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A B S T R A C T

Designing and validating digital soil mapping (DSM) techniques can facilitate precision agriculture im-
plementation. This study generates and validates a technique for the spatial prediction of soil properties based on
C-band radar data. To this end, (i) we focused on working at farm-field scale and conditions, a fact scarcely
reported; (ii) we validated the usefulness of Random Forest regression (RF) to predict soil properties based on C-
band radar data; (iii) we validated the prediction accuracy of C-band radar data according to the coverage
condition (for example: crop or fallow); and (iv) we aimed to find spatial relationship between soil apparent
electrical conductivity and C-band radar. The experiment was conducted on two agricultural fields in the
southern Argentine Pampas. Fifty one Sentinel 1 Level-1 GRD (Grid) products of C-band frequency (5.36 GHz)
were processed. VH and VV polarizations and the dual polarization SAR vegetation index (DPSVI) were esti-
mated. Soil information was obtained through regular-grid sample scheme and apparent soil electrical con-
ductivity (ECa) measurements. Soil properties predicted were: texture, effective soil depth, ECa at 0-0.3m depth
and ECa at 0-0.9m depth. The effect of water, vegetation and soil on the depolarization from SAR backscattering
was analyzed. Complementary, spatial predictions of all soil properties from ordinary cokriging and Conditioned
Latin hypercube sampling (cLHS) were evaluated using six different soil sample sizes: 20, 40, 60, 80, 100 and the
total of the grid sampling scheme. The results demonstrate that the prediction accuracy of C-band SAR data for
most of the soil properties evaluated varies considerably and is closely dependent on the coverage type and
weather dynamics. The polarizations with high prediction accuracy of all soil properties showed low values of
σVVo and σVHo, while those with low prediction accuracy showed high values of σVVo and low values of σVHo. The
spatial patterns among maps of all soil properties using all samples and all sample sizes were similar. In con-
ditions when summer crops demand large amount of water and there is soil water deficit backscattering showed
higher prediction accuracy for most soil properties. During the fallow season, the prediction accuracy decreased
and the spatial prediction accuracy was closely dependent on the number of validation samples. The findings of
this study corroborates that DSM techniques at field scale can be achieved by using C-band SAR data.
Extrapolation y applicability of this study to other areas remain to be tested.

1. Introduction

There is an increasing demand for producing crops highly efficient
in the use of agricultural supplies and water resources (Van Ittersum
et al., 2013). To achieve this, spatio-temporal dynamics of soil prop-
erties and their interaction with climate and crop management vari-
ables have became essential information. Actually, soil property maps
are generally scarce because conventional methods in most agricultural
zones of the world, which are difficult, costly and destructive
(Hartemink et al., 2008). So, novel, rapid, efficient, accurate and eco-
nomic methods to create soil property maps at field scale should be

generated and validated.
Numerous studies have reported that remote sensing data can help

to generate fast, accurate and low-cost soil maps at multi-scale, by
providing precise, representative and timely information on soil-
forming factors (Boettinger, 2010; Lagacherie et al., 2006). Several soil
properties show high spectral reflectance in the VIS, NIR and SWIR
(0.4–2.5 μm) spectral regions. Thus, information from that spectral
response has been widely used to generate and validate soil properties
maps (Boettinger et al., 2008; Hartemink et al., 2008). Other spectral
regions so far little used to generate soil properties maps, such as radar
remote sensing and particularly a portion of low frequency in the
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microwave spectrum (P to L-band). This is partly due to the complexity,
diversity and difficulty of Synthetic Aperture Radar (SAR) data inter-
pretation (Veloso et al., 2017), and also they are available in multiples
frequencies and incidence angles. Data interpretation includes taking
into account spatio-temporal dynamics of soil and crop properties and
particularly their sensitivity to soil moisture changes, surface roughness
and vegetal biomass. An efficient monitoring of spatio-temporal re-
lationship of soil and crop properties allows a better understanding in
the soil properties role on yield generation and agricultural supplies use
(Birrell et al., 1996; Dang et al., 2011; Lobell et al., 2015). To achieve
this, high spatial and temporal resolutions satellite imagery time series
are required (McNairn and Shang, 2016). At present, the European
Space Agency (ESA) granted the access to large SAR datasets obtained
from Sentinel 1 satellite constellation, including Sentinel 1-A and Sen-
tinel 1-B. The aim of Sentinel-1 is to provide multi-temporal series of
SAR imagery (C-Band) with temporal resolution of 10 days. Sentinel 1-
A was launched in April 2016, while Sentinel 1-B was launched in June
2015 (Berger et al., 2012). Simultaneously, ESA through Sentinel 2-B
constellation launched in June 2015 provides optical images free of
charge with temporal resolution of 5 days. The dense time series of SAR
and optical data offer a unique opportunity to systematically char-
acterize multiple soil and crop properties, at diverse spatial scales.

