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A B S T R A C T   

Understanding human influence on ecosystems and their services is crucial to achieve sustainable development 
and ensure the conservation of biodiversity. In this context, the human footprint index (HFI) represents the 
anthropogenic impacts on ecosystems and the natural environment. Our objective was to characterize the HFI in 
Southern Patagonia (Argentina) across the landscape, qualifying the differences among the main ecological areas 
and especially the forested landscapes. We also assessed the potential utility of HFI to identify priority conser-
vation areas according to their wilderness quality and potential biodiversity values. We created a HFI map 
(scores varied from 0 representing high wilderness quality to 1 representing maximum human impact) using 
variables related to direct (e.g. infrastructure) and indirect (e.g. derived from economic activities) human im-
pacts, including settlements, accessibility, oil industry, and sheep production. HFI varied significantly across the 
natural landscapes, being lower (0.07− 0.11) in remote ecosystems close to the Andes Mountains and higher 
(0.38− 0.40) in southern areas close to the provincial capital city. Forested landscapes presented different impact 
values, which were directly related to the economical values of the different forest types. We determined that the 
current protected area network is not equally distributed across the different ecological areas and forest types. 
Priority conservation areas were also identified using the fragmentation produced by the human impact, the 
patch size, and the potential biodiversity values. HFI can present high compatibility with other land-use man-
agement decision making tools, acting as a complement to the existing tools for conservation planning or 
management.   

1. Introduction 

Human influence is one of the most important factors affecting life in 
the world (Jacobson, Riggio, Tait, & Baillie, 2019; Mace, Balmford, & 
Ginsberg, 1998), which is currently in a new geological era, the 
Anthropocene (Corlett, 2015; Sanderson et al., 2002). The trans-
formation of ecosystems by humans has resulted in declines of wilder-
ness areas, loss of biodiversity, and degradation of several ecosystem 

services (Myers, Mittermeier, Mittermeier, Da Fonseca, & Kent, 2000; de 
Groot et al., 2012; Watson et al., 2016; Li, Zhang, Wang, & Li, 2018). In 
this context, the understanding of the human impact on ecosystems, and 
the services that they provide, is crucial to achieve sustainable devel-
opment (Costanza et al., 2017). Global maps of land use changes and 
cover (Hansen et al., 2013; Loveland et al., 2000) in combination with 
large datasets related to human economic activities across the world, 
and the advances in geographic information systems (GIS), provide the 
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integration technology necessary to combine these data in an efficient 
and reproducible manner (McGowan, 2016; Sanderson et al., 2002) and 
are important tools to determine the influence of humans on earth 
(Sanderson et al., 2002), even in areas with low data availability such as 
Southern Patagonia (Martínez Pastur, Peri, Lencinas, García Llorente, & 
Martín López, 2016). 

The human footprint index (HFI) has been used to represent the 
continuum of anthropogenic impacts on the environment (Sanderson 
et al., 2002). HFI defines human influence using geographic proxies 
from four data types: population density, land transformation, accessi-
bility, and electrical power infrastructure (Venter et al., 2016). These 
data must be selected according to their coverage, consistency and 
relevance for characterizing human impact on the environment (Sand-
erson et al., 2002). However, global scale datasets (e.g. Sanderson et al., 
2002) are often too coarse for regional analyses to be useful to managers 
or policy makers (Li et al., 2018; Woolmer et al., 2008). Therefore, 
studies of human influence using locally developed data at finer scales 
are a solution to this problem (e.g. Inostroza, Zasada, & König, 2016; 
Correa Ayram, Mendoza, Etter, & Perez Salicrup, 2017; Li et al., 2018; 
Pertierra, Hughes, Vega, & Olalla-Tárraga, 2017; Martinuzzi et al., 
2018). Using local data, the HFI becomes a powerful tool for land use 
planning for conservation (Li et al., 2018; Pertierra et al., 2017), 
assessing extinction risk (Di Marco, Venter, Possingham, & Watson, 
2018), habitat connectivity (Correa Ayram et al., 2017), multi-scaled 
adaptive monitoring (Burton et al., 2014), and also for infrastructure 
design for human health and well-being (Baldwin, Powell, & Kellert, 
2011). 

Southern Patagonia includes landscapes with extreme environmental 
conditions, from arid steppes to dense temperate forests (Peri et al., 
2016), and with varying levels of naturalness and human impacts (e.g. 
from pristine to severely degraded by livestock grazing or desertifica-
tion) that can greatly affect local biodiversity (Rosas, Peri, Lencinas, & 
Martínez Pastur, 2019; Rosas, Peri, & Martínez Pastur, 2018; Rosas, Peri, 
Carrara et al., 2019). Many areas in Southern Patagonia with the least 
amount of human influence are of outstanding global value for the 
conservation of endemic natural features, species, and unique biodi-
versity (Inostroza et al., 2016). However these environments and the 
ecosystem services that they provide are vulnerable to human distur-
bances and climate change (Peri, Rosas et al., 2019). To support sus-
tainable land-use and conservation policies, especially for remaining 
wilderness areas in Southern Patagonia requires data that incorporates 
regional details, developed at a resolution relevant to policy making 
(Peri et al., 2016; Rosas, Peri, Carrara et al., 2019, Rosas, Peri, Lencinas 
et al., 2019). 

