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The use of high-throughput sequencing (HTS) for virus diagnostics, as well as the
importance of this technology as a valuable tool for discovery of novel viruses has been
extensively investigated. In this review, we consider the application of HTS approaches
to uncover novel plant viruses with a focus on the negative-sense, single-stranded
RNA virosphere. Plant viruses with negative-sense and ambisense RNA (NSR) genomes
belong to several taxonomic families, including Rhabdoviridae, Aspiviridae, Fimoviridae,
Tospoviridae, and Phenuiviridae. They include both emergent pathogens that infect a
wide range of plant species, and potential endophytes which appear not to induce
any visible symptoms. As a consequence of biased sampling based on a narrow
focus on crops with disease symptoms, the number of NSR plant viruses identified
so far represents only a fraction of this type of viruses present in the virosphere.
Detection and molecular characterization of NSR viruses has often been challenging,
but the widespread implementation of HTS has facilitated not only the identification
but also the characterization of the genomic sequences of at least 70 NSR plant
viruses in the last 7 years. Moreover, continuing advances in HTS technologies and
bioinformatic pipelines, concomitant with a significant cost reduction has led to its
use as a routine method of choice, supporting the foundations of a diverse array of
novel applications such as quarantine analysis of traded plant materials and genetic
resources, virus detection in insect vectors, analysis of virus communities in individual
plants, and assessment of virus evolution through ecogenomics, among others. The
insights from these advancements are shedding new light on the extensive diversity of
NSR plant viruses and their complex evolution, and provide an essential framework for
improved taxonomic classification of plant NSR viruses as part of the realm Riboviria.
Thus, HTS-based methods for virus discovery, our ‘new eyes,’ are unraveling in real
time the richness and magnitude of the plant RNA virosphere.
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INTRODUCTION

Viruses are the most numerous biological entities on Earth, but
the number of reported and formally described virus species,
the known virosphere, is exiguous. This underestimated global
virus landscape has led to a distorted view of virus diversity and
function. Some aspects of virus biology including their small
size, rapid rate of evolution, or lack of universally conserved
viral genetic markers are likely the major cause for the lack
of knowledge of most of the viruses present on our planet
(Koonin et al., 2015; Zhang et al., 2019). Thus, as we explore
the virosphere, it becomes evident that only a tiny proportion
(about 1% according to some estimates) has been characterized,
with a major bias against the identification of the most divergent
genomes (Zhang et al., 2018).

High-throughput sequencing (HTS) technology, also referred
to as next generation sequencing, has revolutionized the
nucleic acid characterization process since it allows the parallel
sequencing of millions of nucleotides in a short period
of time at a very high redundancy (depth of sequencing)
without any a priori knowledge. Thus, when combined with
specific bioinformatics tools, HTS provides a powerful, efficient
and economical alternative that has enabled not only the
untargeted detection of both known and unknown viruses
that inhabit a particular organism or environment but also
a rapid characterization of their genomes (Massart et al.,
2017; Villamor et al., 2019). Thus, the steady increase in the
adoption of HTS in the past decade has accelerated virus
discovery of both wild and cultivated plant species, which led
to the advancement of our knowledge about the diversity of
viruses in nature.

High-throughput sequencing is also widely used to advance
the molecular characterization not only of those viruses which
have a poorly characterized genome, but also of preserved
historic virus isolates which had been subjected to studies
of their biological properties some decades ago. For instance,
sterile stunt disease of maize, characterized by severe stunting
and top necrosis of susceptible maize genotypes, was first
reported in 1977 in Australia, but the genome of its etiological
agent, maize sterile stunt virus was only characterized by
HTS and recently reported (Dietzgen and Higgins, 2019).
Similarly, sowthistle yellow vein virus (SYVV) was recently
rediscovered and its genome characterized after a hiatus of over
30 years following pioneering virus and vector biology research
(Stenger et al., 2020).

In spite of the many advantages of HTS, there are some
limitations and constraints that should be considered
when using this platform for virus discovery. Given
the high sensitivity of HTS, this technology may detect
contaminant viral sequences or viruses that may not be
actually replicating in the sampled plant tissue where they
were found (Blawid et al., 2017). In this context it is worth
emphasizing the importance of traditional wet bench virology
experiments to complement viral HTS data where possible,
such as virus isolation and transmission experiments,
in situ virus particle detection by electron microscopy or
immunoassays, to name a few.

Most of the plant viruses described so far, whose nucleotide
sequences are available in public databases, were discovered in
exemplars of cultivated plant species that showed conspicuous
disease symptoms, limiting our view of viral diversity (Wren
et al., 2006). However, the steady increase in the last few years
of metagenomic studies to characterize the viromes of wild plant
species, many of which did not show any visible symptoms,
led to the identification of many new viruses. Moreover, several
recent reports provide evidence of viruses which appear to be
essentially cryptic, identified from cultivated plants (Bernardo
et al., 2018; Schoelz and Stewart, 2018; Susi et al., 2019; Ma et al.,
2020). Nevertheless, for most of the newly discovered viruses,
subsequent studies to characterize their biological properties,
such as symptoms in different hosts, and potential vectors,
among others, in both cultivated and wild plant species are
scarce, and likely will be neglected due to lack of economic
significance or unavailability of preserved samples. The huge
gap between virus discovery and biological characterization of
new viruses, is due to the latter requiring time-consuming
research efforts. Therefore, we are advancing into a scenario
where the classification of most novel viruses will be based
only on their genomic sequences which constitutes a paradigm
shift in their taxonomical classification (Simmonds et al., 2017;
Kuhn et al., 2019), thus representing a major challenge for
virologists and the International Committee on Taxonomy
of Viruses (ICTV).