An effective strategy to estimate and generate soil properties maps is
to analyze the systematic relationship between spatio-temporal

dynamics of soil moisture and multiple soil properties. Zribi et al.
(2011) developed an empirical model (R2∼0.6) to predict clay content
at regional scale in semiarid conditions using spatio-temporal dynamics
of SAR data (X-Band) with shallow incidence angles (35°) and hor-
izontal polarization. On the other hand, Gorrab et al. (2015) proposed a
methodology combing multi-temporal X-band SAR data (TerraSAR-X)
for the retrieval of Surface soil moisture and texture at a high spatial
scale. These authors reported two empirical models (R2>0.62) to
predict soil moisture values and the soil texture components over 36
tests fields. In general, the soil moisture and ground-surface conditions
in farm fields have high spatio-temporal dynamics. The intensity of
such dynamics usually depends on soil properties such as roughness,
texture, structure, organic matter content, porosity, apparent density,
runoff, infiltration and salinity. These systematic relationships could
determine the behavior of SAR backscatter coefficients and thus, be
feasible to optimize the spatial prediction of multiple soil properties.
For example, the intensity of backscattered radar signals decreased in
lower proportion in sandy than clay soils because the former have
higher evaporation and infiltration rates (Zribi et al., 2011). Thus,
analyzing and determining the relationship between spatio-temporal
spectral information from radar remote sensing, soil moisture and soil
properties would improve the development of efficient to generate soil
properties maps (Han et al., 2017).

The aim of this study was to generate and validate a technique for

Fig. 1. Location of experimental farm fields.

M.B. Domenech, et al. Int J Appl  Earth Obs Geoinformation 93 (2020) 102197

2



the spatial prediction of soil properties based on C-band radar data. To
this end, (i) we focused on working at farm-field scale, analyzing the
behavior of SAR backscatter and NDVI for wheat, soybean, maize and
sunflower with similar management practices and climate conditions;
(ii) we validated the usefulness of Random Forest regression to predict
soil properties based on C-band radar data; (iii) we validated the pre-
diction accuracy of C-band radar data according to the coverage con-
dition (for example: crop or fallow); and (iv) we aimed to find spatial
relationship between soil apparent electrical conductivity and C-band
radar.

2. Materials and methods

2.1. Study area and experimental farm fields

The Argentine Pampas have more that 50 Mha a suitable for crop
and cattle production, which runs from 30° to 40 °S, 57° to 68 °W. The
relief is flat or slightly rolling. The soils present a wide range of var-
iation in depth, texture, and organic matter (Alvarez and Lavado,
1998). The Pampas is divided into five homogeneous ecological sub-
regions according to their rainfall, topography and soil quality patterns:
Rolling Pampas, Central Pampas, Southern Pampas, Flooding Pampas
and Mesopotamian Pampas (Pérez et al., 2015). Actually, The Pampas is
one of the most important areas for crop production in the world be-
cause of its extension and yield potential (Alvarez, 2009).

The study was carried in the southeastern Pampas of Argentina
(Fig. 1). This zone is the part of the Southern Pampas situated between
the Salado River basin to the north, the Colorado River basin to the
south, the Radial Depressed Area to the west, and the Atlantic Ocean to
the east (Barral and Oscar, 2012). The predominant crop sequences
include maize, soybean or sunflower in summer and wheat or barley in
winter (Sadras and Calviño, 2001). The topography, soil quality, pro-
blems of salinity, water drainage and flood risk of the southeastern
Pampas have small differences. The soils are classified as Typic Argiu-
dolls and Petrocalcic Argiudolls (USDA Taxonomy) with less than 2 %
slope, with udic soil moisture regime (INTA, 2010). These soils gen-
erally, have a loam texture in the surface layer (0−0.25 m depth), loam
to clay loam in subsurface layers (0.25–1.1 m depth) and sandy loam
below 1.1 m depth. The effective soil depth ranges from 0.4–1.2 m to
0.1–1.1 m. The climate is classified as mesothermal subhumid-humid
(Thornthwaite classification). The mean annual temperature is ∼14 °C
(Pascale and Damario, 2004). The precipitation pattern is isohygrous
and the mean annual precipitation is 913 mm, with maxima (> 60 %)
in October and March. The mean potential evapotranspiration is 894
mm.

Fig. 1 shows the localization of the two experimental farm fields
used in this study. Field 1 has 64.8 ha and field 2 has 23.4 ha. Both were
selected according to their variability in elevation, landscape position,
surface reflectance, crop yield and soil types which represent the typical
conditions in the southeastern Pampas of Argentina. The clay content at
20 cm depth ranges from 28 to 38 % for field 1 and from 18 to 27 % for
field 2. Both fields had similar tillage system (no-till), fertilization
management and crop rotation. Also, they have not irrigation system.
Crop rotation was summer crop (maize, sunflower or soybean) - winter
crop (wheat or barley) - fallow - summer crop. In most crops, nearly all
aboveground biomass was exported as grain.

The field 1 is located en Loberia District. Agricultural seasons con-
sidered in this study were: winter crop 2016 (September to December
2016) cultivated with wheat, fallow 2017 with stubble aboveground
(June to September 2017) and summer crop 2017−2018 cultivated
with sunflower (November 2017 to March 2018). Field 2 is located in
Balcarce District. Agricultural seasons considered in this study were:
summer crop 2016−2017 (November 2016 to March 2017) and
2017−2018 (November 2017 to March 2018), cultivated with soybean
and fallow 2017 (June–September 2017).

2.2. Precipitation data and water balance

Precipitation data were obtained from weather stations close to the
farm field site. The hydric balance was determined according to Della
Maggiora et al. (2002). Actual and maximum evapotranspiration were
calculated using the crop coefficients reported by Allen et al. (1998).
Water holding (mm cm−1) and soil water availability (mm cm−1) were
calculated using the model proposed by (Travasso and Suero, 1994).
Maximum soil water storage was estimated by the product between soil
depth and the total soil water storage capacity (Travasso and Suero,
1994). Actual soil water content was calculated using the balance be-
tween precipitation and evapotranspiration. When the soil water con-
tent is a 50 % smaller than water availability, the actual evo-
transpiration is less than the maximum evapotranspiration. Thus, water
deficiency was estimated as the difference between the maximum and
actual evapotranspiration.