Sanderson et al. (2002) identified the last 10 % wildest areas in each 
biome in the world for biodiversity conservation (from 5 to 100,000 
km2). The use of HFI may assist in defining areas for conservation along 
the continuum of human influence (Li et al., 2018; Sanderson et al., 
2002), because because HFI can quantify fragmentation of natural 
landscapes which can serve as a proxy for biodiversity conservation 
(Jacobson et al., 2019). Jacobson et al (2019) proposed that the HFI is 
approximately the inverse of the geography of natural processes and 
patterns, assuming that where human influence is highest, ecosystems 
are more modified and biodiversity is under the greatest pressure from 
human activity. Humans exert pressures on the planet in a great many 
ways that may lead directly or indirectly to changes in natural systems 
(McGowan, 2016). The rationale behind this methodology is that more 
intense human footprint represents less value for conservation due to 
biodiversity loss, habitat degradation, exotic species invasion, contam-
ination and trade-offs between natural values and human economic 
activities (e.g. livestock grazing) (Di Marco et al., 2018; Li et al., 2018; 
Venter et al., 2016). The objective of this work was to characterize the 
HFI for Southern Patagonia of Argentina considering different ecological 
areas and different forested landscapes, and to identify areas of high 
conservation value according to their degree of wilderness, which we 
define as lack of human influence. Particularly, we aimed to: (1) include 

regionally-specific indirect human variables in our HFI, (2) characterize 
the HFI within different ecosystems and forested landscapes, and to (3) 
identify remaining wilderness areas. Finally, combining information 
about fragmentation measures with the HFI, we aimed to (4) propose 
new areas for conservation as protected areas from the set of the most 
wild, and most ecologically sensitive land cover patches identified in our 
analysis. 

2. Methods 

We developed a map of the human footprint index (HFI) for Santa 
Cruz province (Argentina) (46◦00′ to 52◦30′ S, 66◦00′ to 73◦00′ W) 
based on the methodology proposed by Sanderson et al. (2002) but 
incorporating regional variables. Santa Cruz province covers 243,943 
km2 (Fig. 1A) and includes 273,000 inhabitants (1.38 inhab km− 2), who 
live in Rio Gallegos, the provincial capital (>90,000 people), other cities 
(e.g. Caleta Olivia and El Chaltén with >1000 people), small towns (e.g. 
Cañadón Seco and Fitz Roy with <1000 people), and on more than 1100 
sheep ranches across the province. The accessibility in the area is 
limited, with three national routes that mainly cross from north to south 
and provincial routes that connect the main human settlements. Oil 
extraction is one of the most important economic activities, and infra-
structure includes wells and pipelines. Another important local industry 
revolves around sheep production (lamb meat and wool),and and 
grazing affects natural grasslands and shrublands, with higher stocking 
rates in southern areas of the province (Pedrana, Bustamante, 

Fig. 1. Characterization of the study area: (A) location of South America (grey), 
Argentina (dark grey) and Santa Cruz province (black); (B) human settlements 
(black dot = capital city, big dark grey dots = >1000 inhabitants, medium grey 
dots = <1000 inhabitants, little light grey dots = ranches); (C) accessibility 
(black = national routes, grey = provincial routes, light grey = secondary roads 
and trails); (D) oil industry (grey = oil exploration lines, light grey = pipelines); 
(E) oil wells (black dots); (F) sheep grazing impact (light grey = low, grey =
medium, black = high) (modified from Pedrana et al., 2011); (G) main 
ecological areas (light grey = dry steppe, grey = humid steppe, medium grey =
shrub-lands, dark grey = sub-Andean grasslands, black = forests and alpine 
vegetation) (modified from Oliva et al., 2004); (H) distribution of Nothofagus 
forests; and (i) protected areas (grey = provincial reserves, black = na-
tional parks). 
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Rodríguez, & Travaini, 2011). 
Mapping the HFI requires a series of steps: (A) identification of the 

variables, (B) application of impact scores, and (C) combination of the 
different variables in a single map. For the first step (A), we constructed 
a database with variables related to human impact as proxies for HFI, 
both direct (e.g. infrastructure) and indirect (e.g. livestock) at landscape 
level (Appendix A in Supplementary Material). The landscape impact 
variables (LIV) used in this study were: (i) human settlements (n = 4 
types) defined by size (Fig. 1B); (ii) accessibility (n = 3 types) including 
national and provincial routes, secondary roads, and trails (Fig. 1C); (iii) 
oil industry (n = 3 types) including oil exploration lines, pipelines, and 
wells (Fig. 1D and E); and (iv) sheep grazing, representing the potential 
sheep density in open areas (grasslands and shrublands) (Fig. 1F). This 
database was constructed using data from the terrestrial information 
system of Santa Cruz (SIT-Santa Cruz Argentina, http://www.sitsantacr 
uz.gob.ar), the national energy inventory (http://datos.minem.gob.ar), 
and sheep density models for the province (Pedrana et al., 2011). 