Although many pipelines are available for plant virus
discovery through HTS, all share a common backbone
(Villamor et al., 2019). Various HTS technologies are available
commercially, but Illumina short read shotgun sequencing
platforms are the most popular choice and most widely
used for HTS of viruses because of their high throughput,
low error rate and high cost effectiveness among currently
available HTS platforms (Villamor et al., 2019). Four main
classes of nucleic acids have been targeted as templates for
HTS, (i) total plant RNA extracts, usually with a ribosomal
depletion step (ii) virion-associated nucleic acids (VANA)
extracted from purified viral particles, (iii) double-stranded
RNA (dsRNA), enriched through cellulose chromatography
or monoclonal antibody pull-down, and (iv) small interfering
RNAs (siRNAs) (Roossinck et al., 2015; Wu et al., 2015;
Blouin et al., 2016). These different strategies are characterized
by diverse caveats. For instance, VANA is inefficient in
detecting viruses that lack virions, or siRNA-based protocols
are not as reliable for complete genome assembly of novel
viruses. Sequencing of siRNAs and total RNA are the two
approaches most generically applicable to viruses with different
genome types and replication strategies, and can be relatively
easily integrated into workflows of diagnostic laboratories
(Pecman et al., 2017).

Recent technological advances have led to the appreciation
of exciting novel aspects of negative-sense and ambisense
RNA (NSR) viruses, as recently reviewed by German et al.
(2020). Plant NSR viruses are considered emerging viral
pathogens (German et al., 2020). In light of the growing
interest in these viruses, in this review we delve into the
application of HTS approaches to uncover the abundance and
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diversity of the negative-sense, single-stranded RNA virosphere
associated with plants.

HIGH-THROUGHPUT SEQUENCING TO
UNCOVER THE NEGATIVE-SENSE,
SINGLE-STRANDED RNA VIROSPHERE
OF PLANTS

Hundreds of plant viruses have been characterized by HTS
in the last few years (Blawid et al., 2017; Villamor et al.,
2019), and most of them have positive-sense RNA genomes.
On the other hand, RNA viruses with negative-sense and
ambisense genomes discovered through HTS represent only
a small fraction of the total number of viruses discovered,
thus representing a tiny fraction of the plant virosphere. For
example, the characterization of the virome of different Solanum
species resulted in the identification of viruses belonging to 20
different families, but only one was a NSR virus (Ma et al.,
2020). In addition, the characterization of a tomato virome
resulted in the identification of 22 viruses belonging to 12
genera, but only three genomes corresponded to NSR viruses
(Xu et al., 2017). Moreover, the characterization of a papaya
virome resulted in the identification of 52 viruses, but only
one was a NSR virus (Alcalá-Briseño et al., 2020). It is worth
mentioning that typically, virome studies based on HTS generate
a significant amount of sequence contigs that lack detectable
homology to both the sampled host and any microorganism.
It has been suggested that a fraction of these sequences may
correspond to viral ‘dark’ matter, which may imply that many
deeply divergent viruses, or viruses lacking common ancestry or
similarity with known virus families, remain to be discovered;
this may not happen until better frameworks are implemented
to identify viral sequences regardless of their sequence similarity
to known viruses (Obbard et al., 2020). Current virome analyses
usually rely on sequence similarity searches to identify virus-
like sequences through inferred homology. This approach limits
the identification of new viruses that can be discovered through
traditional empirical search algorithms such as BLAST using
identity thresholds of target sequences to genomes, genes,
proteins or protein motifs of known viruses (Obbard et al.,
2020). As a consequence, in contrast to the more straightforward
hypothesis that plant NSR viruses are relatively rare, it is plausible
that NSR virus sequences may have been overlooked due to
extreme divergence from known viruses, thus providing an
alternative reason why so few NSR viruses have been identified
when the viromes of different plant hosts are characterized.
Nevertheless, as novel bioinformatics tools are developed to
increase the sensitivity of similarity search algorithms and more
refined ab initio probabilistic methods are implemented, such
as hidden Markov models that incorporate position-specific
information into the alignment process of a group of highly
divergent, evolutionarily related sequences and use these profiles
to identify virus sequences (Skewes-Cox et al., 2014) or methods
that rely on support vector machines (Liao and Noble, 2003), the
identification of novel, more divergent viruses will likely become

possible. This may result in an increased number of identified
NSR viruses, which will allow us to deepen our understanding
about the evolution and diversity of NSR viruses. This is clearly
illustrated by the discovery of two NSR viruses associated with
apple rubbery wood disease. The initial attempt to determine by
NGS if any virus was associated with the disease was unsuccessful
(Jakovljevic et al., 2016). However, the NGS data was later
reanalyzed in depth using a bioinformatics approach focused on
viral conserved protein motifs that resulted in the identification
and genome assembly of two novel NSR viruses (Rott et al., 2018).

