central Plateau and Western Hills & Plateau steppes 
(51% of North Patagonia) dominated by low shrubs and grasses, where 
meadows with high productivity represent less than 3% of the total area 

and are used for livestock production (Bran et al., 2005). On the other 
hand, the Austral Monte (Fig. 1) is dominated by medium-height 
shrublands (Fig. 1). Most farming systems are based on extensive live-
stock production, particularly smallholder pastoralism, with mixed 
herding of goat, sheep and cattle (Villagra et al. 2015), and transhumant 
pastoralism at the north-west (Easdale et al. 2016). Larger ranches of 
sheep and cattle production are more frequent at the south-west of the 
region, whereas commercial farmers with cattle are dominant in the 
Eastern Monte (Easdale et al., 2009). Finally, fruit production is domi-
nant in irrigated valleys. 

2.2. Data source and processing 

We used the space–time cube of 16–day composite MODIS images 
(MODIS13Q1 product, version 6) processed and developed by Easdale 
et al. (2018), for the series February 2000–July 2020 obtained from the 
USGS Earth Resources Observation and Science (EROS) Data Centre. The 
temporal sequence for each pixel (area of 6.25 ha) along the last 
dimension of that matrix was obtained (i.e. time). NDVI was derived 
from MODIS images, which was calculated with the following equation 
(Rouse et al., 1973): 

NDVI = (ρNIR − ρR)/(ρNIR+ ρR) (1)  

where ρNIR and ρR are the surface reflectances centered at 858 nm 
(near-infrared) and 648 nm (visible) portions of the electromagnetic 
spectrum, respectively. 

2.3. Estimate of trend cycle, first and second derivative 

We estimated NDVI trend-cycles following Easdale et al. (2019). The 
process was performed at the pixel level using an adaptive wavelet 
transform via the Basis Pursuit procedure. The Basis Pursuit algorithm 
decomposes a time series into an optimal weighted sum of 

Fig. 1. Study area. Biozones in North Patagonia, Argentina.  
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time–frequency dictionaries based on the fewer coefficients norm (Chen 
et al., 2001), based on Gabor atoms (Demanet and Ying, 2007). The used 
Gabor atoms are cosine functions, which provide the frequency 
component, multiplied by Gaussian windows, which give the temporal 
location. Both were centered so that the maximum of the window 
coincided with that of the sinusoidal function. Hence, the atom was 
defined as follows: 

g(t) = a cos
(

2πf (t − u)e(− π (t− u)/s )2
)

(2)  

where t is the time in years, u is the center of the atom, s is the width of 
the Gaussian window, f is the frequency in 1/year, and a is the atom 
weight or amplitude. Then, the time series was reconstructed as follows: 

X =
∑n

i=1
gi(t)+ ε (3)  

where X is the time series, n is the number of gabor atoms, and ε is the 
error. 

A low-pass filter was applied to the time series, removing all gabor 
atoms whose f variable corresponded to higher than 1/4 year. After 
filtering, the series was reconstructed and used to perform the analyses. 
Therefore, the resulting series did not contain seasonal or high- 
frequency variation, with variability remaining on a scale greater than 
four years. 

Basis pursuit algorithm was applied by using the gpu pursuit package 
for the python programming language (Bruzzone and Easdale, 2018), on 
the time series of logit-transformed NDVI data. To avoid overfitting, for 
each pixel, the number of atoms was increased by one until Akaike’s 
corrected information criteria began to increase, or the total number of 
atoms reached 20. When one of these criteria was reached the procedure 
stopped, and the result was used in the filtering procedure. 

Once the series were filtered by removing the atoms whose param-
eter f was greater than 1/4, the first and second derivatives were 
calculated numerically by means of the finite difference method at a 
resolution of one day. 

2.4. Rhythm of change 

The rhythm of change of the trend-cycle function was defined by the 
combination of the first and second derivatives of the end-point of that 
function. On the one hand, the first derivative provides information 

about the direction the function is going, in terms of increasing (posi-
tive) or decreasing (negative). Then, it can be interpreted as an instan-
taneous rate of change. On the other hand, the second derivative 
measures the speed at which the rate of change is itself changing, and 
provides information about the curvature or concavity of the graph of a 
function (Fig. 2). Then, the graph of a function with a positive second 
derivative is upwardly concave (accelerate), while a negative second 
derivative is downwardly convex (slowdown). 

From an ecological perspective, a positive direction (increasing, 
Fig. 2) may represent a recovery from drought (Vicente-Serrano et al., 
2013), which can be speed up with highly positive precipitation pulses 
(accelerate, Fig. 2). As well, greening trends may be a response to both 
climatic and non-climatic factors (Xiao and Moody, 2005), such as a 
post-fire response (Riaño et al., 2002; Gouveia et al., 2012). A perma-
nent land-use change generating an increasing primary productivity 

Fig. 2. Scheme of the classes developed by means of the first and second derivatives, respectively.  