For the next steps, we performed analyses in a geographical infor-
mation system (GIS), to develop maps for each LIV (n = 11). For the 
second step (B), we need to determine the impact scores from the 
combination of variables making up the HFI. First, we defined the 
maximum distance (km) at which each variable was estimated to affect 
the wilderness character of the land cover (Appendix A in Supplemen-
tary Material). To determine this distance, we calculated the mean 
maximum distance from human settlements at which land cover 
disturbance can be detected using satellite images (pixels of 1–5 m 
resolution, working in Google Earth platform). This impact distance was 
defined as two times the average impact distance detected for each 
settlement category (24.0 km for capital city, 7.2 km for other cities, 2.2 
km for small towns, and 2 km for ranches). For roads, we defined impact 
distance according to their size and intensity of use, as follows: 2 km for 
national routes, 1 km for provincial routes, and 0.5 km for secondary 
roads and trails. These impact distances were mainly based on the po-
tential habitat degradation (e.g. logging, non-timber products, and 
mineral extraction), exotic species invasion, contamination, hunting or 
poaching (Bischof, Steyaert, & Kindberg, 2017; Bullock et al., 2018; 
Lhoest et al., 2020; Quiroga, Noss, Paviolo, Boaglio, & Di Bitetti, 2016; 
Torres, Jaeger, & Alonso, 2016). The impact distance for oil exploration 
and pipelines was defined as 0.5 km, considered the size of the infra-
structure required for the industry (Entre Nacional Regulador del Gas 
(ENARGAS), 2016; Dabros, Hammon, Pinzon, Pinno, & Langor, 2017), 
as well as the maximum influence distance defined previously for other 
areas in the world (Pattison, Quinn, Dale, & Catterall, 2016). The oil 
wells influence was also defined as 0.5 km, considering the local impact 
of the facilities (1 ha) and road connectivity (Dabros et al., 2017; Datta 
et al., 2019; Fuda, Ryan, Cohen, Hartter, & Frair, 2018). Secondarily, we 
calculated the impact area of each LIV in the GIS using ArcMap 10.0 
software (ESRI, 2011) and Euclidian distance tool, and final grids were 
rasterized at 90 × 90 m resolution using the nearest neighbour resam-
pling technique. Then, for each LIV we re-scaled the grids by a logistic 
decreasing function through the defined impact distances, e.g. the 
impact decreased with distance a and had zero influence at the defined 
maximum distance. The model employed an intercept percent (Y) that 
defined the decreasing slope. We used Y = 98 for human settlements, 
where higher values decreased slower than lower values; and Y = 80 for 
the other LIVs, where higher and lower values equally decreased. 
Human population, accessibility, pipelines, wells and other oil facilities 
were assigned values of impact from 1 (core) to 0 (the maximum impact 
distance), but oil exploration lines were assigned values of impact from 
0 to 0.5 due to potential vegetation recovery (Dabros et al., 2017; Fuda 
et al., 2018). Finally, we wanted to include a non-traditional variable, 
sheep grazing impact, and we did so using: (i) the relative probability 
presence of sheep in the landscape (Pedrana et al., 2011), and (ii) the 
focal statistic tool in ArcMap 10.0 software. The value for each output 
cell was a weighted average function of the values of all the input cells, 
and the specified neighborhood around each pixel location. Then, as 

described before, we re-scaled the map by the logistic increasing func-
tion tool with Y = 80 (higher and lower values decreased equally), and 
then used a mask to remove sheep grazing impact inside protected areas 
and natural forests, because sheep are restricted to open areas. The 
values of final sheep grazing impact map varied from 0.3 (maximum 
density) to 0, since management is based on low-intensity grazing 
(Oñatibia & Aguiar, 2016; Pedrana et al., 2011) which was expected to 
produce a low impact over the natural ecosystems (density varied from 
0.2 to 1.6 ewe equivalent.ha− 1) (Peri, Lencinas, Martínez Pastur, 
Wardell-Johnson, & Lasagno, 2013). 

For the last stage (C), the eleven LIV maps were integrated into a 
single GIS project with the same projection and a resolution of 90 × 90 
m. The maximum values for each pixel was extracted for LIV maps using 
the cell statistics tool in ArcMap 10.0 (ESRI, 2011). The final map of 
human footprint index (HFI) for the entire Santa Cruz province varied 
from 0 (without impact) to 1 (maximum impact). 

The HFI was analyzed across the landscape through one-way 
ANOVAs and Tukey post-hoc test. We using a hexagonal binning pro-
cess to extract the HFI data from the final map, considering two land-
scape types: (i) ecological areas (Oliva, González, & Ruial, 2004) using a 
hexagons of 250,000 ha (Fig. 1G and Appendix B in Supplementary 
Material), and (ii) the influence of the forest landscape matrix (open-
lands and forest types) (CIEFAP-MAyDS (Centro de Investigación y 
Extensión Forestal Andino Patagónico, Ministerio de Ambiente y 
Desarrollo Sustentable), 2016) (Fig. 1H) using hexagons of 5000 ha. The 
hexagon sizes were decided according to the studied area (see Appen-
dixes B and D in Supplementary Material). For the ecological areas we 
analyzed five categories (forest and alpine vegetation, sub-Andean 
grasslands, dry steppe, shrub-lands and humid steppe), and hexagons 
were classified according to the highest st pixel values for each category 
using the cell statistics tool in ArcMap 10.0. For the forest landscape 
matrix we conducted three different analyses: (i) a first analysis 
considering three groups of variables including grasslands (G) (grass-
lands >70 %), a mix of grasslands and natural forests (GF) (forest cover 
between 30 % and 50 %), and natural forests (F) (forest cover >50 %); 
(ii) a second analysis considering four treatments including grasslands 
and natural forested areas >80 % discarding those hexagon with less 
forest cover, where treatments included pure and mixed forests: G NA 
(grasslands and Nothofagus antarctica forests), G NP (grasslands and 
N. pumilio forests), G NP-MIX (grasslands and mixed forests of N. pumilio 
and evergreen species), and G NA-NP (grasslands, N. antarctica and 
N. pumilio forests); and (iii) a third analysis with the same forest cate-
gories as in (ii), but where we excluded grasslands: NA, NP, NP-MIX, and 
NA-NP (Appendix C and D in Supplementary Material). We also 
analyzed different degrees of HFI (<0.3, 0.2, 0.1 and 0.05) to identify 
core areas with more than 1000 and 10,000 ha, We included: (i) the five 
categories of ecological areas and the protected area network (national 
parks and provincial reserves) (Fig. 1I), and (ii) the three main forest 
types presented in the province (Fig. 1H). We also categorized forested 
core area according its potential biodiversity (for concepts and meth-
odologies see Rosas, Peri, Lencinas et al., 2019). Finally, for each 
ANOVA, we analysed the autocorrelation across the landscape using the 
spatial pattern analysis tool in ArcMap 10.0 software (ESRI, 2011), 
calculating Moran’s Index value (M) (+1.0 indicates clustering while 
-1.0 indicates dispersion) and a z-score which defines the statistical 
significance. The null hypothesis for these analyses states that there is no 
spatial clustering of the values (Bailey & Gatrell, 1995). 