The use of HTS technologies has not only allowed the
identification and characterization of novel NSR viruses in several
plant hosts (Table 1), but has also enabled the completion of
genome sequences of NSR viruses for which biological properties
and only partial genome fragments were known (Table 2). The
two nucleic acid classes mainly targeted when using HTS to
sequence NSR viruses are total RNA and siRNAs (Tables 1, 2).
When Pecman et al. (2017) compared these approaches they
found that both can be used to detect and identify a wide
array of known plant viruses in the tested samples including
orthotospoviruses. However, on this occasion a putative novel
cytorhabdovirus genome could only be assembled de novo from
the sequencing data generated from total RNA and not from the
small RNA dataset, due to the low number of short reads in
the latter (Pecman et al., 2017), thus the choice of nucleic acid
types used in HTS may have an effect on the range of viruses
that can be identified. However, a few novel plant rhabdoviruses
including cytorhabdoviruses have been identified using small
RNA as sequencing template (Table 1).

Most plant NSR viruses are transmitted by arthropods in
a persistent-circulative and propagative manner, thus they are
adapted to infect both arthropod and plant cells. In fact, it has
been suggested that plant NSR viruses may have originated from
arthropod viruses that evolved to also infect plants (Whitfield
et al., 2018; Dolja et al., 2020). Therefore, another potential
source to discover novel plant-associated NSR viruses is the
characterization of arthropod vector viromes. For instance,
Li et al. (2015) performed deep transcriptome sequencing
of 70 arthropod species that resulted in the identification
of three novel cytorhabdoviruses (Wuhan insect viruses 4–
6) associated with the mealy plum aphid (Hyalopterus pruni).
Wuhan insect viruses 4–6 may be plant viruses based on
their clear phylogenetic relationship with plant rhabdoviruses
in the genus Cytorhabdovirus and that their genomes encode
a P3 protein that most resembles plant rhabdovirus cell-to-cell
movement proteins.

Since most NSR viruses replicate in both the plant host
and the arthropod vector, the true virus host origins cannot
be unambiguously discerned from the HTS data. Some of the
newly discovered NSR viruses are highly divergent which makes
it even more difficult to unequivocally determine if they are
plant or plant-associated viruses, and it will require a significant
amount of research to confirm their status, which is rarely carried
out. This is exemplified by the recently discovered coguviruses
and rubodviruses, where the host assignment based on their
phylogenetic relationships is only preliminary. Thus, further
biological studies will be required to determine if they are plant,

Frontiers in Microbiology | www.frontiersin.org 3 September 2020 | Volume 11 | Article 588427

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fm
icb-11-588427

Septem
ber14,2020

Tim
e:19:4

#
4

B
ejerm

an
etal.

P
lantN

egative-S
ense

R
N

A
V

irosphere

TABLE 1 | Novel NSR viruses discovered using HTS.

Virus family/genus Virus Type of target/sequencing technology References

Aspiviridae/Ophiovirus Blueberry mosaic associated ophiovirus Total nucleic acid/Illumina HiSeq Thekke-Veetil et al. (2014)

Phenuiviridae/Coguvirus Citrus concave gum-associated virus Small RNAs/Illumina HiSeq; total RNA/Illumina HiSeq Navarro et al. (2018a); Wright et al. (2018)

Phenuiviridae/Coguvirus Citrus virus A Small RNAs/Illumina Genome HiScan Navarro et al. (2018b)

Phenuiviridae/Coguvirus Watermelon crinkle leaf-associated virus 1 Small RNAs and total RNA/Illumina HiSeq Xin et al. (2017)

Phenuiviridae/Coguvirus Watermelon crinkle leaf-associated virus 2 Small RNAs and total RNA/Illumina HiSeq Xin et al. (2017)

Phenuiviridae/Coguvirus Grapevine associated cogu-like virus 1 Total RNA/Illumina HiSeq Chiapello et al. (2020)

Phenuiviridae/Coguvirus Grapevine associated cogu-like virus 2 Total RNA/Illumina HiSeq Chiapello et al. (2020)

Phenuiviridae/Coguvirus Grapevine associated cogu-like virus 3 Total RNA/Illumina HiSeq Chiapello et al. (2020)

Phenuiviridae/Coguvirus Grapevine associated cogu-like virus 4 Total RNA/Illumina NovaSeq Bertazzon et al. (2020)

Phenuiviridae/Rubodvirus Apple rubbery wood virus 1 Double-stranded RNA/Illumina HiSeq; total RNA/Illumina HiSeq Rott et al. (2018); Wright et al. (2018)

Phenuiviridae/Rubodvirus Apple rubbery wood virus 2 Double-stranded RNA/Illumina HiSeq; total RNA/Illumina HiSeq Rott et al. (2018); Wright et al. (2018)