Table 1 
Classes of the rhythm of change of NDVI trend-cycles (Rhych) based on a 
combination of the classes obtained from the first and second derivatives 
(Fig. 2), for each pixel’ trend-cycle function.  

Rhych Class Colour Position 
from 
average 

First 
derivative 

Second 
derivative 

Accelerated 
growth above 
average 

Violet Above (+) Positive (+), 
increasing 

Positive (+), 
accelerating 

Slowed growth 
above average 

Blue Above (+) Positive (+), 
increasing 

Negative (− ), 
slowing down 

Slowed decline 
above average 

Turquoise Above (+) Negative (− ), 
decreasing 

Positive (+), 
accelerating 

Accelerated 
decline above 
average 

Yellow Above (+) Negative (− ), 
decreasing 

Negative (− ), 
slowing down 

No change Grey On the 
average (0) 

Zero (0) Zero (0) 

Accelerated 
growth below 
average 

Green Below (− ) Positive (+), 
increasing 

Positive (+), 
accelerating 

Slowed growth 
below average 

Brown Below (− ) Positive (+), 
increasing 

Negative (− ), 
slowing down 

Slowed decline 
below average 

Red Below (− ) Negative (− ), 
decreasing 

Positive (+), 
accelerating 

Accelerated 
decline below 
average 

Fuchsia Below (− ) Negative (− ), 
decreasing 

Negative (− ), 
slowing down  
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with respect to the previous situation, such as afforestation (Vasallo 
et al., 2012; Easdale et al., 2018), exemplify an accelerated growth in the 
beginning, but speed may decrease when the vegetation approaches a 
climax state. On the other hand, a negative phase might represent a 

downward transition due to either a long-lasting drought (Anyamba and 
Tucker, 2005), more abrupt shocks such as volcanic ash fallout (de 
Schutter et al., 2015) affecting surface reflectance (Easdale and Bruz-
zone, 2018), or permanent disturbances such as a decrease of irrigated 

Fig. 3. Estimated time to next critical points (maximum and minimum) and to the next crossing of the average of a hypothetical advanced recovery trend-cycle with 
slowed growth, above the average. Full line identifies the filtered NDVI time series, whereas the cut line identifies the projected time series. References: Present (T0), 
Time to next maximum (Tmx), Time to next minimum (Tmi) and Time to next crossing of the average (Tag). 

Fig. 4. Trend-cycle of vegetation dynamics for North Patagonia, Argentina: i) Increasing (blue), ii) Initial Relapsing (turquoise), iii) Advanced Relapsing (yellow), iv) 
Advanced Recovery (green), v) Initial Recovery (orange), vi) Decreasing (red), vii) No Trend-Cycle (white). Black lines identify the boundaries of biozones (Fig. 1). 
Data source: MODIS images for the time series between 2000-mid-2020. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 
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areas (Gumma et al., 2015). The rhythm of change of trend-cycles can 
inform how ecological systems are changing its productivity, in terms of 
direction and speed, as a response to short and long-term disturbances or 
environmental shifts (Pettorelli et al., 2005; Nimmo et al., 2015). 

2.4.1. Classification of the rhythm of change of trend-cycles: Rhych 
We developed an indicator that delivers the rhythm of change of 

NDVI trend cycles (Rhych) for each pixel function, which was based on 
the combination of the outcomes of the first (D1) and second (D2) de-
rivatives, respectively (Fig. 2). We identified four classes as follows 
(Table 1): i) Accelerated growth (both derivatives positive), ii) Slowed 
growth (positive D1 and negative D2), iii) No change (both derivatives 
zero), iv) Accelerated decline (both derivatives negative), and v) Slowed 
decline (negative D1 and positive D2). These classes were also divided 
into two different groups, in relation to the current position of the end- 
point of the function with respect to the historical average of the series. 

Finally, we tested the outcomes of the inflection sections defined by 
combinations where D1 or D2 were zero (e.g. positive D1 and zero D2; 
zero D1 and negative D2) and classified pixels were marginal. Hence, we 
decided to keep only the option where both derivatives were zero. 

2.5. Estimated time to reach the average and critical points 

Complementing the previous classification, we estimated the time 
the seasonally adjusted series needs to reach the average and the next 
critical points. Critical points are defined, in mathematical analysis, as 
the points where the first derivative of the smoothed and seasonally 
adjusted series function is equal to zero, hence, the next local maximum 
or minimum, respectively (Fig. 3). To calculate it, the smoothed time 
series was extrapolated five years into the future with a resolution of one 
day, using the fitted parameters during the Basis Pursuit procedure to 
calculate the extrapolated values. 

