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Abstract

Background: Micro RNAs (miRs) constitute a large group of endogenous small RNAs that have
crucial roles in many important plant functions. Virus infection and transgenic expression of viral
proteins alter accumulation and activity of miRs and so far, most of the published evidence involves
post-transcriptional regulations.

Results: Using transgenic plants expressing a reporter gene under the promoter region of a
characterized miR (P-miR164a), we monitored the reporter gene expression in different tissues
and during Arabidopsis development. Strong expression was detected in both vascular tissues and
hydathodes. P-miR164a activity was developmentally regulated in plants with a maximum
expression at stages |.12 to 5.1 (according to Boyes, 2001) along the transition from vegetative to
reproductive growth. Upon quantification of P-miR | 64a-derived GUS activity after Tobacco mosaic
virus Cg or Oilseed rape mosaic virus (ORMYV) infection and after hormone treatments, we
demonstrated that ORMV and gibberellic acid elevated P-miR164a activity. Accordingly, total
mature miR 164, precursor of miR164a and CUCI mRNA (a miR |64 target) levels increased after
virus infection and interestingly the most severe virus (ORMV) produced the strongest promoter
induction.

Conclusion: This work shows for the first time that the alteration of miR pathways produced by
viral infections possesses a transcriptional component. In addition, the degree of miR alteration
correlates with virus severity since a more severe virus produces a stronger P-miR | 64a induction.

Page 1 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20042107
http://www.biomedcentral.com/1471-2229/9/152
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Plant Biology 2009, 9:152

Background

Small RNAs (sRNAs) play a central role in plant develop-
ment and other important plant functions. Eukaryotic
sRNAs are approximately 21-24-nucleotides molecules
involved in many different cell processes, including devel-
opment, heterochromatin formation, genome rearrange-
ment, hormone signalling and metabolism [1]. There are
different classes of sSRNAs: short interfering RNAs, trans-
acting RNAs and microRNAs (miRs) [1,2] amongst others.

miRs are small, endogenous RNAs that regulate gene
expression in plants and animals by promoting cleavage
or translation inhibition of mRNAs coded by specific tar-
get genes [3]. The stem-loop region of a long primary
nuclear transcript (called miR precursor or pre-miR) is
processed into 21-nucleotide RNAs by a multistep process
involving the activity of DCL1 [4,5], HEN1 and HYL1 pro-
teins [6,7]. AGO1 is the most important Argonaute pro-
tein in the plant miR pathway and preferentially binds
small RNAs with a 5' terminal uridine such as most miRs
[8-11]. miRs are involved in plant development, signal
transduction, transcription factor accumulation, protein
degradation, response to environmental stresses and
pathogen invasion [12,13]. miRs are expressed at variable
levels in diverse tissues and developmental stages [14,15],
regulate their own biogenesis [16-18] and it has been
reported that modest changes in miR level can result in
substantial changes in the accumulation of mRNAs target
genes [12,19]. These facts evidence that miR expression is
under a tight and fine regulation.

Over-expression of miR genes or viral proteins, such as
post-transcriptional gene silencing (PTGS) suppressors,
cause multiple developmental defects by interfering with
miR-guided target cleavage/degradation [20-22]. Viral
infections also cause miR alteration and development
abnormalities or symptoms [20,21,23-26]. However, it is
not totally clear how viral infections interfere with miR
pathways [25,27] and which are the consequences of such
interference. In Brassica sp. for example, it has been
reported that Turnip mosaic virus infection specifically
induced the accumulation of miR1885 that targets a TIR-
NBS-LRR class disease-resistant transcripts for cleavage
[28]. These data clearly suggest an important role of miRs
in host-pathogen interactions. Basically, miR pathways
could be affected at transcriptional or post-transcriptional
levels, the latter involving miRs processing, accumulation
and activity. Most of the articles reporting miR alteration
upon viral infection or transgenic expression of viral pro-
teins uncovered post-transcriptional regulation involving
the silencing suppressors activity [20,27,29]. Nonetheless
it was also shown that expression of viral proteins with
non-PTGS suppressor activity can also alter miRs accumu-
lation [23]. To the best of our knowledge there are so far
no reports of the alteration of miRs transcription upon
plant viral infections.
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In this work, we analyzed whether the transcriptional reg-
ulation of a miR promoter was altered by a plant virus
infection. We selected miR164 since its accumulation is
increased after Tobacco mosaic virus (TMV) infection
[23,30], itis involved in plant development and its mRNA
targets are well known [12,31-36]. miR164 is potentially
transcribed from three independent loci, miR164a,
miR164b and miR164c [17,37] and negatively regulates
transcription factors with NAC domains such as CUC1
and CUC2 [12,31-36]. These factors are redundantly
involved in the initiation of the shoot apical meristem
and in the establishment of cotyledon and floral organ
boundaries [9,13,38]. Recently, it was also shown that
miR164 participate in a trifurcate feed-forward pathway
involved in cell death in Arabidopsis leaves [19]. Here, we
cloned the putative Arabidopsis thaliana miR164a pro-
moter (P-miR164a), obtained A. thaliana transgenic lines
expressing the uidA reporter gene (GUS) under its regula-
tion, and studied its spatial and temporal expression.
Finally, we analyzed the P-miR164a activity and the
mature miR164, pre-miR164a and CUCs mRNAs accu-
mulation after viral infections and hormone treatments.