Phenuiviridae/Rubodvirus Grapevine Muscat rose virus Total nucleic acid/Illumina HiSeq Diaz-Lara et al. (2019)

Phenuiviridae/Rubodvirus Grapevine Garan dmak virus Total nucleic acid/Illumina HiSeq Diaz-Lara et al. (2019)

Phenuiviridae/Tenuivirus Melon chlorotic spot virus Small RNAs/Illumina HiSeq; total RNA/Illumina MiSeq Lecoq et al. (2019); Gaafar et al. (2019a)

Phenuiviridae/Tenuivirus Ramu stunt virus Total RNA/Illumina HiSeq Mollov et al. (2016)

Phenuiviridae/Tenuivirus European wheat striate mosaic virus Small and total RNA/Illumina HiSeq and NextSeq Sõmera et al. (2020)

Tospoviridae/Orthotospovirus Alstroemeria yellow spot virus Total RNA/Illumina HiSeq Hassani-Mehraban et al. (2019)

Tospoviridae/Orthotospovirus Chili yellow ringspot virus Total RNA/Illumina MiSeq Zheng et al. (2020)

Fimoviridae/Emaravirus Blackberry leaf mottle associated virus Double-stranded RNA/Illumina and 454-Junior (Roche) Hassan et al. (2017)

Fimoviridae/Emaravirus Pigeonpea sterility mosaic virus 2 Double-stranded RNA/Illumina HiScan; small RNAs/Illumina GAIIx Elbeaino et al. (2015); Kumar et al. (2017)

Fimoviridae/Emaravirus Pistacia virus B Total RNA/Illumina NextSeq Buzkan et al. (2019)

Fimoviridae/Emaravirus Redbud yellow ringspot-associated virus Double-stranded RNA/Illumina Di Bello et al. (2016)

Fimoviridae/Emaravirus Ti ringspot-associated virus Double-stranded RNA/Illumina HiSeq and MiSeq Olmedo-Velarde et al. (2019)

Fimoviridae/Emaravirus Actinidia chlorotic ringspot-associated virus Small RNAs/Illumina Genome analyzer Zheng et al. (2017)

Fimoviridae/Emaravirus Jujube yellow mottle-associated virus Small RNAs/BGISEQ and total RNA/Illumina HiSeq Yang et al. (2019)

Fimoviridae/Emaravirus Blue palo verde broom virus Total RNA/Illumina HiSeq Ilyas et al. (2018)

Fimoviridae/Emaravirus Camellia japonica associated emaravirus 1 Total RNA/Illumina HiSeq Peracchio et al. (2020)

Fimoviridae/Emaravirus Camellia japonica associated emaravirus 2 Total RNA/Illumina HiSeq Peracchio et al. (2020)

Fimoviridae/Emaravirus Aspen mosaic-associated virus Total RNA/Illumina HiSeq von Bargen et al. (2020)

Fimoviridae/Emaravirus Perilla mosaic virus Total RNA/Illumina NovaSeq Kubota et al. (2020)

Fimoviridae/Emaravirus Lilac chlorotic ringspot-associated virus Total RNA/Illumina HiSeq Wang et al. (2020)

Rhabdoviridae/Cytorhabdovirus Strawberry associated virus 1 Small RNAs/Illumina MiSeq; total RNA/Illumina HiSeq and PCR
products/Ion Proton

Ding et al. (2019); Franova et al. (2019a)

(Continued)
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TABLE 1 | Continued

Virus family/genus Virus Type of target/sequencing technology References

Rhabdoviridae/Cytorhabdovirus Tomato yellow mottle-associated virus Small RNAs/Illumina HiSeq Xu et al. (2017)

Rhabdoviridae/Cytorhabdovirus Maize associated rhabdovirus Total RNA/Illumina HiSeq Willie and Stewart (2017)

Rhabdoviridae/Cytorhabdovirus Colocasia bobone disease-associated virus Total RNA/Illumina HiSeq Higgins et al. (2016)

Rhabdoviridae/Cytorhabdovirus Papaya virus E; bean-associated
cytorhabdovirus; citrus-associated
rhabdovirus

Total RNA/Illumina HiSeq; double stranded RNA/Illumina MiSeq;
total RNA/Illumina HiSeq

Medina-Salguero et al. (2019); Alves-Freitas
et al. (2019); Zhang et al. (2020)

Rhabdoviridae/Cytorhabdovirus Cabbage cytorhabdovirus 1 Total RNA/Illumina MiSeq Pecman et al. (2017)

Rhabdoviridae/Cytorhabdovirus Rice stripe mosaic virus Small RNAs/Illumina HiSeq Yang et al. (2017)

Rhabdoviridae/Cytorhabdovirus Wuhan insect virus 4 Total RNA/Illumina HiSeq Li et al. (2015)

Rhabdoviridae/Cytorhabdovirus Wuhan insect virus 5 Total RNA/Illumina HiSeq Li et al. (2015)

Rhabdoviridae/Cytorhabdovirus Wuhan insect virus 6 Total RNA/Illumina HiSeq Li et al. (2015)

Rhabdoviridae/Cytorhabdovirus Trifolium pratense virus A Total RNA/Illumina HiSeq Franova et al. (2019b)