Table 2 
Proportion of area (%) of different trend-cycle classes for the whole region and for each biozone from North Patagonia, Argentina.  

Trend-Cycle Area 
(km2) 

North 
Patagonia 

Andes SubAndean 
Grasslands 

Western Hills and 
Plateaus Steppes 

Central 
Plateau 
Steppes 

Austral Monte 
Shrublands 

Eastern Monte 
Shrublands 

Irrigated 
Valleys 

Increasing (%) 4 0 0 0 0 0 0 0 0 
Initial Relapsing 

(%) 
140 448 41 11 20 27 37 59 42 40 

Advanced 
Relapsing (%) 

37 396 11 19 14 16 14 7 4 7 

Initial Recovery 
(%) 

20 124 6 34 18 5 3 1 0 2 

Advanced 
Recovery (%) 

141 110 41 27 44 51 46 33 54 51 

Decreasing (%) 7 0 0 0 0 0 0 0 0 
No Trend-Cycle 

(%) 
4 284 1 9 4 1 0 0 0 0 

Total area (km2) 343 372 100 33 
351 

14 230 64 833 57 934 132 670 33 252 7 103  

Table 3 
Proportion of area (%) of different classes of Rhythm of change of trend-cycle for each biozone from North Patagonia, Argentina. Rhythm of change types: Decline and 
Growth as the sum of the different classes, respectively.  

Rhythm of change Area 
(km2) 

North 
Patagonia 

Andes SubAndean 
Grasslands 

Western Hills and 
Plateaus Steppes 

Central 
Plateau 
Steppes 

Austral Monte 
Shrublands 

Eastern Monte 
Shrublands 

Irrigated 
Valleys 

Accelerated decline 
below average (%) 

2 838 0.8 0.7 0.5 0.8 0.7 0.9 1.2 0.3 

Slowed decline below 
average (%) 

58 507 17.0 9.9 15.7 17.4 17.4 21.0 9.5 7.8 

Slowed growth below 
average (%) 

17 962 5.2 30.1 13.8 3.6 2.3 1.3 1.1 2.5 

Accelerated growth 
below average (%) 

29 035 8.5 17.6 11.7 8.6 9.2 7.0 3.2 4.9 

No change (%) 4 295 1.3 8.8 4.5 0.8 0.1 0.1 0.1 0.1 
Accelerated decline 

above average (%) 
75 838 22.1 12.8 21.4 24.6 25.2 21.1 23.4 30.7 

Slowed decline above 
average (%) 

135 
408 

39.4 13.8 25.7 34.1 36.1 45.6 60.3 51.3 

Slowed growth above 
average (%) 

13 101 3.8 5.9 5.4 6.9 5.1 1.9 0.8 1.9 

Accelerated growth 
above average (%) 

6 388 1.9 0.4 1.2 3.3 3.9 1.1 0.3 0.5 

Total 343 
372 

100        

DECLINE (%)  79.4 37.2 63.3 76.9 79.4 88.6 94.5 90.1 
Decline above average 

(%)  
77.5 71.5 74.4 76.3 77.2 75.3 88.6 91.0 

Decline below average 
(%)  

22.5 28.9 25.6 23.7 22.8 24.7 11.4 9.0 

GROWTH (%)  19.4 54.1 32.2 22.3 20.5 11.3 5.5 9.8 
Growth above average 

(%)  
29.3 11.8 20.7 45.7 44.2 26.7 20.5 25.1 

Growth below average 
(%)  

70.7 88.2 79.3 54.3 55.8 73.3 79.5 74.9  
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The time for reaching the average and the critical points were clas-
sified into two ordinal scales consisting of a range of integers at steps of 
one year, with values ranging from − 6 to + 6. This range was based in 
two criteria: i) most data, as positive and negative cyclic movements, 
were distributed within these extreme values (Easdale et al., 2019), and 
ii) it is an operative range to support livestock management decisions. 
Then, the absolute value of the scale is the rounded up time, expressed in 
years to reach the next mean and critical point, respectively, whereas the 
sign indicates the trend direction. Zero values indicate a flat trend. For 
the time remaining to cross the average, they were positive if the last 
value was greater than the average (downward series), and negative for 
upward series. The remaining time was calculated as one plus the 
integer of the number of years remaining to reach the average by the 
sign of the last value of the filtered series. For the cases where the series 
were in the mean, the assigned value was zero. As a result, if the 
remaining time was, for example, 0.25 years descending, it is classified 
as 1, and if there were 2.5 years remaining ascending, it was classified as 
− 3. 