2.3. Remote sensing data

2.3.1. C-band SAR data
C-band SAR (5.36 GHz) Sentinel 1 is a product of the European Space

Agency (ESA). In this study, a total of 51 Sentinel 1 radar images (27 for
field 1 and 24 for field 2) were downloaded from the Copernicus Open
Access Hub (ESA - https://copernicus.eu/dhus/#/home), in the
Interferometric Wide swath mode. Sentinel 1 was designed with one
transmitter and two receiver chains. Thus, it supports operation in both
single (HH or HV) and dual polarizations (HH and HV or VV and VH).
In this case, we used the Level-1 GRD (Grid) product and VH and VV
polarizations, which have been reported for the study of land applica-
tion (Periasamy, 2018). SAR data were acquired with 250 km total
swath in a spatial dimension. All images were acquired in descending
mode. The incidence angle varied from 39.6° to 39.7°. The relative orbit
number (RON) was 23 and 170 for Sentinel 1A and 1B, respectively.
Acquisition time varied from 9:06 to 9:07 am.

Sentinel 1 images were processed using the open-code software
Sentinel 1- Toolbox SNAP (http://step.esa.int/main/download) in five
steps. The first step was to select the area of interest using the subset
function. Then, a radiometric calibration was performed, in which va-
lues of digital numbers were transformed into backscattering in power
format (σoVV and σoVH). Third, a multilooking procedure was applied with
a number of looks equal to 1. Fourth, the speckle reduction was per-
formed using a 7 × 7 enhanced Lee filter. Finally, a geometric cali-
bration was applied using Range Doppler Correction, based on the in-
formation obtained from the orbit state vector in the metadata, radar
timing annotations, slant-to ground range conversion parameters and
reference digital elevation model (DEM) data. In this study, the NASA´s
Shuttle Radar Topography Mission (SRTM) DEM at 3 arc-seconds was
used. The final product was reprojected into the UTM 20 South co-
ordinate system.

2.3.2. Optical data
A total of thirty-eight satellite images from Sentinel-2 were used in

this study. The main selection criteria was the lack of cloudiness.
Optical images have been downloaded from the cloud-based geospatial
processing platform Google Earth Engine (GEE) (Gorelick et al., 2017).
Sentinel-2 data is provided in GEE as a Level-1C product representing
Top-of-Atmosphere reflectance (TOA). For field 1, eighteen images
were processed between Sep-Dec/2016 (Winter Crop 2016 period),
Jun-Sep/2017 (Fallow 2017 period) and Nov/2017 – Feb/2018
(Summer Crop 2017–2018 period). For field 2, twenty optical images
were used between Nov/2016 – Feb/2017 (Summer Crop 2016−2017
period), Jun-Sep/2017 (Fallow 2017 period) and Nov/2017 – Feb/2018
(Summer Crop 2017−2018 period) (See Fig. 3). Images have been
acquired with a spatial resolution of 10 m in three spectral bands
(green, red and near infrared).

The Normalized Difference Vegetation Index (NDVI) was computed
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within GEE. NDVI represents the difference between the reflectance of
NIR band and the red band from the visible spectrum, being previously
used in numerous land cover applications, due to be sensitive to iden-
tify phenologycal differences in crops (d’Andrimont et al., 2020;
Kriegler et al., 1969). In this study, NDVI was used to capture the
phenological development of crops within fields.

2.4. Soil sampling scheme and measurement of the apparent soil electrical
conductivity

The soil was sampled by means of a 50 × 100 m regular grid for
field 1 and a 50 × 50 m grid for field 2. A total of 126 and 79 soil
samples were collected from each field. These sizes of grids are com-
monly used by surveyors and farmers in intensive sampling for soil
fertility assessment at farm scale (Castro Franco et al., 2015). The ef-
fective soil depths were determined at the nodes of the grids, by using a
truck-mounted Giddings Soil Sampler (Model XHDGSRPST Giddings

Machine Co., Fort Collins, CO, USA). The pitcher barrel sample was
about 1.5 m in length. Soil sample depths were measured and marked
on the pitcher barrel to determine effective soil depth. The soil was
sampled by genetic soil horizon from 0 to 20 cm. All soil analyses were
conducted in the laboratory of the National Institute of Agricultural
Technology (INTA), Experimental Station Balcarce, Argentina. The soil
texture was analyzed by the Robinson method (Gee and Bauder, 1986;
Robinson, 1922). Complementarily, apparent soil electrical con-
ductivity (ECa) was measured using a Veris® 3100 sensor (Veris Tech-
nologies Inc., Salina, KS, USA). This sensor is configured as a Wenner
array, an arrangement commonly used for geophysical resistivity sur-
veys. The system records ECa in mS m−1 by electrical resistivity at
shallow depth (0−0.3 m, ECa 0−0.3 m) and deep depth (0−0.9 m,
ECa 0−0.9 m) (Domenech et al., 2017). ECa measurements were made
along parallel transects approximately 20 m apart on the surface of the
experimental fields. A handheld GPS Trimble® GeoXT™ with submeter
accuracy was used to georeference the ECa measurements. Latitude,

Fig. 2. Hydric balance dynamics between experimental fields and crop season.
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longitude, ECa 0−0.3 m and ECa 0−0.9 m data were recorded in a CSV
text file and transferred to GIS software for analysis. For more details of
ECa measurements with the Veris® 3100 sensor, see Corwin and Lesch
(2003) and Corwin and Lesch (2005).