3. Results 

The HFI showed the human influence on different landscapes of 
Santa Cruz province (Fig. 2), where the highest impact values (values up 
to 0.50) were located close to the capital city and around main national 
routes. In the northern areas of Santa Cruz province, oil industry 
generated a large impact over the landscape (Fig. 1D) (values up to 0.45 
close to Cerro Dragón), while intermediate values due to sheep grazing 
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(mean values close to 0.3) were located mainly in the south, repre-
senting the most important economic activities in the province (Fig. 1E). 
Finally, the lowest HFI values (near 0.01) were located in the less pro-
ductive lands of the province (central arid areas) and the west (humid 
areas near the Andean mountains). The existing infrastructure (routes, 
trails and ranch facilities) increased the accessibility to remote areas and 
increased the fragmentation of the landscape. 

HFI significantly differed across the landscape (F = 31.50, Table 1), 
being lower (0.07− 0.11) in areas close to the Andes mountains (forest 
and alpine vegetation, and sub-Andean grasslands), and higher 
(0.38− 0.40) at southern areas (shrub-lands and humid steppe) close to 
the capital city. As was expected, ecological areas exhibited significant 
spatial autocorrelation (Appendix B in Supplementary Material) with M 
= 0.508 (z-score = 8.83, p < 0.001) that indicated clustering in the 
extracted hexagons. The HFI also differed according to the forest type 
and native forest landscapes (Table 2). The landscapes with more forests 
(>50 % forest cover) presented significantly greater HFI values (0.18) 
than those with lower forest cover (0.11) (F = 6.16). The landscapes that 
combine the presence of forests and grasslands also presented spatial 
autocorrelation (Appendix DA in Supplementary Material) with M =
0.437 (z-score = 13.48, p < 0.001) that indicated clustering in the 
extracted hexagons. Among the forest landscapes, hexagons that 
combine grasslands and Nothofagus antarctica forests presented higher 

HFI values (0.18 and 0.34 for G + NA-NP and G + NA, respectively) than 
those without this tree species (0.04 for G + NP-MIX and G + NP) (F =
17.43). In this analysis spatial autocorrelation was lower with M =
0.152 (z-score = 2.23, p = 0.025) but still indicated clustering in the 
extracted hexagons. Finally, N. pumilio and evergreen species showed 
lower HFI values (<0.01− 0.06) compared to forest types growing close 
to the ecotone with the steppe (pure N. antarctica forests and their as-
sociations with N. pumilio forests) that presented higher HFI values 
(0.23− 0.24) (F = 13.24). The main forest types did not exhibit show 
spatial autocorrelation (Appendix DC in Supplementary Material) with 
M = − 0.026 (z-score = − 0.17, p = 0.857) indicating a random distri-
bution in the extracted hexagons. Spatial autocorrelation analyses 
showed that some treatments in the ANOVAs are not totally independent 
and can be influenced by the closeness of the replications. 

Fig. 2. Map of Human Footprint Index (HFI) of Santa Cruz province (Argentina), where darker color indicates higher values of human impact. The left map depicts 
90m × 90m resolution, while the right map shows the average HFI for 250 thousand ha hexagons obtained through the hexagonal binning methodology. 

Table 1 
Results from ANOVA of difference in Human Footprint Index (HFI) 
among the main ecological areas of Santa Cruz province (Argentina). 
Different letters denote significant differences among levels.  

Ecological areas HFI 

Forest and alpine vegetation 0.07 a 
Sub-Andean grasslands 0.11 a 
Dry steppe 0.23 b 
Shrub-lands 0.38 c 
Humid steppe 0.40 c 
F(p) 31.50 (<0.001) 

F = Fisher test, (p) = probability by Tukey test at 0.05. 

Table 2 
ANOVAs of Human Footprint Index (HFI) of Santa Cruz province (Argentina) 
among different forested landscapes: (i) grasslands and forests, (ii) grasslands 
and forests types, and (iii) forest types, where: G = grasslands, F = forests, NA =
Nothofagus antarctica, NP = N. pumilio, and MIX = mixed evergreen forests.  

Category Treatments HFI 

(i) Grasslands and forests G 0.11 a  
G + F 0.11 a  
F 0.18 b  
F(p) 6.16 (0.002) 

(ii) Forested landscape types G + NP-MIX 0.04 a  
G + NP 0.04 a  
G + NA-NP 0.18 b  
G + NA 0.34 c  
F(p) 17.43(<0.001) 

(iii) Forest types NP-MIX <0.01 a  
NP 0.06 a  
NA 0.23 b  
NA-NP 0.24 b  
F(p) 13.24 (<0.001) 

F = Fisher test, (p) = probability by Tukey test at 0.05. 
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Autocorrelation can result in more apparently significant results than 
the data justify (Dale & Fortin, 2002). However, these effects decrease 
when the sample size increases, and in our analyses we employed the full 
area of each level of the considered treatments. 