To estimate the time remaining for the next critical point, the ranking 
was similar, but the sign depended on whether it was a maximum, or a 
minimum. In the first case, the sign was positive, whereas in the second, 
it was negative. Therefore, if the next critical point was a maximum 
situated six months in the future, it was classified as 1. 

3. Results 

North Patagonia recorded the dominance of two main trend-cycle 
classes, which were associated with different ecological regions 

(Fig. 4). First, Initial Relapsing was highly dominant at a regional scale 
reaching almost 41% of the total area (Table 2), mostly associated with 
the Monte Austral region (Fig. 1). Second, Advanced Recovery accoun-
ted for another 41% of the total area, associated with the Central Plateau 
steppes, Western Hills and Plateaus steppes and Eastern Monte shrub-
lands. Finally, Advanced Relapsing recorded 11% of the regional area, 
mostly located in the Andes, SubAndean grasslands, Western Hills and 
Plateaus and Central Plateau steppes (Table 2). 

From the perspective of the rhythm of change, almost 80% of the 
North Patagonian region was dominated by different speeds of decline 
(Table 3), which confirms an overall downward perspective for regional 
trend-cycles, which recorded maximum levels in the recent past (as 
measured by 82% of Advanced Recovery and Initial Relapsing, Table 2). 
Yet, two thirds of the declining movement of the total area was recorded 
from above the average, whereas Slowed Decline reached 39% (with 
higher proportions located in the Monte shrublands, Fig. 5) and Accel-
erated Decline 22%, with a somewhat similar distribution among bio-
zones (Table 3). Rhythms of change classified as growing represented 
19% of the regional area, which was mostly associated with the Andes 
and the SubAndean grasslands (48% and 26% of growth below average, 
respectively). This result was associated with the comparatively higher 
proportions of Initial Recovery trend-cycle (Table 2), which means a 
recovery from lower values recorded in the recent past. The class where 
both derivatives were zero (No change), reached only 1% of total area. 

Fig. 5. Rhythm of change (Rhych) of trend-cycles, based on the 
combination of the outcomes of the first (D1) and second (D2) de-
rivatives of trend-cycle function. Classes with data are identified as 
follows (Table 1): a) Above the average: a.i) Accelerated growth (both 

Fig. 5. Rhythm of change (Rhych) of trend-cycles, based on the combination of the outcomes of the first (D1) and second (D2) derivatives of trend-cycle function. 
Classes with data are identified as follows (Table 1): a) Above the average: a.i) Accelerated growth (both derivatives positive, violet), a.ii) Slowed growth (positive D1 
and negative D2, blue), a.iii) Slowed decline (negative D1 and positive D2, turquoise), a.iv) Accelerated decline (both derivatives negative, yellow), v) No change 
(both derivatives zero, grey); b) Below the average: b.vi) Accelerated growth (both derivatives positive, green), b.vii) Slowed growth (positive D1 and negative D2, 
brown), b.viii) Slowed decline (negative D1 and positive D2, red), b.ix) Accelerated decline (both derivatives negative, fuchsia). Data source: MODIS images for the 
time series between 2000-mid-2020. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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derivatives positive, violet), a.ii) Slowed growth (positive D1 and 
negative D2, blue), a.iii) Slowed decline (negative D1 and positive D2, 
turquoise), a.iv) Accelerated decline (both derivatives negative, yellow), 
v) No change (both derivatives zero, grey); b) Below the average: b.vi) 
Accelerated growth (both derivatives positive, green), b.vii) Slowed 
growth (positive D1 and negative D2, brown), b.viii) Slowed decline 
(negative D1 and positive D2, red), b.ix) Accelerated decline (both de-
rivatives negative, fuchsia); c) No change (white). Data source: MODIS 
images for the time series between 2000-mid-2020. 

Expected time to reach the average informs the projected transition 
scenarios, which was dominated by a negative transition at a regional 
scale (68% of total area, Table 4). Crossing over the average is expected 
to occur in the short-term (next less than two years) for the 56% of the 
area under that negative transition scenario. A future most negative 
scenario, associated with the moment where minimum values are pro-
jected to be reached, recorded 79% of the regional area (Table 5), for 
which 36% was projected to occur in the short-term (less than two 
years), and 33% in the medium-term (less than four years). In particular, 
the Central Plateau, Western Hills and Plateaus steppes and the Austral 
and Eastern Monte shrublands recorded more than 70% of their 
respective areas with a future negative transition (Fig. 6), for which 

more than 50% of the area is expected to cross the average in the short- 
term, reaching the minimum values in a range between 52 and 75%, 
depending on the biozone (Fig. 7), in less than four years. Finally, a 
positive future transition was recorded for the Andes (55% of the area), 
but almost two-thirds (Table 4) and half of the area (Table 5) is expected 
to cross the average and then reach the maximum values in more than 
five years, respectively. 