Experimental variograms were computed to describe the spatial
variation of ECa, following the procedure proposed by Diggle and
Ribeiro (2007). The adjusted experimental variogram was used to in-
terpolate ECa by ordinary kriging in each field. The R package “geoR”
was used to conduct the geostatistical interpolation (R Core Team,
2016). Finally, a 10 × 10 m grid square size was chosen for output
maps.

2.5. Dual polarization SAR vegetation index (DPSVI)

Soil spatial patterns at field scale usually determine the spatial
distribution of plant biomass (Boettinger et al., 2008). Thus, the effect
of vegetation on the SAR backscattering signal could be a useful aux-
iliary variable to determine the spatial pattern of soil properties
(Boettinger, 2010; Hartemink et al., 2008). This may be used in farm

fields where the main surface is covered by the crop biomass.
The DPSVI (Periasamy, 2018; Periasamy et al., 2019) is a physical

scattering model which represents the presence of terrestrial vegetation
based on the concept of “Degree of Depolarization”. In farm field
conditions, changes in the biomass may determine variations in the
polarization magnitude. In that context, the DPSVI is an alternative not
only to the Radar Vegetation Index but also to other vegetation indices
(Vreugdenhil et al., 2018), because it represents the terrestrial vegeta-
tion obtained from dual polarimetric data (VH and VV) acquired from
the Sentinel 1 constellation.

The DPSVI is a function of an inverse diagonal relationship between
σvv and σvh, the degree of dual de-polarization and cross-polarized en-
ergy (σvh) (Periasamy, 2018). The function was executed from radio-
metrically calibrated SAR data whose backscattering values are in
linear power units:

Fig. 3. Temporal dynamics of VV and VH polarizations and DPSVI during crop season for the field 1.
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where:
σvh i( ) and σvv i( ) are the backscattering coefficient values of the ith

pixel in the cross-polarized and co-polarized (vh and vv) SAR products,
respectively, and σvv max( ) is the maximum backscattering coefficient
value in the co-polarized (vv) SAR product.

2.6. Predictive importance of C-band radar and DPSVI data by date

The Random Forest (RF) algorithm (Breiman, 2001) to determine
the predictive importance of the C-band radar and DPSVI data by date
to predict soil properties in both experimental farm fields, because
several soil mapping studies have demonstrated that this algorithm has
great ability to provide predictor importance metrics from auxiliary
information (Castro Franco et al., 2015; Genuer et al., 2010; Grömping,

2009; Ließ et al., 2012).
The RF algorithm uses numerous decision trees (ntrees) (e.g., CART or

C4.5 algorithms) to establish a ranking of predictive importance order.
Each tree is constructed using bootstrap sampling, which is approxi-
mately 2/3 of the available data. The remaining 1/3 of available data
are referred to as out-of-bag (OOB) and the proportion of mis-
classification of these samples (OOBerror) can be used as a measure of
generalization errors (Breiman, 2001). At each binary split, the variable
of C-band radar and DPSVI data by date that produces the best split is
chosen from a random subset of the entire variable set. The number of
predictors in each random subset is called mtry. The optimal ntrees and
mtry must be identified by the user. To determine the predictive im-
portance of each predictor, the RF algorithm generates two quantitative
metrics: the Increased Mean Square Error (%IncMSE) and the Increased
Purity Index (IncNodePurity). %IncMSE is a metric that represents the
deterioration of the prediction accuracy of the model when each pre-
dictor is replaced and this random replacement changes the computed
value significantly. Lower %IncMSE indicates lesser predictor

Fig. 4. Temporal dynamics of VV and VH polarizations and DPSVI during crop season for the field 2.
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importance. On the other hand, IncNodePurity is a metric of the increase
in homogeneity of a sample based on splitting the samples from a
particular predictor. For more details of the RF algorithm, see Breiman
(2001) and Genuer et al. (2010).

The RF algorithm was performed with the R (v3.4.4) package
“randomForest” (Liaw and Wiener, 2002; R Core Team, 2016) and was
run 10 times with C-band radar and DPSVI data by date as predictors,
and soil properties as the target variable. The mean of the predictor
importance was estimated across these 10 runs. Finally, a dotchart of
relative importance was generated from %IncMSE of C-band radar and
DPSVI data by date and soil property. %IncMSE is a metric usually used
to select predictors and thus differentiate important from no-important
predictors (Genuer et al., 2010).

2.7. Prediction accuracy of soil properties

A soil sampling scheme based on the conditioned Latin Hypercube
algorithm (cLHS) (Minasny and McBratney, 2006) was evaluated using
a size of 100 samples. cLHS is a random stratified procedure that selects
sampling locations across a range of auxiliary variables (Minasny and
McBratney, 2006; Roudier et al., 2012). cLHS is constructed by random
sampling from the cumulative distribution of auxiliary variable data
using a simulated annealing optimization approach, which additionally
focuses on preserving the correlation between the auxiliary variables in
the sample set selected (Castro Franco et al., 2015). The cLHS algorithm
was run using the R package “clhs” with the C-band radar or DPSVI data
with the highest predictive accuracy as auxiliary variables (R Core
Team, 2016).