Results

Bioinformatic analysis and cloning of the putative
promoter sequence of the MIR164a gene

In order to characterize and define the proper miR164a
gene promoter sequence and its regulatory elements, we
performed an in silico analysis of the approximately 2.5
Kbp region located upstream of the mature miR164a
sequence. A previous report showed that a 2.1 Kbp frag-
ment upstream of miR164a is able to rescue null miR164
mutant lines [33]. Using the PlantCARE database http://
bioinformatics.psb.ugent.be/webtools/plantcare/html/
[39] we identified the putative transcription start site and
promoter elements within the 2.5 Kbp. In silico analysis
identified putative sequence elements related to stress
response and others involved in gibberellic, abscisic, sali-
cylic and jasmonic acids responses (Table 1). In addition,
circadian control and anaerobic drought responses motifs
were also predicted within this fragment and finally, 28
enhancer elements and 23 light-responsive related
sequences were found not randomly distributed (see
Additional File 1: Table S1 and Figure S1). A 2522 bp frag-
ment (-2483 to +39, considering as +1 the transcription
start site) was PCR amplified, cloned and completely
sequenced to verify its identity and will be referred from
now on as the miR164a promoter (P-miR164a). The
miR164a locus within its genomic context and the
miR164a precursor are represented in Figure 1.

P-miR164a is mainly expressed in the plant vascular tissue
and its activity is developmentally regulated

In order to study the transcriptional activity of P-
miR164a, we produced a set of Arabidopsis transgenic
plants expressing GUS wunder its regulation (P-
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Table I: Putative cis-acting regulatory motifs in P-miR164a promoter.
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TF Site Name First Organism Described Position Strand sequence
ABA ABRE Arabidopsis thaliana -565 + TACGTG
Hordeum vulgare -567 + CGTACGTGCA
Arabidopsis thaliana -1067 - TACGTG
Arabidopsis thaliana -1069 - TACGTGTC
Arabidopsis thaliana -1755 - TACGTG
Defense and Stress TC-rich repeats Nicotiana tabacum -597 - ATTCTCTAAC
Fungal Elicitor Box-WI Petroselinum crispum -495 + TTGACC
Gibberellin P-box Oryza sativa -499 + CCTTTTG
Jasmonic acid CGTCA-motif Hordeum vulgare -515 - CGTCA
Hordeum vulgare -1217 + CGTCA
Hordeum vulgare -1532 + CGTCA
TGACG-motif Hordeum vulgare -515 + TGACG
Hordeum vulgare -1217 - TGACG
Hordeum vulgare -1532 - TGACG
Salicylic acid TCA-element Brassica oleracea -547 - GAGAAGAATA

Putative motifs recognized by transcription factors (TF) related to ABA, defense and stress, fungal elicitors, gibberellins, jasmonic acid and salicylic
acid were detected using PlantCare program (Selected Matrix score for all elements > 5). The site name, consensus sequence and the first organism
where it was described were indicated. The positions were assigned relative to the miR164a transcription start site. (+) and (-) indicate sense or

antisense DNA strands.

miR164a::GUS construct). As positive and negative con-
trols, transgenic plants harboring a construct containing
GUS controlled by the 35S Cauliflower mosaic virus pro-
moter (35S::GUS), and transgenic plants for GUS lacking
a regulatory sequence (EV::GUS, EV = empty vector) were
obtained. Three P-miR164::GUS lines were selected to
illustrate low (L35), medium (L50) and high (L56) levels
of GUS expression out of 65 independent transgenic lines.
All of them clearly showed a similar spatial pattern of
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Schematic representation of Arabidopsis miR164a
locus and miR164a precursor. Size and position of the
miR164a putative promoter (P-miR|64a) are indicated and
mature miR164a highlighted. The rectangular boxes show the
two flanking ORFs and their chromosome position. +1 indi-
cates the putative transcription start sites. Arrows indicate
the direction of transcription.

expression (Figure 2A2, A3, and 2A4 respectively). The
three lines segregated in a 3:1 ratio in T2 indicating a sin-
gle locus of transgene insertion. In addition, one repre-
sentative 35S:GUS line and one EV::GUS line were
selected among several independent lines (Figure 2A1 and
2A5). The selected lines were brought to homozygosis,
and the presence of 35S promoter, P-miR164 and GUS
sequences was confirmed by PCR using specific primers
(see Additional File 1: Figure S2).