Rhabdoviridae/Cytorhabdovirus Trifolium pratense virus B Total RNA/Illumina HiSeq Franova et al. (2019b)

Rhabdoviridae/Cytorhabdovirus Yerba mate chlorosis-associated virus Small RNAs/Illumina HiSeq Bejerman et al. (2017)

Rhabdoviridae/Cytorhabdovirus Yerba mate virus A Total RNA/Illumina HiSeq Bejerman et al. (2020)

Rhabdoviridae/Cytorhabdovirus Persimmon Virus A Total RNA/Illumina Genome Analyzer Ito et al. (2013)

Rhabdoviridae/Cytorhabdovirus Trichosantes associated rhabdovirus 1 Total RNA/Illumina HiSeq Goh et al. (2020)

Rhabdoviridae/Cytorhabdovirus Cucurbit cytorhabdovirus 1 Total RNA/Illumina NovaSeq Orfanidou et al. (2020)

Rhabdoviridae/Betanucleorhabdovirus Alfalfa-associated nucleorhabdovirus Total RNA/Illumina MiSeq Gaafar et al. (2019b)

Rhabdoviridae/Betanucleorhabdovirus Apple rootstock virus A Total RNA/Illumina HiSeq Baek et al. (2019)

Rhabdoviridae/Alphanucleorhabdovirus Physostegia chlorotic mottle virus Total RNA/Illumina MiSeq Menzel et al. (2016); Gaafar et al. (2018)

Rhabdoviridae/Alphanucleorhabdovirus Morogoro maize-associated virus Total RNA/Illumina HiSeq Read et al. (2019)

Rhabdoviridae/Betanucleorhabdovirus Black currant associated rhabdovirus Total RNA/Illumina NextSeq Wu et al. (2018)

Rhabdoviridae/Alphanucleorhabdovirus Wheat yellow striate virus Total RNA/Illumina HiSeq Liu et al. (2018)

Rhabdoviridae/Betanucleorhabdovirus Green Sichuan pepper nucleorhabdovirus Small RNAs and total RNA/Illumina HiSeq Cao et al. (2019)

Rhabdoviridae/Betanucleorhabdovirus Bird’s-foot trefoil-associated virus 1 Total RNA/Illumina HiSeq Debat and Bejerman (2019)

Rhabdoviridae/Alphanucleorhabdovirus Peach virus 1 Total RNA/Illumina HiSeq Zhou et al. (2020)

Rhabdoviridae/Betanucleorhabdovirus Cardamom vein clearing rhabdovirus 1 Small RNA/Illumina HiSeq Bhat et al. (2020)

Rhabdoviridae/Dichorhavirus Clerodendrum chlorotic spot virus Total RNA/Illumina HiSeq Ramos-González et al. (2018)

Rhabdoviridae/Dichorhavirus Citrus leprosis virus N Total RNA/Illumina HiSeq Ramos-González et al. (2017)

Rhabdoviridae/Dichorhavirus Citrus chlorotic spot virus Total RNA/Illumina HiSeq Chabi-Jesus et al. (2018)

Rhabdoviridae/Varicosavirus Red clover-associated varicosavirus Double stranded RNA/Illumina HiSeq Koloniuk et al. (2018a)

Rhabdoviridae/Varicosavirus Alopecurus myosuroides varicosavirus 1 Total RNA/454 (Roche) and Illumina HiSeq Sabbadin et al. (2017)
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TABLE 2 | NSR viruses with partial genome sequence already know, whose genomes were characterized using HTS.

Virus family/genus Virus Type of target/sequencing technology References

Phenuiviridae/Tenuivirus Rice hoja blanca virus Small RNAs/Illumina HiSeq Jimenez et al. (2018)

Tospoviridae/Orthotospovirus Groundnut chlorotic fan-spot virus Total RNA/Illumina MiSeq Chou et al. (2017)

Tospoviridae/Orthotospovirus Chrysanthemum stem necrosis virus Viral RNA from ribonucleocapsid/454 (Roche) Dullemans et al. (2015)

Tospoviridae/Orthotospovirus Mulberry vein banding associated virus Small RNAs/Illumina Genome Analyzer Meng et al. (2015)

Tospoviridae/Orthotospovirus Alstroemeria necrotic streak virus Total RNA/Illumina HiSeq Gallo et al. (2018)

Tospoviridae/Orthotospovirus Melon severe mosaic virus Total RNA/Illumina NextSeq Ciuffo et al. (2017)

Tospoviridae/Orthotospovirus Zucchini lethal chlorosis virus Viral RNA from ribonucleocapsid/Illumina HiSeq Lima et al. (2016)

Tospoviridae/Orthotospovirus Tomato chlorotic spot virus Total RNA/Illumina HiSeq Martínez et al. (2018); Adegbola et al. (2019),
Fagundes Silva et al. (2019)

Tospoviridae/Orthotospovirus Polygonum ringspot virus Small RNAs Margaria et al. (2014)

Fimoviridae/Emaravirus Rose rosette virus Total nucleic acid/Illumina HiSeq and 454-Junior (Roche) Di Bello et al. (2015)