4. Discussion 

We proposed the rhythm of change of NDVI trend-cycle (Rych) as an 
early warning indicator for land management, as measured by the 
combination of the first and the second derivative of the end-point of the 
trend-cycle function. As a complementary measure for future scenarios, 
we estimate the projected time to reach the average and the maximum or 
minimum values in the immediate trend-cycle filtered time series. The 
combination of the direction and speed of change provided valuable 
insights as a proxy for the immediate behaviour of vegetation dynamics. 
In North Patagonia, the most dominant trend-cycles were Advanced 
Recovery and Initial Relapsing, reaching almost 82% of the total area 
(Table 2), which evidence a current scenario of near-to-maximum NDVI 

Table 4 
Proportion of area (%) of different classes of the time to reach the average (years), from current position below or above the average, respectively, for the biozones of 
North Patagonia, Argentina. Different identified scenarios are i) Future negative transition (early warning message) or ii) Future positive transition (recovery message), 
and the estimate time to reach the average (short-term for one and two years, medium-term for three and four years, and long term for five or more years).  

Time to reach the 
average (years) 

Area 
(km2) 

North 
Patagonia 

Andes SubAndean 
Grasslands 

Western Hills and 
Plateaus Steppes 

Central 
Plateau 
Steppes 

Austral Monte 
Shrublands 

Eastern Monte 
Shrublands 

Irrigated 
Valleys 

Six years or more 
below average (− 6) 
(%) 

46 763 13.2 33.6 14.5 8.8 10.0 13.8 7.2 6.3 

Five years below 
average (− 5) (%) 

8 830 2.5 1.9 1.6 2.5 2.4 3.1 1.4 1.3 

Four years below 
average (− 4) (%) 

7 509 2.1 2.3 2.2 2.2 2.0 2.3 1.3 1.2 

Three years below 
average (− 3) (%) 

11 746 3.3 4.2 4.8 3.6 3.1 3.4 1.9 1.8 

Two years below 
average (− 2) (%) 

19 047 5.4 6.7 10.0 6.6 5.4 5.0 1.8 2.8 

One year below 
average (− 1) (%) 

13 916 3.9 7.5 6.8 5.1 4.7 2.6 1.0 2.0 

Average (0) (%) 4 858 1.4 9.2 5.5 1.1 0.2 0.1 0.1 0.1 
One year above 

average (+1) (%) 
68 922 19.5 7.9 13.3 19.2 20.1 24.1 19.4 14.1 

Two years above 
average (+2) (%) 

64 797 18.4 7.7 10.4 17.3 19.5 20.8 24.2 19.0 

Three years above 
average (+3) (%) 

45 080 12.8 5.1 8.4 13.7 14.6 12.3 18.1 17.5 

Four years above 
average (+4) (%) 

30 037 8.5 3.5 7.1 9.2 9.4 7.3 13.5 15.2 

Five years above 
average (+5) (%) 

14 987 4.2 2.7 4.9 4.7 4.4 3.2 6.3 9.1 

Six years or more 
above average (+6) 
(%) 

16 546 4.7 7.6 10.4 6.1 4.1 2.2 3.9 9.4  

353 038         
Future Negative 

transition 
240 
370 

68.1 34.5 54.5 70.2 72.2 69.8 85.4 84.4 

Short-term early 
warning (%) 

133 719 55.6 45.1 43.5 52.0 54.9 64.3 51.0 39.3 

Medium-term early 
warning (%) 

75 117 31.3 25.0 28.5 32.7 33.3 28.1 37.1 38.8 

Long-term warning 
(%) 

31 534 13.1 30.0 28.0 15.3 11.7 7.6 11.9 21.9 

Future Positive 
transition 

107 
810 

30.5 56.3 40.0 28.8 27.7 30.1 14.5 15.5 

Short-term recovery 
(%) 

32 963 30.6 25.3 42.1 40.3 36.5 25.3 19.0 31.5 

Medium-term 
recovery (%) 

19 255 17.9 11.6 17.5 20.3 18.4 18.8 22.0 19.4 

Long-term recovery 
(%) 