The HFI was used to characterize the current protected area network 
in Santa Cruz (Appendix E in Supplementary Material). HFI greatly 
differed among the different National Parks and Provincial Reserves, 
mainly related to the previous history, uses, and location in the land-
scape (Fig. 1I). For example, HFI of national parks varied between 0.02 
and 0.19. The highest index corresponded to the newest national park (e. 
g. Monte León) created in 2004 which was previously used for sheep 
production. Provincial reserve HFI values varied between <0.01 and 
0.79, corresponding to remote areas of Los Andes mountains (e.g. San 
Lorenzo) and to urban reserves (e.g. Humedal Caleta Olivia), respec-
tively. Beside this, protected areas with native forests had lower HFI 
values than those located in shrublands and grasslands (for national 
parks native forest HFI values were 0.03− 0.05 and shrubland and 
grassland HFI values were 0.10− 0.19, and for provincial reserves 
<0.01− 0.37 in forests compared to 0.03− 0.79 in open vegetation). 

The current natural reserve network represents 7.0 % of the total 
provincial area and protects different ecological areas unequally. Pro-
tected status ranges from <0.1 % of total Sub Andean area to 74.5 % for 
forests and alpine vegetation area (Table 3). At the province scale, 
protected areas as a whole presented a lower HFI (0.10) compared to 
reserve areas belonging to Dry steppe ecosystems (0.24) and shrublands 
(0.19), which cover most of Santa Cruz extent. The degree of protection 
and HFI values (outside and inside the protected areas) of the natural 
forests were closely related to the ecosystem services that they provide 
(timber values or silvopastoral uses), e.g. N. antarctica forests with sil-
vopastoral values were less protected (14.2 %) and more highly 
impacted (HFI of 0.23o on average and 0.27 in the protected areas) than 
other forest types (N. pumilio and mixed evergreen forests with timber 
values) which were protected to a greater extent (69.8%–79.1%) and 
less impacted (HFI 0.06− 0.09 on average and 0.05− 0.08 in the pro-
tected areas). The conservation of N. pumilio and mixed evergreen for-
ests focused on the protection of the areas with greater potential 
biodiversity (46.6–54.6 % of the highest potential compared to 
18.4–20.6 % of the lowest potential are included in the natural reserve 

network), but these areas had greater HFI values due to the past uses 
prior to their designation as parks and reserves (low potential biodi-
versity areas exhibited lower HFI, for both forest types) (Table 3). In 
contrast, for N. antarctica forests, the lowest potential biodiversity sites 
were more protected (53.2 %) due to the trade-offs with ranching ac-
tivities. Beside this, the potential biodiversity qualities of the forests 
presented similar HFI (0.21− 0.23 on average and 0.26− 0.31 in the 
protected area network). 

Considering these strengths and trade-offs of the current protected 
area network, we used the HFI and the fragmentation that produce this 
index (Appendixs E and F in Supplementary Material) in the landscape 
to identify potential conservation areas by patch size for the natural 
forests (e.g. potential biodiversity). We focused our analysis on polygons 
of >1000 and >10,000 ha with different HFI thresholds (less than 0.05 
to 0.3) (Table 4). The most restrictive scenario identified 115 polygons 
with <0.05 HFI mainly located in the dry steppe (n = 100), and just one 
in the most threatened ecological areas (e.g. humid steppe) or forest 
types (e.g. N. antarctica located near to Monte Zeballos with low values 
of potential biodiversity). When HFI index was combined with other 
variables (e.g. potential biodiversity), the identification of potential 
areas become more restrictive. For mixed evergreen forests we identified 
just one polygon of 1300 ha with <0.05 HFI and medium potential 
biodiversity value. For N. pumilio forests we found major availability of 
different sizes and potential biodiversity qualities, which decreased 
when polygon size became larger. Finally, as previously mentioned 
previously, we identified large polygons (>10,000 ha) of low biodiver-
sity value in N. antarctica forests. However, if we consider smaller 
polygons (>1000 ha) we found more forests with higher potential 
biodiversity values across the different analysed HFI indexes. 

4. Discussion 

Reduction and fragmentation of ecosystems due to human activities 
is the main cause of biodiversity and ecosystem service losses (Jacobson 
et al., 2019), with great spatial and temporal variation (Venter et al., 
2016). Human activities are continuously expanding at a global scale, 
affecting the remaining natural ecosystems in remote areas, such as 
Southern Patagonia. Extensive livestock production, forest harvest, and 
tourism are advancing in formerly undisturbed areas, but we lack of 
information on the spatial and intensity effect of these impacts on eco-
systems to support conservation decision making (Inostroza et al., 
2016). One alternative to solve this problem is to analyze spatially the 
human impact at the landscape level (Sanderson et al., 2002; Venter 
et al., 2016). 

We developed a HFI map for Santa Cruz province that improved on 
the one previously developed based on worldwide data (e.g. Sanderson 
et al., 2002). Our HFI map at regional scale is useful for many purposes 
(e.g. land-use planning or developing conservation strategies at land-
scape level), as has been proposed for other regions, e.g. for water 
retention and biodiversity conservation values on the Tibetan Plateau 
(Li et al., 2018), and habitat connectivity in Mexico (Correa Ayram et al., 
2017). This is consistent with Li et al. (2018) and Guzmán Colón, 
Pidgeon, Martinuzzi, and Radeloff (2020)) who stated that the global 
scale datasets are not well suited for regional analyses because most of 
the proposals at larger scales are based on remote sensing data. How-
ever, at local or regional scales itis is possible to include more diverse 
and specific data related to direct and indirect human impacts (see 
Appendix A in Supplementary Material). The selection of variables is a 
critical factor in development of the HFI (Anderson & Mammides, 2020; 
Inostroza et al., 2016; Li et al., 2018; Martin, Green, & Balmford, 2019; 
Venter et al., 2016). We suggest that the inclusion of different local 
impacts had been successful, e.g. while sheep grazing was the most 
important driver of the HFI at landscape level in southern Patagonia 
(Pedrana et al., 2011; Peri et al., 2013), drivers in other regions were 
poaching, illegal harvesting or human settlements (e.g. Fiori & Zalba, 
2003; Hulme, 2018; Anderson & Mammides, 2020). Grazing density was 