The accuracy of soil property maps with each soil sampling scheme
was assessed by comparing the predicted soil property values with the
measured soil property values. The following error metrics were cal-
culated based on the number of soil samples: coefficient of determi-
nation (R2) (Eq. (3)), Root Mean Square Error (RMSE) (Eq. (4)) and
Lins´s Concordance Correlation Coefficient (ρc) (Eq. (5)). These error
metrics were calculated as:
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1 . For all the equations, x and y are the mean
value for samples x (measured soil property) and y (predicted soil
property) of the number of samples n, xi and yi are paired ith values
from the samples x and y.

Generally, a good model will have an RMSE close to 0 and an R2

close to 1. RMSE measures the average error (or accuracy) of the pre-
diction, whereas R2 measures the agreement between measured and
predicted data. Finally, ρc assesses the covariation and correspondence
between measured and predicted data. This metric combines measures
of both precision and bias to determine how far the measured data
deviate from the line of perfect concordance, which is 1:1. The value of
this metric is scaled between 1 and - 1, as follows: a value< 0.60 de-
notes poor agreement, a value between 0.60 and 0.75 denotes moderate
agreement, a value between 0.75 and 0.90 substantial agreement and a
value> 1 denotes perfect agreement (Castro-Franco et al., 2017;
Viscarra Rossel et al., 2015).

3. Results and discussion

3.1. Climate conditions

Hydric balance was used to support the analysis and interpretation
of temporal series of SAR backscatter and NDVI. This analysis was
carried out separately for all coverage conditions. In that context, Fig. 2
shows the hydric balance estimated for wheat as the winter crop 2016,
the fallow 2017 and sunflower as the summer crop 2017−2018 for
field 1, and that estimated for soybean as the summer crop
2016−2017, the fallow 2017 and soybean as the summer crop
2017−2018 for field 2. In both fields, crop water deficits occurred at
the flowering stage. In field 1, the winter crop 2016 and the summer
crop 2017−2018 were affected by the water deficits during November
2016 and January 2018, respectively, whereas in field 2, the summer
crops 2016−2017 and 2017−2018 were affected by the water deficit
during January, being this more severe in 2016−2017. In both fields,
there was an excess water condition during the fallow period.

3.2. SAR backscattering and DPSVI temporal series

3.2.1. Field 1
Fig. 3 shows the temporal series of NDVI, SAR backscattering and

DPSVI in all coverage conditions (crops and fallow) for field 1. Wheat as
the winter crop 2016 period was sown on 15th July, emergence oc-
curred on 24th August and the crop was harvested on 15th December.
Sunflower as the summer crop 2017−2018 period was sown on 18th
September, emergence occurred on 5th October and the crop was
harvested on 4th April 2018. VH/VV ratio was more sensitive to
changes in biomass during wheat development than for sunflower. In
wheat, NDVI starts increasing after the emergence of plants, then
achieves the highest value during heading and decreasing at the ri-
pening stage. During the wheat development stage, a similar temporal
behavior profile between NDVI and VH/VV ratio was observed. On the
contrary, VH and DPSVI did not follow a similar temporal behavior
profile during the wheat growth and development.

A temporal correspondence between VH/VV ratio and NDVI during
wheat development was expected because similar results have been
previously reported (Mattia et al., 2003; McNairn and Shang, 2016;
Veloso et al., 2017). During the first weeks of September (∼50 days
after sowing - tillering), the medians ranged from 0.6 to 0.7 for NDVI,
and -7 to -6 for VH/VV ratio, according to reported by Song and Wang,
2019. In this stage, fresh biomass accumulation is high and stable.
Then, during early October (∼80 days after sowing -booting) and until

Table 1
Percentage of explained variance for each soil properties using Random Forest
(RF) regressions executed by field and season.

Field Soil property Season

Winter Crop 2016 Fallow
2017

Summer Crop
2017_2018

Explained Variance (%)
Field 1 Clay content 47.20 10.45 34.09

Silt content 62.54 27.78 35.26
Sand content 62.47 19.98 40.54
Soil Depth 69.12 18.67 37.34
ECa_0−0.3 m* 57.09 14.83 35.07
ECa_0−0.9 m* 55.11 23.56 35.24

Summer Crop
2016−2017

Fallow
2017

Summer Crop
2017−2018

Explained Variance (%)
Field 2 Clay content 57.21 54.95 62.38

Silt content 54.76 61.87 63.84
Sand content 57.70 61.83 62.11
Soil Depth 56.11 50.20 65.67
ECa_0−0.3 m* 53.19 46.56 53.32
ECa_0−0.9 m* 41.49 30.02 36.11

*ECa_0−0.3 m: Soil apparent electrical conductivity at 0−0.3 m depth;
ECa_0−0.9 m: Soil apparent electrical conductivity at 0−0.9 m depth.
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the second week of November (∼117 days after sowing - heading)
NDVI and VH/VV ratio showed the highest values,> 0.8 and>−4.5,
respectively. Also, VV values were the lowest, according to Mattia et al.,
2003. This result was expected because VV has a detrimental effect at
the tillering stage in wheat, due to an increase in the attenuation caused
by the vertical structures of wheat stems (Veloso et al., 2017). In the
first week of December (ripening) NDVI and VH/VV ratio showed the
lowest values because it was the previous harvest season. In general,
NDVI and VH/VV ratio stability was slightly variable during all wheat
crop cycle. During the temporal series, the increase and decrease of the
curve were related to the wheat development. Veloso et al., 2017 re-
ported that VH/VV ratio is always more correlated to the fresh biomass
than to the photosynthesis activity. However, in the present result
cannot separate the difference correlation for fresh biomass and the