55 592 51.6 63.1 40.3 39.4 45.0 55.9 59.0 49.2  
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values in the recent past, suggesting a still positive phase. In this di-
rection, almost 79% of the region was dominated by different speeds of 
decline, which suggests an overall downward perspective for trend- 
cycles. In particular, Accelerated and Slowed Decline from above the 
average recorded 61% of the total area, which emphasises a negative 
transition (Table 3). Crossing over a threshold is expected to occur in the 
short- and medium-term (less than four years, Table 4), meaning a 
current warning to pursue land management adjustments. On the other 
hand, Slowed Decline from below the average (17% of total area, 
Table 3) already crossed over the threshold, highlighting current critical 
areas in terms of rangeland productivity. This situation is related to a 
drought process affecting rangelands and was recently referenced as a 
scenario with negative productive impacts (Solano-Hernández et al., 
2020). Finally, rhythms of change classified as growing represented a 
minor proportion of the regional area (19%, Table 3), which was mostly 
associated with mountainous areas, recording a long-term recovery from 
lower values in the recent past (Table 4). These indicators can be used to 
build scenarios based on early warning signals. 

Early warning signals should focus on critical transitions, which may 

indicate a critical threshold is approaching (Scheffer et al., 2009). For 
example, 60% of Austral Monte shrublands were classified as Initial 
Relapsing. This negative movement was recorded in 89% of its area, for 
which 75% corresponded to a decline from above the average (Table 3), 
whereas 45% of the area was projected to reach the average in the next 
one or two years (Table 4). The combination of these indicators suggests 
that a negative transition scenario is driven by an overall declining 
vegetation productivity. Notwithstanding the still challenge to identi-
fying critical thresholds, this example suggest an ongoing negative 
critical transition, which may serve as an indicator to identifying critical 
thresholds at finer scales. This step is key to preventing from false 
negatives, which are situations in which a sudden transition occurred 
but no early-warning signals could be detected in the behaviour before 
the shift (Scheffer et al., 2009). These authors also alert on a second class 
of false negatives, which is said to arise from the statistical difficulty to 
detect increased autocorrelation in short-time series (Bence, 1995), 
since transitions and shifts may be noise-induced (Alexandrov et al., 
2018). Whereas 20-years of NDVI data series is still a short period, 
temporal autocorrelation can be successfully distinguished from white 

Table 5 
Proportion of area (%) of different classes of the time to reach the minimum or maximum values (years), from current position above or below the average, 
respectively, for the biozones of North Patagonia, Argentina. Different identified scenarios are i) Future most negative scenario (when minimum is reached) and ii) 
Future most positive scenario (when maximum is reached), and the estimate time to reach these values (short-term for one and two years, medium-term for three and 
four years, and long term for five or more years).  

Time to reach extreme 
values (years) 

Area 
(km2) 

North 
Patagonia 

Andes SubAndean 
Grasslands 

Western Hills and 
Plateaus Steppes 

Central 
Plateau 
Steppes 

Austral Monte 
Shrublands 

Eastern Monte 
Shrublands 

Irrigated 
Valleys 

Six years or more to 
reach the minimum 
(− 6) (%) 

46 968 13.7 10.0 15.2 11.3 10.3 12.7 26.6 35.4 

Five years to reach the 
minimum (− 5) (%) 

36 913 10.7 2.5 5.2 9.0 10.0 12.3 19.0 15.3 

Four years to reach the 
minimum (− 4) (%) 

40 958 11.9 3.8 5.8 11.3 12.9 14.2 13.2 11.3 

Three years to reach the 
minimum (− 3) (%) 

48 789 14.2 5.8 8.1 13.3 15.4 17.3 13.3 10.7 

Two years to reach the 
minimum (− 2) (%) 

52 523 15.3 7.9 12.7 16.2 16.2 16.6 15.9 11.1 

One year to reach the 
minimum (− 1) (%) 

46 127 13.4 7.8 16.5 16.4 14.8 14.7 6.3 6.0 

Average (0) (%) 4 858 1.4 9.2 5.5 1.1 0.2 0.1 0.1 0.1 
One year to reach the 

maximum (+1) (%) 
15 342 4.5 8.1 5.5 6.5 5.7 2.8 1.5 2.2 

Two years to reach the 
maximum (+2) (%) 

18 059 5.3 10.0 8.1 6.9 6.7 3.5 1.4 2.4 

Three years to reach the 
maximum (+3) (%) 

11 482 3.3 4.9 4.2 4.0 3.9 2.9 1.2 2.0 

Four years to reach the 
maximum (+4) (%) 

4 322 1.3 2.2 1.4 1.2 1.3 1.2 0.6 1.0 

Five years to reach the 
maximum (+5) (%) 

2 607 0.8 1.8 1.0 0.6 0.6 0.8 0.3 0.6 

Six years or more to 
reach the maximum 
(+6) (%) 