Fimoviridae/Emaravirus Pigeonpea sterility mosaic virus 1 Double-stranded RNA/Illumina HiScan; small RNAs/Illumina GAIIx Elbeaino et al. (2014); Kumar et al. (2017)

Fimoviridae/Emaravirus Raspberry leaf blotch virus Total RNA/Illumina MiSeq Lu et al. (2015)

Fimoviridae/Emaravirus European mountain ash ringspot-associated virus Total RNA/Illumina HiSeq von Bargen et al. (2019)

Fimoviridae/Emaravirus High plains wheat mosaic virus Partially purified virion RNA/Illumina MiSeq Tatineni et al. (2014)

Rhabdoviridae/Cytorhabdovirus Alfalfa dwarf virus Small RNAs/Illumina HiSeq Bejerman et al. (2015)

Rhabdoviridae/Cytorhabdovirus Raspberry vein chlorosis virus Total RNA/Illumina NextSeq Jones et al. (2019)

Rhabdoviridae/Cytorhabdovirus Barley yellow striate mosaic virus/maize sterile stunt virus Small RNAs/Illumina HiSeq; viral enriched RNA/454 (Roche) Yan et al. (2015); Dietzgen and Higgins (2019)

Rhabdoviridae/Cytorhabdovirus Strawberry crinkle virus Total RNA/Illumina HiSeq Koloniuk et al. (2018b)

Rhabdoviridae/Cytorhabdovirus Maize yellow striate virus Viral enriched RNA/Illumina HiSeq Maurino et al. (2018)

Rhabdoviridae/Betanucleorhabdovirus Datura yellow vein virus Total RNA/454 (Roche) Dietzgen et al. (2015)

Rhabdoviridae/Alphanucleorhabdovirus Maize mosaic virus Total RNA/Illumina HiSeq Martin and Whitfield (2019)

Rhabdoviridae/Alphanucleorhabdovirus Maize Iranian mosaic virus Total RNA/Illumina HiSeq Ghorbani et al. (2018)

Rhabdoviridae/Betanucleorhabdovirus Sowthistle yellow vein virus Total RNA/Oxford Nanopore Stenger et al. (2020)

Rhabdoviridae/Dichorhavirus Coffee ringspot virus Total RNA/ION Torrent Ramalho et al. (2014)
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plant-associated, or insect viruses (Navarro et al., 2018b; Diaz-
Lara et al., 2019; Chiapello et al., 2020).

NEGATIVE-SENSE, SINGLE-STRANDED
RNA VIRUS DIVERSITY AND TAXONOMY

Negative-sense and ambisense RNA viruses belong to the phylum
Negarnaviricota, which includes members characterized by (i)
negative-sense or ambisense single-stranded unsegmented or
segmented genomes, (ii) the presence or absence of a lipid
membrane enveloping the capsid, and (iii) a diverse host
range (Diaz-Lara et al., 2019; Koonin et al., 2020; Kuhn
et al., 2020). This phylum contains major groups of pathogenic
viruses and our current knowledge of these viruses is strongly
biased toward agents with special importance for human and
animal health, such as influenza virus (Orthomyxoviridae), Zaire
ebolavirus (Filoviridae) or Crimean-Congo hemorrhagic fever
virus (Nairovirus). Most of the genera contain NSR viruses
that infect vertebrates and only about 10% contain phytoviruses
(Käfer et al., 2019) (Figure 1).

Most of the NSR viruses are divided into two large lineages
based on whether their RNA genomes are unsegmented or
segmented (Koonin et al., 2020) (Figure 1). The unsegmented
and some bi-segmented viruses with negative-sense RNA
genomes, belong to the order Mononegavirales (Koonin et al.,
2020; Kuhn et al., 2020). In contrast, most of the segmented
viruses with both negative-sense and ambisense RNA genomes
belong to the order Bunyavirales (Koonin et al., 2020; Kuhn
et al., 2020) (Figure 1). Other orders such as Serpentovirales
(which is the only one of these including NSR phytoviruses),
Muvirales, Articulavirales, among others, have been created to
accommodate diverse viruses which have been placed in the
major phylogenetic gap between the two large groups of NSR
viruses (Wolf et al., 2018).

Twelve genera (Alphanucleorhabdovirus, Betanucleor-
habdovirus, Coguvirus, Cytorhabdovirus, Dichorhavirus, Emara-
virus, Gammanucleorhabdovirus, Ophiovirus, Orthotospovirus,
Rubodvirus, Tenuivirus, and Varicosavirus) belonging to five
different families (Rhabdoviridae, Aspiviridae, Fimoviridae,
Tospoviridae, and Phenuiviridae) include species of phytoviruses
(Figure 1). Two of the genera (Coguvirus and Rubodvirus)
were recently created to accommodate novel species of
NSR viruses related to members of the Phenuiviridae family
(Navarro et al., 2018b; Diaz-Lara et al., 2019). Furthermore,
the ongoing discovery of many novel nucleorhabdoviruses
and dichorhaviruses by HTS in the last few years resulted in
a split of the genus Nucleorhabdovirus into three new genera
(Freitas-Astúa et al., 2019). Therefore, as the pace of discovery
of new NSR plant viruses using HTS is speedily increasing, the
creation of new genera and families to accommodate some of
these newly discovered viruses will be a common classification
task in future years.