Table 3 
Human Footprint Index (HFI) and protected areas network considering ecolog-
ical areas, forest types (NP = Nothofagus pumilio, NA = N. antarctica, and MIX =
mixed evergreen forests) and potential biodiversity values (high, medium and 
low) of the forested landscape areas in Santa Cruz province, Argentina (based on 
Rosas, Peri, Lencinas et al., 2019).  

Variable Protected 
(%) 

HFI HFI within 
protected areas 

Total 7.00 0.24 0.10 

Ecological areas 

Dry steppe 2.48 0.23 0.24 
Humid steppe 0.23 0.40 0.43 
Shrub-lands 2.26 0.38 0.19 
Sub-Andean 
grasslands 

0.02 0.11 0.15 

Forest and 
alpine 
vegetation 

74.45 0.07 0.03 

Forests MIX 79.10 0.09 0.08  
NP 69.76 0.06 0.05  
NA 14.25 0.23 0.27 

Potential 
Biodiversity 

MIX High 54.66 0.12 0.11   

Medium 24.77 0.14 0.16   
Low 20.57 0.04 0.04  

NP High 46.66 0.07 0.06   
Medium 34.92 0.05 0.04   
Low 18.42 0.05 0.05  

NA High 18.78 0.23 0.26   
Medium 28.03 0.21 0.31   
Low 53.18 0.21 0.28  
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previously proposed as a variable in the HFI estimation for Li et al. 
(2018), being the major anthropogenic disturbance at regional level in 
the Tibetan Plateau. Another variable of significant importance for 
Southern Patagonia was oil exploration and exploitation, which greatly 
influenced biodiversity. Fiori and Zalba (2003) determined that vege-
tation recovery on seismic lines is extremely poor, and acts as a barrier 
for many native species, while providing access points for poaching and 
for expansion of exotic invasive plants. 

Anderson and Mammides (2020) found a greater overall increase in 
HFI in tropical than temperate regions. In our study area, located in a 
temperate-cold region, the higher localized impacts (>0.5 of HFI) were 
related to: (i) proximity to big cities, (ii) major infrastructure (e.g. na-
tional roads) that provide accessibility, and (iii) extractive industries (e. 
g. oil wells). This concurs with findings in Central Africa when 
comparing settlement proximity and management impact with conser-
vation of tropical forests (Lhoest et al., 2020), oil extraction and 
mammal conservation in Uganda (Fuda et al., 2018), road network in-
fluence in China (Liu et al., 2008) and northern Argentina (Martinuzzi 
et al., 2018), and rural settlements and biodiversity in Argentina 
(Macchi & Grau, 2012). Generally, the HFI impacts were positively 
related to ecosystem productivity (e.g. net primary productivity) (e.g. 
see Rosas et al., 2018, 2019a; Peri, Rosas et al., 2019) where most sheep 
ranching and forestry activities were conducted (e.g. see Peri et al., 
2013), and most infrastructure has been established. The inclusion of 
sheep grazing intensity allowed better representation of this impact at 
landscape level than presence/absence would have. Thus, the lowest HFI 
values (<0.1 of HFI) were occurred in marginal ecosystems with low 
productivity (e.g. dry steppe grasslands) or in rough terrain or mountain 
regions (e.g. naturally inaccessible forests in the upper basins). As has 
been found in other studies, human impact was related to human den-
sity, economic profit potential and accessibility (Buckley, Zhou, & 
Zhong, 2016; Inostroza et al., 2016; Venter et al., 2016). 

A similar trend was observed for different forest types, where HFI 
was positively related to the economic potential of the forest species. For 
example, N. antarctica exhibited greater impact (high HFI value) because 
it is commonly used for silvopastoral and sheep grazing regardless of site 
quality or forest productivity. Sheep production is the most economi-
cally profitable and most traditional livelihood in Southern Patagonia 
(Peri et al., 2013). Timber harvests focused on N. pumilio forests, which 
in consequence had greater HFI values than mixed evergreen forests that 

traditionally were excluded from forest extraction activities due to low 
timber quality and accessibility (Peri, Monelos et al., 2019). The land-
scape diversity where these forest types occurred also influenced HFI 
values, in that human impact was higher where the landscape was more 
diverse. Diverse landscapes are more productive and can support more 
human economic activities, and thus we had expected a greater human 
impact compared to more simple natural landscapes (e.g. this consid-
eration was not true in urban and peri-urban landscapes). However, 
little research has been published on this topic. The exact consequences 
of human influence in any given location are complicated, however, and 
depend on the history of the place, the types of the current influence, 
and the parts of nature that we are concerned with (Redford & Richter, 
1999; Sanderson et al., 2002). We believe that this effect was due to 
higher human activities in diverse landscapes (e.g. uses with an array of 
economic oportunities including forest harvesting, ranching, tourism, 
recreation, etc.) (Martínez Pastur et al., 2016). 