photosynthesis activity.
For sunflower, there was not observed a similar temporal behavior

between NDVI and VH/VV ratio. Previously, Veloso et al. (2017) had
reported that the VH/VV ratio is not a recommended index for sun-
flower monitoring. The present results suggest that the unique stem
growth of sunflower do not let an increase in the attenuation and thus,
VV not decrease. In that situation, the VV behavior limits the prediction
accuracy for biomass using the VH/VV ratio. VH, VV and DSPVI in-
crease from the grain filling stage. This can be due to stem structure loss
biomass and chlorophyll content decreasing the attenuation caused by
stem and thus VV and VH increase. So, it is probably that the increase in
VV and VH in this stage could be use as a monitoring index for sun-
flower physiological maturity, which could be analyzed in further stu-
dies.

Fig. 5. Relative importance of VV and VH polarizations and DPSVI during crop season for each soil properties predicted for the field 1.
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3.2.2. Field 2
In the field 2. NDVI, VH/VV ratio and DPSVI had a similar temporal

behavior during soybean development as the summer crop 2016−2017
and 2017−2018 periods, respectively (Fig. 4). NDVI and VH/VV ratio
start increasingly until the first week in January during summer crop
2016−2017 period. Then, NDVI was steady while VH/VV ratio de-
creased. During summer crop 2017−2018 period, NDVI and VH/VV
ratio increased until the first week in January. Then, both were steady.
VH and VV showed similar temporal behavior in both periods, espe-
cially during soybean growth and senescence stages which has been
previously reported (Veloso et al., 2017). Likewise, DPSVI also had a
similar behavior between summer crop periods which has not been
previously reported for soybean crop. After flowering, DPSVI showed a
decrease in the summer crop 2017−2018 period, while cannot be

detected in the summer crop 2016−2017 period. Differences of VH/VV
ratio and DPSVI between summer crop periods at this stage are ex-
plained by changes in soil moisture which reduce the effect of inter-
action soil-vegetation on the SAR backscattering (Zribi et al., 2011).
Note that during the summer crop 2016−2017 period, soil water
available after flowering was less than in the summer crop 2017−2018
period (see Fig. 2). For the fallow 2017 period, temporal variation in
VH, VV, VH/VV and DPSVI were slight which can be also due to rainfall
events and soil water content dynamics. Except for the VH/VV ratio in
the summer crop 2016−2017 period, variances of all indices within
dates were similar. This is because soybean has low height and number
of stems per surface unit, so that produce a similar attenuation effect of
the soil and vegetation on the backscattered signal (Veloso et al., 2017).

The results reported for the field 2 confirm: (i) that SAR

Fig. 6. Relative importance of VV and VH polarizations and DPSVI during crop season for each soil properties predicted for the field 2.
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backscattering time series allow determining partly spatio-temporal
dynamics of phenological events until the soybean flowering stage; (ii)
that NDVI temporal series allow analyzing and interpreting the dy-
namics of SAR backscatter temporal series; and (iii) the effect of soy-
bean maturity on the SAR backscattering. After R2 phenological de-
velopment stage, soybean starts drying out, leaves fall and decrease the
leaf area index. So, when the fresh biomass decreases, a lower at-
tenuation of the SAR backscattering is generated, and consequently it is
mostly affected by soil conditions. According to that, Baup et al. (2015)
reported that VH and VV polarizations were less sensitive during soy-
bean senescence stage because their values did not decrease when crop
moisture content decreased. Also, McNairn et al. (2014) reported that
VH and VV polarizations of phenological periods previous full seed
(phenological stages<R2) result more precise to identify soybean crop
in the coverage classification at a regional scale.

3.3. Predictive performance of the RF algorithm

Table 1 shows the percentage of explained variance for each soil
property from RF regressions executed by field and coverage condition
(crop or fallow).

In field 1, the explained variance for each soil property was between
47.2 and 69.12 % for the winter crop 2016, between 10.45 and 27.78 %
for the summer crop 2017−2018 and between 34.09 and 40.54 % for
the fallow 2017. The highest explained variance was that for effective
soil depth, followed by that for silt content during the winter crop 2016,
while the lowest one was that for clay content during the fallow 2017.
In the field 2, the explained variance was between 41.49 and 57.70 %
for the summer crop 2017−2018, between 30.02 and 61.87 % for the
fallow 2017, and between 36.11 and 65.67 % for the summer crop
2016−2017. The prediction accuracy of SAR backscattering during the
fallow 2017 was noticeably different between fields. This can be ex-
plained by the dynamics of production and decomposition of the har-
vest residue biomass (Zheng et al., 2014). In field 1, the crop previous
to fallow was wheat, whereas, in field 2, the crop during the last four
months before fallow was sunflower. Thus, the difference in the back-
scattering is due to a different of production of residue biomass between
fields. Several studies have reported that radar backscattering of mul-
tiple SAR bands might be sensitive to changes in the composition of
crop residues during the fallow season. McNairn et al. (2002), for ex-
ample, reported dominant backscattering mechanisms in the C-band,
associated with the type and amount of crop residues. Also, McNairn
et al. (2001) analyzed the sensitivity of the C-band and L-band radar
backscattering to variations in the amount of residues of corn and
barley. These authors reported that the magnitude of the effect of re-
sidues on SAR backscattering depends on the residue moisture, de-
composition and volume and determined that cross-polarized back-
scattering is more sensitive to the residue dynamics of winter and
summer crops (Zheng et al., 2014).