Rhabdoviridae
The family Rhabdoviridae currently comprises 30 genera
for 191 species for viruses infectin vertebrates, invertebrates

and plants. Six of these genera include 45 species of
phytoviruses: Cytorhabdovirus, Alphanucleorhabdovirus, Betanu-
cleorhabdovirus and Gammanucleorhabdovirus (unsegmented
genomes), and Dichorhavirus and Varicosavirus (bi-segmented
genomes) (Walker et al., 2018; Kuhn et al., 2020) (Figure 1).
The virions of these phytorhabdoviruses have bacilliform or
rod-shaped morphology, and those with unsegmented genomes
are enveloped. Plant-infecting rhabdovirus genomes are 10–
16 kb in size and are composed of 6 to 10 genes (Walker et al.,
2018) (Figure 1).

The increased application of HTS has seen a significant rise
in the number of novel plant rhabdoviruses (Table 1), as well as
the completion of genomic sequences of those viruses with poorly
characterized genomes (Table 2).

High-throughput sequencing was used successfully to
complete the genome sequences of previously reported plant
rhabdoviruses where only partial sequence fragments were
available, such as Iranian citrus ringspot-associated virus
(Sadeghi et al., 2016), ivy vein banding virus (Petrzik, 2012),
and soybean blotchy mosaic virus (Lamprecht et al., 2010).
Furthermore, HTS could be a key tool to characterize the
genomes of some cyto- and nucleorhabdoviruses which have
only been characterized biologically, such as broccoli necrotic
yellows virus (Lin and Campbell, 1972) and festuca leaf streak
virus (Lundsgaard and Albrechtsen, 1976).

Moreover, partial genome fragments of three putative
cytorhabdoviruses and one unassigned rhabdovirus were
reported, when the viromes of water lily, common bean,
Lamprocephalus sp. and kalanchoe were analyzed by HTS
(Kreuze, 2014; Verdin et al., 2017; Bernardo et al., 2018;
Mwaipopo et al., 2018). However, the obtained sequences are
not available in any public database, so it is not possible to know
if these viruses are novel or may correspond to already known
viruses. Thus, it would be useful to apply HTS to complete
the genome characterization of these viruses to increase our
understanding of plant rhabdovirus diversity. Furthermore,
since a tentative nucleorhabdovirus associated with papaya was
recently discovered in a papaya virome (Alcalá-Briseño et al.,
2020), it would be useful to employ HTS to characterize the
molecular properties of papaya apical necrosis virus, a putative
nucleorhabdovirus associated with papaya, which was only
characterized biologically almost four decades ago (Lastra and
Quintero, 1981), to determine if both viruses are related.

Cytorhabdovirus
The application of HTS has facilitated the discovery of at least
17 novel cytorhabdoviruses during the last 7 years (Table 1).
Furthermore, the use of HTS has allowed characterization of the
genomes of five cytorhabdoviruses, for which only a fragment
or only the biological properties were known (Table 2). The
template mostly used as a source for HTS of these viruses was
total RNA, sequenced usually on Illumina platforms (Tables 1, 2).

Alpha-, Beta-, Gammanucleorhabdovirus
The application of HTS has facilitated the discovery of ten
novel nucleorhabdoviruses during the last 4 years, four
alphanucleorhabdoviruses and six betanucleorhabdoviruses
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FIGURE 1 | Diagram showing an overview of plant NSR virus taxonomy and schematic genome graphs depicting organization and gene products of representative
members of each taxon. The predicted coding sequences are shown in orange arrowed boxes, virion-sense RNA (v) is depicted in black, while virion-complementary
sense RNA (vc) is depicted in red. The number of taxonomic categories included in each taxon are indicated. Species number indicate 2019 ICTV-accepted virus
species corresponding to each taxonomic rank.

(Table 1). Furthermore, the use of HTS has allowed re-
sequencing the genomes of two alphanucleorhabdoviruses
which had previously been determined using Sanger dideoxy
sequencing (maize mosaic virus and maize Iranian mosaic
virus). HTS also allowed sequencing of the genome of a
betanucleorhabdovirus for which only a genome fragment
and the biological properties were known (datura yellow vein
virus), and one other for which only the biological properties
had been investigated 30 years earlier (sowthistle yellow vein
virus) (Table 2). The template mostly used as a source for
the HTS was total RNA, sequenced usually with Illumina
instruments (Tables 1, 2).

Dichorhavirus
The application of HTS has facilitated the discovery of three novel
dichorhaviruses during the last 3 years (Table 1). Furthermore,
the use of HTS has allowed characterization of the genome of
a dichorhavirus for which only a fragment and the biological
properties were known (coffee ringspot virus) (Table 2). The
template used as a source for the HTS was total RNA, sequenced
on Illumina platforms (Tables 1, 2).