14 481 4.2 26.0 10.7 2.3 2.0 1.0 0.6 1.7  

343 
427 

100        

Future most negative 
scenario 

272 
278 

79.3 37.8 63.5 77.5 79.7 87.8 94.3 89.9 

Short-term most 
negative scenario (%) 

98 650 36.2 41.5 46.0 42.1 38.9 35.7 23.5 19.1 

Medium term most 
negative scenario (%) 

89 748 33.0 25.4 21.9 31.7 35.6 35.9 28.1 24.5 

Long-term most negative 
scenario (%) 

83 880 30.8 33.1 32.1 26.1 25.5 28.4 48.4 56.5 

Future most positive 
scenario 

66 292 19.3 52.9 31.0 21.4 20.1 12.1 5.6 10.0 

Short-term most positive 
scenario (%) 

33 401 50.4 34.1 43.9 62.3 61.7 51.6 51.9 46.2 

Medium term most 
positive scenario (%) 

15 803 23.8 13.4 18.2 24.1 25.5 34.2 31.6 30.2 

Long-term most positive 
scenario (%) 

17 088 25.8 52.5 37.9 13.6 12.8 14.2 16.5 23.6  
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noise, using time series analysis such as ARIMA (Bruzzone and Easdale, 
2021) or other noise-reduction techniques (Hird and McDermid, 2009). 
However, we acknowledge as a step forward that a more detailed 
analysis of noise should be emphasized in temporal transition studies 
(Liu et al., 2015). In addition, early warning signals are said to be reli-
ably found only if the time interval of the data is shorter than the time 
scale of critical transitions (Wen et al., 2018). Whereas this might be the 
case for a 16-day frequency of NDVI series, future research should focus 
on the relationship between negative transitions of trend-cycles and 
critical thresholds, as measured by plant stress and structural–functional 
change (López et al., 2013), which should be explored in detail with field 
studies in identified hotspot areas. At a landscape scale, data from sys-
tematically collected information such as the MARAS system in Pata-
gonia can provide also a spatial perspective (Oliva et al., 2019). These 
indicators can be used to build scenarios that might be of great relevance 
for the development of early warnings oriented at the livestock pro-
duction sector in vast pastoral regions. 

Early-warning systems of rangeland productivity in arid and semi- 
arid regions are in demand for livestock and public policy decision- 
makers (Stuth et al., 2005). One of the main challenges in these envi-
ronments relates to including both the current state of vegetation pro-
ductivity as an outcome from the recent past and the current rhythm of 
change of such productivity. Our results are encouraging in this end, 
concerning the development of both current and medium-term sce-
narios. As mentioned above, a negative transition is ongoing in Austral 
Monte shrublands, which can be followed by a downward trend-cycle 
towards a negative phase, emphasising an unfavourable scenario for 
the livestock sector in the short-term. For this biozone, an early warning 
for active adaptive management oriented at the livestock sector should 
be emphasised to avoid future losses and/or rangeland degradation 

(Briske et al., 2020). For example, the adjustment of stocking rate 
following the downward levels of forage receptivity should be imple-
mented to avoid future mismatches between fodder supply of rangelands 
and livestock demand (Díaz-Solís et al., 2009). In particular, selling 
unproductive or older animal categories, favouring pasture resting to be 
used in critical productive moments (Hunt et al., 2014), such as lambing. 
In addition, the prioritisation of on-farm forage storage to be used as 
strategic supplementation in critical moments (Kawas et al., 2010), can 
be also recommended. 

Strategies supporting adaptive management for rangeland steward-
ship are emphasised as a key agenda in variable arid environments 
(Briske et al. 2020), with increasing demands in the face of climate 
change. Some proposals have advanced in linking field-based surveys 
and local observations of degradation and land management options 
(Reed and Dougill, 2010; Bruegger et al., 2014), and early warnings for 
negative state transitions as a tool to avoid further degradation processes 
(Roberts et al., 2018). Recent research also recorded the convergence 
between satellite or climate information and stakeholders’ perceptions 
of negative events such as droughts, which are encouraging for further 
development of decision support tools (Solano-Hernández et al., 2020). 
For example, the north section of the Andes are pasturelands used during 
the summer by transhumant pastoralists, representing a key phase of 
their annual cyclic movement (Pérez León et al., 2020). For this area, it 
is expected a long term recovery, from low values in the recent past 
(Table 4), which should be closely monitored to avoid livestock over-
stocking in the context of overall rangelands recovery. 