Temporal and spatial GUS activity was observed in the dif-
ferent transgenic lines; GUS activity was detected in the
entire plant vasculature (Figure 2A2-4, and 2B2) and in
leaf hydathodes (Figure 2A2-4 and 2C) as previously
described [33]. In reproductive organs, GUS staining was
found in all carpel compound tissues and was stronger in
its vasculature (Figure 2B4 and 2B7). GUS expression was
also detected in siliques (Figure 2B6), petals and stamen
vascular tissue and in the septum that separates the lobes
of the each anther's thecae (Figure 2B7) whereas no GUS
staining was found in the sepals. In detail, in stems, GUS
stain was shown to be restricted to developing xylem ves-
sels (Figure 2B8 and 2B9). To study the activity of P-
miR164a during plant development, a time course assay
was performed. Results revealed that all P-miR164::GUS
transgenic lines had detectable GUS staining from seed-
lings up to almost stage 6.3 according to Boyes et. al., [40],
showing a clear increase in the expression level at stages
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Figure 2

Spatial and temporal expression patterns of GUS
reporter gene driven by P-miR164a in transgenic Ara-
bidopsis plants. (A) Leafs from 4 week old plants of the dif-
ferent lines used for this study. Al: Control 35S:GUS
transgenic Arabidopsis line. A2, A3 and A4: three independent
P-miR 164a::GUS transgenic Arabidopsis lines with showing
low, intermediate or strong GUS activity (lines L35, L50 and
L56 respectively). A5: Control EV::GUS transgenic Arabidop-
sis line where no GUS staining was detected. (B) GUS stain-
ing of plants, organs or sections of the control 355:GUS
transgenic Arabidopsis line (BI, B3 and B5) and P-

miR 64a::GUS L56 transgenic plants (B2, B4, B6 to B9). (B2)
Staining leafs of one week-old plants. (B4) Mature and imma-
ture flowers. (B6) Detail of dehiscence zone of the siliques.
(B7) Flower transverse section showing the reporter gene
activity in the septum that divides both locus from each
theca. (B8 and B9) Stem transverse sections with GUS stain-
ing found in developing xylem vessels. (C) Time course of P-
miR 164a transcription activity during the development of P-
miR 164a::GUS L56 transgenic plants. The plants were stained
from stages 1.04 to stage 8. The most intense GUS staining
was observed in stages .13 to 5.1. Bar = 0.5 cm.
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1.12 to 5.1 (Figure 2C), while stage 8 had almost undetec-
table GUS activities. All these data suggested a develop-
mental transcriptional regulation of P-miR164a during
plant life cycle.

We additionally evaluated P-miR164a activity in different
plant species by microprojectile bombardment or agro-
infiltration assays. Promoter activity showed to be ubiqui-
tous since it was conspicuous within monocotyledonous
and dicotyledonous plants, such as Allium cepa, Solanum
tuberosum, Helianthus annuus and Nicotiana benthamiana
(see Additional File 1: Figure S3). In contrast, P-miR164a
activity was not detected when transfecting mammalian
BHK or insect Sf9 cells with appropriate constructs (see
Additional File 1: Figure S4).

Viral infections induce P-miR164a activity

It has been shown that miR accumulation is altered after
viral infection most likely at post-transcriptional level
[23,26,28,30]. To study whether virus infection could also
interfere with miR pathways at the transcriptional level,
we quantified P-miR164a-derived GUS activity after viral
infection. We independently inoculated (or mock-inocu-
lated) two P-miR164a::GUS lines showing low (line L35)
and high (line L56) GUS expression level to consider the
influence of the genomic context of the T-DNA insertion,
35S8::GUS and EV::GUS plants with Oilseed rape mosaic
virus (ORMV) and TMV-Cg. These two viruses were chosen
because they clearly differ on the severity of the symptoms
they produce on Arabidopsis plants, very mild in the case
of TMV-Cg and strong in the case of ORMYV, even when
both viruses are proposed to be strains of the same species
of the Tobamovirus family [41,42]. Also importantly,
tobamoviruses were reported to alter miRs levels in
tobacco and Arabidopsis [23,30]. In the experimental con-
ditions, both tobamoviruses infected a high percentage of
plants (above 95%) and accumulated to high titers (data
not shown). First, the tissue localization pattern of GUS
activity after viral infections was compared through histo-
chemical staining assays and no clear alterations were
detected upon infections (data not shown). Next, GUS
activity was measured using a total rosette protein extract
to minimize the characteristic patchy tissue distribution
effect of areas with different infection levels. As shown in
Figure 3A, GUS activity was statistically significantly
increased after infection with the most severe virus
(ORMYV) in both P-miR164a::GUS lines. Even though not
statistically significant, mean GUS activity values were
also higher in both P-miR164a::GUS lines after TMV-Cg
infection. As expected, GUS activity did not change in con-
trol 35S::GUS plants evidencing the specificity of P-
miR164a induction upon virus infection.