3.3.1. Importance of radar SAR backscattering and DPSVI
Figs. 5 and 6 show the SAR backscattering and DPSVI with high

prediction accuracy of soil properties in fields 1 and 2, respectively,
obtained from the RF regression model. For field 1, the VH polarization
on September 30th and November 29th 2016, and the VV polarization
on November 5th and November 29th 2016, had the highest prediction
accuracy of soil properties (Fig. 5). Particularly, the VV polarizations on
November 5th and November 29th 2016 were the images with highest
prediction accuracy for effective soil depth, silt content and sand con-
tent. For field 2, the VV polarization on October 24th and November

Fig. 7. Scatter plots of the predicted and measured soil properties by field and
coverage condition.

Table 2
Root Mean Square Error (RMSE) and Lins´s Concordance Correlation
Coefficient (ρc) for all soil properties prediction by field and coverage condi-
tion.

Field Soil property RMSE ρc RMSE ρc RMSE ρc

Winter Crop 2016 Fallow 2017 Summer Crop
2017−2018

Field 1 Clay content 1.41 0.53 1.81 0.11 1.53 0.43
Silt content 2.46 0.64 3.20 0.31 3.12 0.36
Sand content 3.07 0.66 4.31 0.21 3.83 0.42
Soil depth 0.10 0.72 0.16 0.15 0.14 0.42
ECa_0−0.3 m 1.87 0.59 2.46 0.19 2.15 0.42
ECa_0−0.9 m 1.56 0.61 1.96 0.32 1.84 0.4

Summer Crop
2016−2017

Fallow 2017 Summer Crop
2017−2018

Field 2 Clay content 1.43 0.61 1.41 0.63 1.31 0.69
Silt content 3.37 0.59 2.96 0.69 2.89 0.71
Sand content 4.40 0.61 4.10 0.67 4.00 0.68
Soil depth 0.10 0.55 0.11 0.46 0.10 0.63
ECa_0−0.3 m 1.88 0.64 2.10 0.56 2.07 0.56
ECa_0−0.9 m 2.70 0.5 2.96 0.36 2.83 0.42
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29th 2016 during Summer Crop 2016−2017 period and the VV po-
larization on November 24th 2016 and on February 28th 2017 during
Summer Crop 2017−2018, showed the highest prediction accuracy had
the highest prediction accuracy of soil properties (Fig. 6). Particularly,
the VV polarizations on November 24th, December 6th 2017 and
February 28th 2018, were the images with highest prediction accuracy
for effective soil depth, silt content and clay content.

In general, VV and VH in this order were those SAR data with high
prediction accuracy of soil properties in both and coverage conditions.
Specifically, the VV and VH polarizations with high prediction accuracy
attained radar backscattering values lower than -10 and -20 dB, re-
spectively. In field 1, the polarizations mentioned showed the highest
predictive accuracy of soil properties during the development stage of
wheat particularly in three conditions. First, at the tillering stage (30/
Sep/2016) when LAI is less than 3 and the number of stems per m2 is
less than 500 (Satorre and Slafer, 1999). In that context, plants have
low height and poor attenuation. Thus, VH and VV polarizations are
mainly affected by soil properties variations, which depend on soil
moisture dynamics and surface roughness (Veloso et al., 2017). Second,
at heading stage (5/Nov/2016) when LAI is more than 4 and the
number of stems per m2 is less than 700. The volume fraction of the
vegetation is maximum at hearing as a result of the maximum growth in
the number of stems per plant and in the length of these stems. In ad-
dition, at this stage occurs the highest hydric demand of the crop. In
that situation, VV polarization which have the highest predictive ac-
curacy of soil properties are mainly influenced by the vertical structures
of wheat stems (Brown et al., 2003). Changes in spatio-temporal dy-
namics of these structures become a potential aspect to predict soil
properties through VV polarizations. Third, at the ripening stage and
senescence (29/Nov/2016) during which the increase on SAR back-
scatter is as a consequence of the decreasing chlorophyll and water
content.

In field 2, C-Band SAR data showed a high predictive accuracy of
soil properties during the development stage for both summer crop
periods in three conditions. First, after germination stage in the
2016−2017 period (Soybean crop, 24/Oct/2016). This may be ex-
plained by the fact that the height of soybean is low, only a few leaves
are fully developed and the number of stems is low, which leads to a
poor attenuation of backscattering signal. Thus, at this moment the
backscatter responses mainly depends on the soil moisture content and
surface roughness. Second, at the highest growth-rate of soybean crop
for both periods (29/Nov/2016 to summer crop 2016−2017 period
and 24/Nov/2017 to summer crop 2017−2018 period, respectively).
At this crop stage, in both periods the water availability was optimum
with low SAR backscatter (VH<−20 and VV>−15, respectively).
Under wet conditions, the interaction between crop and soil properties
dominates the decrease of SAR backscatters in comparison to crop vo-
lume contribution (Baup et al., 2015; McNairn et al., 2014). Third, at
the full seed and beginning maturity in the summer crop 2017−2018
period (28/Feb/2018). As was explained before, in low water avail-
ability conditions and at the beginning of the soybean senescence the
interaction between crop and soil properties leads to higher SAR
backscatter. Thus, the water storage determined the biomass dynamic
and thus, the SAR backscattering behavior (Veloso et al., 2017).