From an operational perspective, another major challenge for the 
effective functioning of an early warning system refers to the use of such 
warnings for effective management decisions (Pace et al., 2015). Con-
fidence when informing unfavourable scenarios is key, particularly 

Fig. 6. Expected time (years) for the NDVI trend-cycle to reach the average of the time series (see Fig. 3). References: Current values below the average, but with an 
upward movement (negative values, color gradient green-yellow–red), and current values above the average, but with a downward movement (positive values, color 
gradient turquoise-blue-violet). Data source: MODIS images for the time series between 2000-mid-2020. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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when the current situation is still favourable and dominant opinions are 
still far from perceiving a future problem. For example, the 54% and 
42% of the area of Eastern Monte were dominated by Advanced Re-
covery and Initial Relapsing, respectively (Table 2; Fig. 4), but 89% 
recorded a decline from above the average (Table 3). This situation 
suggests an ongoing transition from recent higher NDVI values towards 
lower levels in the future. This means that a shift towards comparatively 
minor values and a forthcoming lower productivity in future years is 
sped up. Whereas this zone denotes a still favourable scenario due to 
recent or still high values, a mid-term early warning should be triggered, 
given the advent of a negative transition of vegetation productivity. Yet, 
in 75% of this area, the average is projected to be crossed in the next one 
to four years (Table 4), varying spatially (Fig. 5). This situation might be 
associated with a forthcoming stressful process for livestock farming, 
which might not be adequately addressed yet since the problem is not 
currently evident. However, adaptive management decisions aimed at 
reducing the exposure to a future disturbance, as promoted by a negative 
phase driven by drought, should also be prioritised. In particular, there 
is time to reinforce management options to mitigate future productive 
losses as well as avoiding overgrazing due to a comparatively higher 
pressure over rangelands, if stocking rates are kept without modifica-
tions (Ares, 2007; Smart et al., 2010). Such early warning messages need 
further research and should be complemented with field monitoring and 
assessments, and other drought indices (Bayissa et al., 2018). In addi-
tion, future studies should compared and complement this proposal in 
the context of other frameworks, which incorporate the pixel scale, and 
time-specific heterogeneity (Qiu et al., 2016), and other more specific 
NDVI forecasting methods (e.g. Huang et al., 2017; Cui et al., 2020). 

5. Conclusions 

We proposed the rhythm of change of trend-cycles as an early 

warning indicator for land management, which was complemented by 
the projected time to reach the historical average and the maximum or 
minimum values in the immediate trend-cycle filtered time series. The 
potential advantage of our proposal is the fast processing for large areas 
and its sensitivity for short time series data. We emphasise the key role of 
the combined usage of NDVI trend-cycles and rhythm of change as top- 
down information, which can be used for participatory scenario devel-
opment with farmers and policy makers, oriented at the promotion of 
early decision making in the context of environmental changes. In 
particular, these indicators can serve as complementary layers of field 
information to promote adaptive management decisions in rangelands 
and pastoral stewardship. 
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de dos regiones biofísicas: los sistemas ganaderos de la provincia de Río Negro, 
Argentina. Cuadernos de Desarrollo Rural, 6(62), 26-26. 

Easdale, M.H., Aguiar, M.R., Paz, R., 2016. A social–ecological network analysis of 
Argentinean Andes transhumant pastoralism. Reg. Environ. Change 16 (8), 
2243–2252. 

Easdale, M.H., Bruzzone, O., 2018. Spatial distribution of volcanic ash deposits of 2011 
Puyehue-Cordón Caulle eruption in Patagonia as measured by a perturbation in 
NDVI temporal dynamics. J. Volcanol. Geoth. Res. 353, 11–17. 

Easdale, M.H., Bruzzone, O., Mapfumo, P., Tittonell, P., 2018. Phases or regimes? 
Revisiting NDVI trends as proxies for land degradation. Land Degrad. Dev. 29 (3), 
433–445. 

Easdale, M.H., Fariña, C., Hara, S., León, N.P., Umaña, F., Tittonell, P., Bruzzone, O., 
2019. Trend-cycles of vegetation dynamics as a tool for land degradation assessment 
and monitoring. Ecol. Ind. 107, 105545. 

Gouveia, C.M., Bastos, A., Trigo, R.M., DaCamara, C.C., 2012. Drought impacts on 
vegetation in the pre- and post-fire events over Iberian Peninsula. Nat. Hazards Earth 
Syst. Sci. 12, 3123–3137. 

Grainger, A., 2015. Is land degradation neutrality feasible in dry areas? J. Arid Environ. 
112, 14–24. 

Gumma, M.K., Kajisa, K., Mohammed, I.A., Whitbread, A.M., Nelson, A., Rala, A., 
Palanisami, K., 2015. Temporal change in land use by irrigation source in Tamil 
Nadu and management implications. Environ. Monit. Assess. 187, 4155. 
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