To provide additional evidence that the transcriptional

activity of P-miR164a is induced after infection, the level
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of pre-miR164a transcripts was analyzed by RT-PCR after
viral infection. Figure 3B shows a clear increase of pre-
miR164a accumulation after ORMV infection and a slight
increase after TMV-Cg infection compared to mock-inoc-
ulated treatments in two biological replicates using L56
plants. This assay was repeated with similar results in line
L35 (data not shown). Although all transgenic lines were
equivalent to Arabidopsis wild type (Col-0) for this pur-
pose (measuring endogenous pre-miR164a), tissues from
L56 and L35 lines were analyzed to preserve the same
genetic background used in GUS activity assays. In order
to quantify the effect of virus infection on pre-miR164a
abundance, qRT-PCR analysis was performed in Arabidop-
sis wild type plants after ORMYV infection and compared to
the mock-treated plants. Pre-miR164a gene expression
increased more than six fold after ORMYV infection, esti-
mating gene expression ratio with a p-value of 0.005
through the REST algorithm [43] (Figure 3C).

Altogether, these data indicated that viral infections ele-
vated the activity of P-miR164a evidencing that they also
interfered with miRs pathways at the transcriptional level
and that this induction was stronger in the case of ORMV,
the most severe virus.

The accumulation of miR164 and its target genes mRNAs
are altered after virus infection

Next, we analyzed whether the induction of P-
miR164a::GUS by virus infection also correlated with the
levels of mature miR164 and its mRNA targets. The accu-
mulation of mature miR164 in infected and mock-treated
plants was detected and quantified by Northern-blot anal-
ysis. The hybridization with a miR164 probe was meas-
ured using a radioactivity-scanning device and
normalized based on the amount of ethidium bromide-
stained rRNA. The amount of miR164 in mock-treated
plants was arbitrarily set as 1.0, and the rest of the data
were computed relatively to these plants. As previously,
L35 and L56 transgenic lines tissues were used to main-
tain the genetic background even though endogenous
miRs were quantified. Figure 4A shows miR164 accumu-
lation from two biological replicates of mock-treated
plants (mock), TMV-Cg, and ORMV-infected plants. Fig-
ure 4B shows the mean values of miR164 quantification
of two to four biological replicas, including the data
shown on panel A. miR164 accumulation increased after
infection with both tobamoviruses. The higher miR164
accumulation after infection might be due, at least par-
tially, to the increase in P-miR164a transcriptional activity
(as shown Figure 3A) since miR164b/c might also contrib-
ute to this observation.

Finally the effect of virus infection on miR164 activity was
analyzed by measuring miR target accumulation by qRT-
PCR using sets of primers annealing at both sides of the

http://www.biomedcentral.com/1471-2229/9/152
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Effects of virus infections on P-miR164a activity. L56
and L35 P-miR[64a::GUSArabidopsis transgenic lines and
35S::GUS control transgenic plants were virus-inoculated to
quantify the effects in P-miR[64a activity. (A) The bar chart
shows the GUS activity mean value and standard error (SE)
obtained in each group with n > 10 from at least two biologi-
cal replicates. Values were normalized to mock-inoculated
controls of each line. Statistical comparisons were made by
Kruskal-Wallis test with Dunn's post-test. Statistical differ-
ences between treated and mock-treated groups are shown.
**p < 0.05, ***p < 0.0l compared to mock controls. (B) Rep-
resentative RT-PCR of the pre-miR164a transcript in L56
transgenic plants. The housekeeping EF | o. gene was amplified
as an internal control. (C) Quantitative RT-PCR analysis to
measure the level of the pre-miR|64a in Arabidopsis thaliana
Col 0 plants after ORMV infection. The chart shows the nor-
malized CTs * SE for each condition and the expression ratio
between them calculated with REST algorithm.
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Effects of TMV-Cg and ORMY infections on the accu-
mulation of miR164 and CUCI and CUC2 mRNAs.
(A) Northern blot analysis detecting the accumulation of
miR 164 in transgenic lines L35 and L56 after virus infection.
Ethidium-bromide-stained rRNAs shown below each blot
were used for data normalization. miR accumulation data
were set relative according to the accumulation in mock-
inoculated plants that was set at |. (B) Average of two to
four independent measurements of miR 164 accumulation in
L56 and L35 after virus infection. (C) CUCI and CUC2
mRNAs transcript abundance determined by qRT-PCR and
expressed in arbitrary units normalized to EFl o amount after
virus infection. CUCI and CUC2 transcript levels were com-
puted relative to the levels in mock-inoculated plants that
were set at |. Each value represents the mean of four biolog-
ical replicates. Bars indicate standard errors. (*) indicates a
statistically significant difference (p < 0.008) for CUCI rela-
tive expression in TMV-Cg and ORMV-infected plants com-
pared to controls ones.

miR recognition site in order to only detect complete
uncut mRNA targets (Figure 4C). Even though, no
changes in CUC2 mRNA levels were detected after infec-
tions, CUC1 mRNA accumulated to higher levels in plants

http://www.biomedcentral.com/1471-2229/9/152

infected with both tobamoviruses (particularly with
ORMYV).