So, the results of this section are relevant because (i) it was de-
monstrated that the process of variable selection using RF regression
allow to indentify those SAR backscatters with high predictive accuracy
of soil properties at field scale during the growing period of wheat,
sunflower and soybean (Veloso et al., 2017); (ii) they show the effect of
the interaction between biomass dynamics of wheat, sunflower and
soybean crops, and soil water dynamics, on the accuracy of SAR
backscattering to predict soil properties at field scale; and (iii) they
allow defining the time of observation when the prediction accuracy of
SAR backscattering is potentially applicable to several soil properties.

3.4. Prediction accuracy

Fig. 7 and Table 2 show a comparison between scatter plots of the
predicted and measured soil properties, and a comparison of RMSE and
ρc in the predictions of soil properties, by field and condition coverage,
respectively. In field 1, the best predictions for all soil properties were
achieved with SAR backscattering of wheat crop for the winter crop
2016 period (R2 between 0.48−0.65; ρc between 0.53−0.72). Those
predictions were less precise during the fallow 2017 (R2 between
0.07−0.23; ρc between 0.11−0.32). Specifically, soil depth, sand and
silt content, in that order were the properties better predicted
(R2> 0.58). In field 2, the predictions more precise for all soil prop-
erties were achieved with SAR backscattering of both summer crop
periods, being slightly more precise for the summer crop 2017−2018
period (R2 between 0.47−0.66 Summer crop 2016−2017 period; R2

between 0.44−0.74 Summer crop 2017−2018 period). Particularly,
ECa_0−0.3 m, sand and clay content were the properties better pre-
dicted (R2> 0.59). In both fields, ρc were less than 0.72, indicating that
predictions had a moderate and poor agreement.

Combining SAR backscattering temporal series, feature selection
using RF and RF prediction can be considered as an efficient technique
to predict ECa, texture and soil depth. Using this method was able to
achieve RMSEs less than 1.81 and 4.4 %, for clay and sand content,
respectively. Our RMSE values are lower than those have been reported
in previous studies. Zribi et al. (2011) used an inversion model meth-
odology based on X-Band SAR backscattering to predict clay content
with an RMSE ∼12.5 % for the prediction of that variable. Gorrab et al.
(2015) used TerraSAR-X data to predict soil moisture and texture ap-
plying empirical linear models. They reported an RMSE ∼10.8 and
18.6 % for clay and sand content, respectively. Clearly, the availability
of C-band SAR data and the prediction scheme provides significant
information to improve soil cartography at field scale.

4. Conclusions

In the present study, we presented, validated and tested a prediction
scheme for topsoil properties at farm field scale by the combination of
free and massive C-band SAR data, optical data, feature selection using
RF and RF regression model. The prediction scheme involved: (i) the
analysis of spatial-temporal dynamics of SAR backscattering, DPSVI and
NDVI at field conditions in the southeast of Buenos Aires province,
Argentina, during the crop and fallow periods; (ii) the evaluation of the
predictive importance (feature selection) of SAR backscattering for the
RF regression of multiple topsoil properties; (iii) the analysis of the
relationship between the SAR backscattering and NDVI, according to
their prediction accuracy for topsoil properties; and (iv), the analysis of
the prediction accuracy.

In general, VH/VV ratio y DPSVI were useful representing the dy-
namics of biomass, but the efficiency was variable according to the crop
type and soil moisture content. VH/VV ratio mainly represented the
growing dynamics for wheat and soybean but not for sunflower. Also,
spatio-temporal relationship among fresh biomass, NDVI and VH/VV
ratio was dependent on the crop type and the interaction to soil
moisture variation. In that context, DPSVI represented moderately
sunflower and soybean dynamics but not was helpful for wheat crop. At
present, relationship of spatio-temporal dynamics between DPSVI and
wheat, sunflower and soybean developments have been poorly docu-
mented (Periasamy, 2018). SAR backscattering with high predictive
accuracy of topsoil properties were efficiently selected using Feature
selection with RF, reducing not only data with a poor predictive ca-
pacity or redundant but also computation time. The selection of SAR
backscattering allow identifying key moments during the wheat and
soybean developments in which SAR data had higher prediction accu-
racy of topsoil properties. Also, we can determined that in sunflower
cropping conditions the SAR data prediction accuracy was notoriously
decreasing. Predictions for clay, silt and sand soil content performed

M.B. Domenech, et al. Int J Appl  Earth Obs Geoinformation 93 (2020) 102197

11



based on the present prediction scheme result more efficient than those
previously reported. Soil depth and sand content were the soil prop-
erties with high percentage of explained variance (> 65 % and>40 %,
respectively), for both fields and in all coverage conditions. In addition,
we achieved efficient predictions for ECa and soil depth which is an
unprecedented result. The Root Mean Square Error (RMSE) calculated
for ECa and soil depth revealed the values between 0.1−0.16 m, and
1.56–2.96 mS m−1, respectively. In mostly soil properties an over-
estimation of low values was detected.

The availability of C-band SAR data and prediction scheme use
provides an opportunity to optimize methods of soil functional carto-
graphy for site-specific crop management applications. Further studies
should propose, validate and evaluate viable and economic sampling
schemes that are able to generate spatial predictions of soil properties
with high performance. New radar vegetation indices should be vali-
dated as auxiliary information to predict soil properties. Additional
studies are needed to test the relevance of the directional scattering and
validate this approach in numerous farm-fields
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