The HFI was proposed as a tool to identify the wilderness status of a 
particular area (Anderson & Mammides, 2020; Sanderson et al., 2002) 
for identifying potential conservation locations. This is based on the 
concept that human uses decrease the conservation values of natural 
ecosystems (e.g. Venter et al., 2016; Di Marco et al., 2018; Li et al., 
2018). For this, wildest places offer the greatest opportunities to 
conserve the full range of nature that still exists (Sanderson et al., 2002). 
The HFI has been used for different purposes for decision making (e.g. to 
identify factors influencing mammal and reptile mortality, water 
retention, to characterize natural parks, improve existing land-use plans, 
or define potential species ranges) (Buckley et al., 2016; Li et al., 2018; 
Photopoulou, 2018; Martinuzzi et al., 2018; Hill, De Vault, & Belant, 
2019; Hill, De Vault, Wang, & Belant, 2020). In this paper, we used the 
HFI to characterize the protected area network (National Parks and 
Provincial Reserves) of the study region. While Anderson and Mam-
mides (2020) found an increase of HFI outside protected areas, Buckley 
et al. (2016) found that less populated areas (located in extreme climate 
areas) were associated with low HFI. In our study area, protected areas 
located near cities had the highest HFI values (e.g. urban reserves), as 
did newly created reserves (e.g. Monte Leon National Park) which had 
other purposes in the past (e.g. ranching). However, the potential of this 
tool is not only the ability to characterize the current network, but also 
identification of new areas for conservation. Furthermore, we propose 
that intersecting HFI with indices of landscape fragmentation based on 

Table 4 
Areas with <0.3 Human Footprint Index (HFI) classified by its size (>1000 ha and >10,000 ha) in the total study area, the main ecological areas, the main forest types 
(NP = Nothofagus pumilio, NA = N. antarctica, MIX = mixed evergreen forests), and the potential biodiversity value (high, medium and low) (Rosas, Peri, Lencinas et al., 
2019) of the forested landscape areas in Santa Cruz province, Argentina. Value indicated the number of polygons, and, in parentheses the average area in thousands of 
ha.  

Variable 

Potential natural protected areas networking  

HFI for 1000 ha polygons HFI for 10,000 ha polygons 

<0.3 <0.2 <0.1 <0.05 <0.3 <0.2 <0.1 <0.05 

Total 1,765 (163.0) 1,092 (144.5) 758 (124.0) 488 (10.0) 281 (389.1) 205 (320.0) 156 (251.3) 115 (480.2) 

Ecological areas 

Dry steppe 1,246 (32.0) 921 (25.0) 647 (18.0) 419 (12.0) 243 (108.0) 176 (88.0) 134 (59.5) 100 (39.0) 
Humid steppe 181 (5.0) 3 (2.4) 0 0 3 (20.4) 0 0 0 
Shrub-lands 192 (23.3) 32 (21.1) 10 (15.3) 6 (5.4) 10 (90.4) 5 (74.0) 2 (49.1) 1 (16.4) 
Sub-Andean grasslands 99 (57.0) 94 (52.0) 65 (48.0) 31 (40.4) 21 (170.3) 20 (158.4) 16 (142.6) 10 (118.0) 
Forest and alpine 
vegetation 

47 (46.0) 42 (45.0) 36 (43.0) 32 (41.0) 0 0 0 4 (307.0) 

Forests 
MIX 0 0 0 1 (1.3) 0 0 0 0 
NP 34 (91.1) 31 (89.5) 26 (88.0) 22 (85.0) 0 0 0 9 (201.0) 
NA 46 (35.0) 31 (30.2) 22 (21.0) 21 (18.4) 4 (409.1) 3 (378.0) 1 (343.0) 1 (343.0) 

Potential Biodiversity 

MIX 
High 0 0 0 0 0 0 0 0 
Medium 0 0 0 1 (1.3) 0 0 0 0 
Low 0 0 0 0 0 0 0 0 

NP 
High 10 (37.1) 8 (36.0) 8 (36.0) 6 (34.0) 0 0 0 1 (176.3) 
Medium 12 (54.0) 11 (52.0) 11 (52.0) 9 (48.1) 0 0 0 4 (104.0) 
Low 12 (178.0) 12 (178.0) 7 (176.0) 7 (176.0) 0 0 0 4 (304.1) 

NA 
High 13 (15.0) 10 (3.1) 9 (2.1) 9 (2,046) 1 (31.1) 0 0 0 
Medium 6 (5.0) 3 (2.0) 3 (2.0) 3 (2.0) 0 0 0 0 
Low 27 (56.0) 18 (53.1) 10 (43.0) 9 (40.3) 3 (378.0) 3 (378.0) 1 (343.0) 1 (343.0)  
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the concept of the last of the wild (Sanderson et al., 2002), like the size of 
the intact patches, and the representativeness of the ecosystems in the 
natural reserve network, leads to important insights about conservation 
potential. Using these three variables, we identified patches with high 
conservation potential values that depend on forest types according to 
their potential economic values and historical uses (Peri et al., 2013, 
2019b, 2019a). For example, while use of the small patch threshold (e.g. 
> 1000 ha) was more effective in detecting potential areas in more 
impacted forest types, analysis of large patches (e.g. > 10,000 ha) was 
more effective in detecting potential areas in more abundant and less 
impacted forest types. 

Finally, it is important to highlight that the HFI is highly compatible 
with other land-use management decision making tools that actually 
were implemented in Patagonia Argentina, e.g. ordination processes for 
the sustainable management and conservation of the native forests (see 
Martínez Pastur et al., 2020). This simple methodology can be useful for 
those responsible of planning that are land use planners looking for a 
complement to existing tools rather than requiring a radical rethink of 
how conservation planning or management is approached. 