In conclusion, even though there was an induction of P-
miR164a expression and pre-miR164a and miR164 accu-
mulation upon infection, the mRNA levels of CUC1
mRNA target were also raised [44]. These results suggest
that, in spite of the P-miR164a transcriptional induction,
the viral infection caused a reduction of miR164 activity
as a final outcome.

Effects of hormone treatments on P-miR164a expression

Virus infections were reported to alter the concentration
of phytohormones such as auxin, gibberellin and abscisic
acid (ABA) [45,46]. As in silico analysis identified putative
gibberellin and ABA responsive consensus elements
within P-miR164a (Table 1), we analyzed whether P-
miR164a activity changed after hormone treatments. P-
miR164a::GUS transgenic lines (L35 and L56) and con-
trol 35S::GUS plants were sprayed with ABA, indole-acetic
acid (IAA), or gibberellic acid (GA3) solutions as well as
with water as a control. First, we determined that P-
miR164a::GUS plants treated with hormones showed a
GUS staining tissue pattern similar to that of mock-treated
plants (data not shown). Figure 5A shows that GUS activ-
ity significantly increased after GA3 treatments in L35,
while L56 showed a similar trend. No significant differ-
ence in P-miR164a activity was observed in plants upon
exposure to ABA or IAA. As expected, GUS activity did not
change in 35S::GUS plants after treatment, showing that
hormone treatments could not induce this promoter.
Effectiveness of all hormone treatments was confirmed by
RT-PCR amplification of known hormone-responsive
mRNAs (Figure 5B). Therefore, we concluded that GA3
treatment elevated the activity of P-miR164a promoter.

Discussion

There is increasing information regarding the molecular
events triggered after a plant virus infection including
changes inplant gene expression, metabolism and devel-
opment [27,47,48]. Some of these events may be required
for the proper virus replication and spread, some may be
plant responses and others may be just a side effect of
virus infection. In turn, some of these alterations might be
responsible for virus symptoms. Different molecules
emerged as candidates to modulate this complex interac-
tion, and a group of them are miRs [1,16,22,49,50].
Accordingly, miRs accumulation and activity were shown
to be altered by virus infection and/or by the transgenic
expression of viral proteins [20,21,23-26,30]. Different
hypotheses, all of them involving post-transcriptional reg-
ulation, have been proposed [20,21,44,51,52]. Further-
more, this process may occur in the cytoplasm, after miR
nuclear processing by DCL1 and subsequent nucleo-cyto-
plasmic transport [53].

Page 6 of 12

(page number not for citation purposes)



BMC Plant Biology 2009, 9:152

A
OMOCK *%
250 1
OABA
m
£ 0| WIAA
=}
o H GA3
=
£ 150 1
[
=
2 1001
Q
<
2
O 501
0
35S8:GUS pmiR164a:GUS pmiR164a::GUS
L35 L56
B
ABA H,0
M L56 L35L56 L35 -
RD22
Actin
APTH-1
Actin
Figure 5
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miR 164a::GUS Arabidopsis transgenic lines and 35S:GUS con-
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methods section. The bar chart shows the GUS activity mean
value and the standard errors of results obtained in each
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Statistical comparisons were made by the Kruskal-Wallis test
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tiveness of hormone treatments by amplifying mMRNAs that
are known to be hormone inducible as ABA inducible RD22
(NM_122472); IAA inducible SAUR-ACI (S70188) and GA3
inducible APT| (NM_179383) genes. ACTIN2 gene was also
amplified as internal control. M: | Kb DNA molecular
marker; (-) Negative PCR control (without DNA).
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In this work we showed for the first time that virus infec-
tions and GA3 treatment lead to enhanced transcriptional
activity of P-miR164a thus revealing a novel mode of viral
interference with plant miR biogenesis.

At early stages of leaf development, we showed that P-
miR164a has a spatial expression pattern similar to the
one reported by other authors [33,36]. Next, we further
expanded the characterization to fully developed organs
(Figure 2). One interesting observation was the identifica-
tion of the highest P-mR164a activity on the vascular tis-
sue of plants at stages 1.12 to 5.1 (Figure 2C). This time
point correspond, according to Boyes et al, [40] just after
the switch of the vegetative to the reproductive growth,
and when several processes are initiated, including
changes in hormone levels. This switch is also relevant for
plant-virus interactions since it coincides with the time
point when virus replication is transiently arrested, as
reported by Lunello et al [54]. We also detected a strong
reduction in P-miR164a activity at plant developmental
stage 8.0 that correlated with a reported decrease in
mature miR164 levels and an increase of its target gene
oresara-1 (means "long-living" in Korean) mRNA (ORE-
1), which positively regulates aging-induced cell death in
leaves [19].