5. Conclusions 

Worldwide landscapes are being changed substantially due to human 
impacts, and we need ways to understand and measure how human 
pressures evolve in the framework of different management and con-
servation planning. The methodology presented here can help provide 
similar spatial assessments in other remote areas by downscaling global 
assessments and improve policy measures for the conservation of the last 
remaining undisturbed natural areas. HFI is a powerful tool that in 
combination with other tools (e.g. potential biodiversity maps) can 
provide relevant information to those who make national or regional 
policy decisions. The development of HFI maps allows simplifying 
different sources of information about human impact, generating a 
powerful tool for decision-making. The HFI map developed in this study 
can be used to: (i) support assessment of ecological and biogeographic 
changes in species, and in different ecosystem models to assess human- 
caused ecosystem services and biodiversity losses; (ii) identify potential 
trade-offs between economic activities (e.g. livestock, harvesting) and 
conservation; and (iii) understand the potential risks of different infra-
structure development proposals on natural ecosystems. The HFI also 
can contribute to define new management planning at landscape level, 
or as an indicator to determine the effectiveness of conservation projects 
on time. However, inclusion of more human stressors in the HFI will 
improve the index and better reflect the cumulative effects of the human 
impacts in natural ecosystems. 

The HFI represents an opportunity to detect and monitor human 
influence at fine spatial scales, which may have heretofore remained 
unnoticed. Because such alterations are becoming more frequent in 
remote regions as Southern Patagonia, the assessment approaches pre-
sented here provide important information on human-environment in-
teractions to support land-use and nature conservation policy design. In 
addition, fine-scale analyses and different types of economic activities 
are considered to support policies that can protect the remaining natural 
areas from human encroachment. Collectively, these findings highlight 
shifts in anthropogenic disturbance sources as the human footprint 
changes, and will require more specific studies for the different variables 
and forest-type specific conservation strategies as landscapes become 
increasingly disturbed by anthropogenic activities. Government must 
include the concept of intact wild areas in their prioritization schemes, 
to increase the effectiveness of management (e.g. oil, grazing, forestry) 
and conservation strategies, since the drivers of human pressures extend 
to most territories, including those relatively remote inhabited areas 
such as Southern Patagonia. Looking forward, it will be increasingly 
necessary to accommodate the development of human economic activ-
ities inplanning of ecologically important landscapes, and the HFI pro-
vides one easy-to-implement option for accomplishing this. 
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100. Buenos Aires, Argentina. 

ESRI. (2011). ArcGIS desktop: Release 10. Redlands, USA: Environmental Systems 
Research Institute Inc.  

Fiori, S. M., & Zalba, S. M. (2003). Potential impacts of petroleum exploration and 
exploitation on biodiversity in a Patagonian Nature Reserve, Argentina. Biodiversity 
and Conservation, 12, 1261–1270. 

Fuda, R. K., Ryan, S. J., Cohen, J. B., Hartter, J., & Frair, J. L. (2018). Assessing the 
impacts of oil exploration and restoration on mammals in Murchison Falls 
conservation area, Uganda. African Journal of Ecology, 56(4), 804–817. 

Guzmán Colón, D. K., Pidgeon, A. M., Martinuzzi, S., & Radeloff, V. C. (2020). 
Conservation planning for island nations: Using a network analysis model to find 
novel opportunities for landscape connectivity in Puerto Rico. Global Ecology and 
Conservation, Article e01075 (in press). 

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., 
… Townshend, J. R. (2013). High-resolution global maps of 21st-century forest cover 
change. Science, 342, 850–853. 

Y.M. Rosas et al.                                                                                                                                                                                                                                

https://doi.org/10.1016/j.jnc.2020.125946
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0005
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0005
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0010
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0010
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0015
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0015
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0020
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0020
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0025
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0025
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0030
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0030
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0030
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0035
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0035
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0035
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0040
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0040
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0040
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0040
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0045
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0045
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0050
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0050
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0050
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0050
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0055
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0055
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0055
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0060
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0060
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0060
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0065
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0065
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0070
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0070
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0070
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0070
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0075
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0075
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0075
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0080
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0080
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0085
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0085
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0085
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0090
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0090
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0095
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0095
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0095
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0100
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0100
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0100
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0105
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0105
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0105
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0105
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0110
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0110
http://refhub.elsevier.com/S1617-1381(20)30192-8/sbref0110


Journal for Nature Conservation 59 (2021) 125946

8

Hill, J. E., De Vault, T., & Belant, J. (2019). Impact of the human footprint on 
anthropogenic mortality of North American reptiles. Acta Oecologica, 101, Article 
e103486. 

Hill, J. E., De Vault, T., Wang, G., & Belant, J. (2020). Anthropogenic mortality in 
mammals increases with human footprint. Frontiers in Ecology and the Environment, 
18(1), 13–18. 

Hulme, P. E. (2018). Protected land: Threat of invasive species. Science, 361, 561–562. 
Inostroza, L., Zasada, I., & König, H. J. (2016). Last of the wild revisited: Assessing spatial 

patterns of human impact on landscapes in Southern Patagonia, Chile. Regional 
Environmental Change, 16(7), 2071–2085. 

Jacobson, A. P., Riggio, J., Tait, A. M., & Baillie, J. E. (2019). Global areas of low human 
impact (`Low Impact Areas’) and fragmentation of the natural world. Scientific 
Reports, 9, Article e14179. 

Lhoest, S., Fonteyn, D., Daïnou, K., Delbeke, L., Doucet, J. L., Dufrêne, M., … Fayolle, A. 
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