Upon ORMYV infection, P-miR164a::GUS transgenic lines
(L35 and L56) accumulated higher levels of GUS, show-
ing that virus infection could directly or indirectly inter-
fere with miR164a regulation at the transcriptional level
(Figure 3A). Supporting these results, pre-miR164a accu-
mulation also increased after viral infection in the same
set of lines (Figure 3B). Nevertheless, the increased pre-
miR164a accumulation could be as well explained by a
change in the nuclear precursor rate processing. This pos-
sibility is unlikely in view of our GUS activity results
although a partial contribution cannot be ruled out (Fig-
ure 3B, C). Furthermore, the ORMYV infection elevated
approximately by six fold the expression of the endog-
enous pre-miR164a compared to the mock-inoculated
plants in wild type Col 0 plants (Figure 3C) also indicat-
ing that the transcriptional induction of P-miR164a is not
affected by a genomic positional effect in the transgenic
plants nor an artifact of the transgenic lines (Fig 3A, B, C).
In sum, our results showed that miRs promoter activation
should be considered to explain changes in miRs abun-
dance during virus infection. Along this line, Csorva et al
[51] demonstrated that tobamovirus infection increases
miRs accumulation in hst-15 mutant plants (in which miR
nuclear export is compromised) as well as in wild type
plants. In this case, the increase in miR accumulation may
be due to a transcriptional induction rather than a post-
transcriptional regulation, given the fact that the PTGS
suppressor and miRs are located in different cell compart-
ments. Moreover this data is similar to the increase of miR

Page 7 of 12

(page number not for citation purposes)



BMC Plant Biology 2009, 9:152

transcription in response to different abiotic stresses
reported by Liu et al [55].

Interestingly, our results show that the most severe
tobamovirus, ORMYV, significantly altered P-miR164a
activity (in all lines evaluated) and produced a major
increase in miR164 and in its target CUC1 mRNA accu-
mulation (Figure 4). The fact that CUC1 (and not CUC2)
was altered upon infection is in agreement with the
observed degree of alteration of both target mRNAs in tri-
ple miR164abc mutant lines, since in rosette leaves CUC1
was the more responsive [36]. On the other hand, infec-
tion by a less severe virus such as TMV-Cg raised to a lesser
extent (or did not change) P-miR164a activity and mature
miR164 and CUC1 mRNA accumulation. These results
evidence a correlation between infection severity and
miRs pathways alteration. This agrees with a correlation
recently reported between the increased accumulation of
a set of selected miRs and symptom severity of tobacco
plants separately infected with six different tobamoviruses
(Bazzini et al, submitted) and, all together, this data may
suggests a role of miRs alteration on symptom severity.
Similar results were obtained in Cucumber mosaic virus/
tomato interactions by Cillo et al. [56].

Even when we showed that virus infection elevates P-
miR164a activity and increases pre-miR164a and mature
miR164 accumulation, we detected higher levels of CUC1
mRNA target in rosettes leaves (Figure 4C). This reduction
in miR activity is in agreement with reported data and was
mostly explained by the action of viral PTGS suppressors
[20,21]. Tobamovirus PTGS suppressors (p126k for TMV)
mostly act by inhibiting the assembly of the RISC com-
plex, although they cannot affect already sRNA-loaded
RISC complexes as other stronger suppressors do
[44,51,52]. Besides, their mode of action involves at least
two functions: interference with sSRNAs methylation and
sRNAs binding [51,52]. This binding and sequestration of
sRNAs as double-strand inactive forms is a common strat-
egy of viral PTGS suppressors that might allow the stabili-
zation and thus the increase of SRNAs accumulation and
at same time reducing the miR activity level [51].

As it was mentioned before, phytohormones accumula-
tion change after virus infection [45,46] and putative phy-
tohormone-responsive elements were detected in the P-
miR164a sequence by in silico analysis (Table 1). Conse-
quently, hormones could be one of the candidate mole-
cules mediating the linkage between viral infection and P-
miR164a induction. In agreement, our data indicated that
GA3 treatment induced P-miR164a promoter (Figure 5A).
Additionally, Guo et al [12] reported that NAA treatment
produces a modest induction of miR164 and a reduction
of NAC1 target mRNA in Arabidopsis roots. Accordingly, it
is reasonable to propose that miR promoter activity could
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be altered after viral infection by changes in phytohor-
mones levels. Furthermore, several of the miRs whose
accumulation are modified by tobamovirus infection
were shown to be directly or indirectly related to phyto-
hormone regulation (miR160 targeting ARF per example)
or directly regulated by hormones [57,58]. Therefore, it
makes sense to propose a crosstalk between hormone and
miRs abundance alterations (or vice versa) after virus
infection. In fact, recent work by Navarro et al [59,60]
reported a link between miRs, hormones and pathogen
resistance.

The mechanism of P-miR164 induction by virus infection
and its implications are still unknown. The alteration of P-
miR164 activity upon infection implies that virus infec-
tions mediate a nuclear modification but, as there are no
reports of tobamovirus encoded proteins with nuclear
activity, this could be the result of an indirect effect. Sim-
ilarly, it is known that TMV infection causes a change in
the nuclear localization of a putative regulator of auxin
response involved in plant development that in turn alters
auxin-mediated gene regulation [61-63]. We cannot rule
out the existence of a feedback regulation of P-miR164a
activity mediated by CUCI1 target mRNA abundance. As
previously mentioned, viral infection could decrease miR
activity by its PTGS suppressors, increasing the miR-tar-
gets level. Consequently, P-miR164a might be induced to
produce more miR to restore target accumulation. How-
ever, since the observed outcome was a higher level of
miR-target after infection this suggests that PTGS suppres-
sor action was stronger (reducing miR activity) than the
resulting outcome of P-miR elevation of the transcription
level at the time point analyzed. Additional evidence is
needed to address this point. Although the biological role
of P-miR164a induction during virus infection is still
unknown, the transcription component described here
must be taken into account when exploring the miR role
in host-pathogen interactions.

Conclusion

In conclusion, our work showed for the first time that, in
addition the already described post-transcriptional effects,
virus infection can interfere with miRs pathways at a tran-
scriptional level. Further experiments are required to
establish which proportion of the induced miR164 accu-
mulation is due to the transcriptional effect, which is the
precise mechanism involved and to uncover which is the
biological relevance of this transcriptional component.

Methods

Constructs and transgenic plants

To obtain the P-miR164a::GUS and an empty equivalent
construct (EV::GUS), a 2522-bp fragment upstream of the
fold-back structure of miR164a (AT2G47585) was ampli-
fied from genomic Arabidopsis thaliana ecotype Col-0 DNA
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using specific P- MIR164a sense (containing a Pstl tail)
and antisense primers. The amplified fragment was
cloned into pGEM-T Easy (Promega) and sequenced to
confirm identity and integrity. The insert was then excised
with EcoRI and cloned into the EcoRI site of pAKK1431
upstream of the uidA gene producing P-miR164a::uidA
and antiP-miR164a::uidA. The orientation of the insert
was checked, and a sense and an antisense version of the
resulting recombinant intermediate plasmid were
digested with Pstl enzyme. The insert was subcloned into
the Pstl site of pCambia2300 http://www.cambia.org/
daisy/cambia/585.html, giving rise to P-miR164a:GUS
and EV::GUS, respectively. All constructs were electropo-
rated into GV3101 Agrobacterium tumefaciens strain. Arabi-
dopsis thaliana (Col-0 ecotype) was transformed by using
the floral dip method [64] and the selected transgenic
plants were confirmed by PCR using specific primers:
Promo164-300 and INTRO AKK (for transgenic P-
miR164a::GUS plants), 35S and INTRO AKK (for trans-
genic 35S8::GUS plants), and GUS up and GUS low (for all
transgenic lines). In addition, a PCR amplification of Ara-
bidopsis Actin-2 (NM_112764) gene was performed as an
internal control by using primers Actin-2 up and Actin-2
low. All primers are listed in Additional File 1: Table S2.

B-Glucuronidase (GUS) histochemical and fluorometric
assessments

Qualitative B-glucuronidase (GUS) histochemical and
quantitative fluorometric assays were performed as
reported [65]. X-glu (5-bromo-4-chloro-3-indolyl-glu-
curonic acid, Inalco S.P.A., Milano, Italy) or MUG (B-D-
glucoronide hydrate, Fluka, BioChemika, UK) were used
as substrates. For fluorometric assessments, the technique
was adapted to an automatic measurement of real-time
enzymatic activity in a 96-well microplate and fluores-
cence was measured on a SpectraMax® GEMINI EM spec-
trofluorometer  (Molecular Devices  Corporation,
Sunnyvale, CA, USA). Data were extracted using the Soft-
Max Pro 5 software.

Plant material and virus infection assays

TMV-Cg and ORMYV isolates were maintained in A. thal-
iana plants ecotype Col-0. Plants were grown in growing
chambers (22°C, 16-8 h photoperiod and a light intensity
of 100 pE m-2 s-1). Mock inoculated plants were buffer-
rubbed. Sampling was done at 7 days after inoculation (in
the case of plants treated with ORMV) and at 9 days after
inoculation (in the case of plants treated with TMV-Cg).
Plant infection was verified by ELISA using Agdia (RMV)
and Bioreba (TMV) commercial kits.

Hormone Treatments

Arabidopsis ecotype Colombia (Col-0) and T3 seedlings of
transgenic Arabidopsis plants were grown in growing
chambers (at 20-25°C, 8 h dark-16 h light cycle) for 4 to
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5 weeks and used in hormone treatment experiments
prior to bolting. Plants subjected to treatment were
sprayed with 50 ml of 100 uM ABA, 100 uM indole-acetic
acid (IAA), 50 uM gibberellic acid (GA3) or mock-treated
with water and incubated for 6 h under dim light. Follow-
ing, at least four plants of each line were histochemically
stained for GUS detection [65], while twelve plants of
each line were immediately frozen in liquid nitrogen and
stored at -80° C until RNA isolation or GUS activity quan-
titative analysis [65]. At least two independent assays were
performed on P-miR164a::GUS lines (L35, L56),
35S:GUS and EV:GUS transgenic lines. Averages were
calculated after data normalization to mock-treated
plants. Effectiveness of hormone treatments was con-
firmed by RT-PCR using the following Arabidopsis thaliana
genes: GA3 inducible APT1 (NM_179383) [66], ABA
inducible RD22 (NM_122472)) [67] and IAA inducible
SAUR-AC1 (S70188) [68]. Actin-2 gene was also ampli-
fied as a control (see Additional File 1: Table S2 for prim-
ers sequence).

Statistical analysis

Statistical comparisons of relative GUS activity among
plant groups were performed by Kruskal-Wallis test with
Dunn's post-test (GraphPad Prism 5; GraphPad Software,
http://www.graphpad.com/ and InfoStat software (InfoS-
tat version 2008. Grupo InfoStat, FCA, Universidad
Nacional de Cérdoba, Argentina) was employed.

miR analysis

miRs were isolated from pools of at least three Arabidopsis
rosette leaves using the miRVana Kit (Ambion. USA) and
then, quantified measuring absorbance at 260 nm using a
spectrophotometer (NanoDropTechnologies). All RNA
samples were adjusted to the same concentration to
homogenize the miR input and 20 micrograms of sRNA
were resolved in 17% polyacrylamide gels containing 7 M
urea. After electrophoresis, RNA was blotted to Gene-
Screen Plus membrane (PerkinElmer Life Science, USA).
Probes homologous to Arabidopsis miR164 were end-
labelled using [y32P] ATP and PNKinase. The probe was
purified from the unincorporated label with Qiaquick
Nucleotide Removal kit (QIAGEN). The eluted radiola-
beled oligo was incubated with the membrane in 3x SSC,
5% SDS and 10x Denhardt's solution at 50°C overnight.
The membrane was washed 2 times with the same solu-
tion buffer for more than 30 minutes and exposed for one
night. The intensity of each band was quantified by using
a Typhoon Trio (Amersham Biosciences, USA). The
Typhoon Trio was also used to quantify the RNA loaded
in each well by scanning the ethidium bromide stained gel
previously to the transfer to the membrane. Data from
these analyses were used to normalize the radioactivity
intensity of each band, based on the total SRNA loaded in
each well. The value for the miR species in mock-treated
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plants was set as 1.0 and the other data were calculated rel-
ative to this value.

Quantitative real-time polymerase chain reaction

Total RNA was isolated from pools of rosette leaves of
three Arabidopsis plants using the RNeasy Plant Mini Kit
(Qiagen), quantified (NanoDropTechnologies) and
treated with DNase I (Invitrogen). First-strand cDNA was
synthesized using Superscript III (Invitrogen, USA), and
oligo d(T),, according to Superscript manufacturer's
instructions (Invitrogen, USA). The oligonucleotide
primer sets used for real-time gPCR analysis were
designed using Primer Express 2.0 software (Applied Bio-
systems) to amplify a fragment containing the miR target
recognition site. The primers are listed in Additional File
1: Table S2. Experiments were carried out using four bio-
logical replicates in an Applied Biosystems 7500 equip-
ment. Arabidopsis elongation factor-loo  (EFla,
NM_125432) was used as internal control. The mean val-
ues were calculated and the standard errors (+ SE) were
computed taking into account a primer efficiency correc-
tion [43]. For miRs targets quantification the statistically
significant differences in expression between control and
treatments samples were calculated using Kruskal-Wallis
test using the InfoStat software (version 2008), where the
cut-off was set to p < 0.05.

Detection of the 91 bp pre-miR164a fragment by RT-PCR
was carried out using cDNA synthesized as described
above and the primers listed in Additional File 1: Table S2.
The PCR cycle used was the following: 94 °C for 5 min fol-
lowed by 35 cycles of 94°C 30's; 60°C 30, 72°C 30 s.
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