Varicosavirus
The complete genome of only one varicosavirus, lettuce big-
vein associated virus, was previously characterized using Sanger
dideoxy sequencing (Sasaya et al., 2002, 2004); however, the
application of HTS has facilitated the discovery of two novel
varicosaviruses during the last 3 years (Table 1). The template
used as a source for the HTS was total RNA and dsRNA, and

Illumina and Roche 454 were the technologies employed in the
HTS projects (Table 1).

Fimoviridae
This family is composed of only one genus, Emaravirus, for
viruses that are distantly related to orthotospoviruses, and
exclusively comprise members that have plants as their hosts.
Emaraviruses have enveloped, spherical virions, with a diameter
of 80–100 nm and a segmented, linear, single-stranded genome
with generally four to eight RNA segments (Elbeaino et al., 2018),
but a recently described novel emaravirus, perilla mosaic virus,
has 10 RNA segments (Kubota et al., 2020).

Most of the members of the genus Emaravirus have been
recently discovered (Table 1) or characterized in depth by HTS
techniques (Table 2). The application of HTS resulted in the
discovery of 13 emaraviruses during the last 5 years (Table 1).
Different templates, such as total RNA, small RNAs and dsRNA
were used as sources for the HTS, and Illumina platforms have
been mostly used in the HTS projects (Table 1).

The use of HTS has revealed the genome sequence of
two emaraviruses for which only a genomic fragment and
some biological properties were known (high plains wheat
mosaic virus and pigeonpea sterility mosaic virus 1) (Table 2).
Furthermore, the application of HTS has resulted in the detailed
characterization of the complete genomes of three emaraviruses.
A clearer picture of the genome organization of emaraviruses
was obtained by the identification of additional RNA segments.
HTS- based research resulted in the identification of three novel
genome segments of raspberry leaf blotch virus and rose rosette
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virus (Di Bello et al., 2015; Lu et al., 2015), and two novel
segments for European mountain ash ringspot-associated virus
genome (von Bargen et al., 2019). Different templates, including
total nucleic acids, total RNA, dsRNA and RNA from partially
purified virions were used as sources for the HTS. Illumina
platforms were mostly used in these HTS projects (Table 2).

Finally, partial fragments of RNAs1, 2 and 4 of a putative novel
emaravirus infecting alfalfa in Australia, named alfalfa ringspot-
associated virus were recently identified using HTS (Samarfard
et al., 2020). PCR amplification of the conserved termini of the
genome segments (Babu et al., 2016) and HTS could be used
to characterize the complete genome sequence of this tentative
novel emaravirus.

Aspiviridae
This family, formerly named Ophioviridae, contains only one
genus, Ophiovirus, which is exclusively composed of members
that have plants as their hosts (Figure 1). Ophioviruses have non-
enveloped, naked filamentous virions and a segmented, linear
open circle, serpentine, single-stranded RNA genome, consisting
of three to four segments (García et al., 2017).

One novel ophiovirus, blueberry mosaic associated
ophiovirus, has been discovered using HTS during the last 6 years
(Table 1). Partial genome fragments of three ophioviruses, freesia
sneak virus, ranunculus white mottle virus, and tulip mild mottle
mosaic virus have been known for some years but their complete
genomes remain elusive (García et al., 2017). HTS could be a
crucial tool to obtain the complete genomes of these viruses
and to expand our understanding of the genomic cues and
evolutionary diversity of ophioviruses.

Tospoviridae
This family contains the single genus Orthotospovirus, which
is exclusively composed of species for viruses that have plants
as their hosts (Figure 1). Orthotospoviruses have enveloped,
spherical virions of 80–120 nm diameter and are transmitted
by thrips insects in which they also replicate. The genome of
orthotospoviruses is segmented with three linear single-stranded
RNA segments named large (L), middle (M), and small (S). The L
RNA contains one open reading frame in negative-sense polarity,
whereas the other two segments, M and S RNAs, are ambisense
and have two open reading frames encoding proteins in opposite
orientation (Oliver and Whitfield, 2016).

The application of HTS led to the discovery of two novel
orthotospoviruses in 2019 and 2020 (Table 1). Total RNA
was used as the template and Illumina platforms as the
sequencing technology.

The use of HTS has also facilitated completion of the
sequence of eight orthotospoviruses for which only one genome
segment was available (mostly the S RNA) and their biological
properties were known (Table 2). Different templates, including
total RNA, small RNA and virus-enriched RNA from purified
ribonucleocapsids were used as RNA source, and Illumina
platforms were mostly used as sequencing technology in the HTS
projects (Table 2).

At the time of this review, only partial genome sequence of
four other reported orthotospoviruses are available: groundnut

yellow spot virus (S RNA), lisianthus necrotic ringspot virus (S
RNA), pepper necrotic spot virus (S RNA) and tomato necrotic
ringspot virus (S and M RNAs) (Satyanarayana et al., 1998;
Seepiban et al., 2011; Torres et al., 2012; Shimomoto et al.,
2014); HTS could enable completion of the genome of these
agronomically important viruses.

Phenuiviridae
Most phenuiviruses have enveloped particles with helical
morphology, except tenuiviruses that have non-enveloped
filamentous particles, and their genomes are comprised of
two to four single-stranded, linear RNA segments. As of
2019, the family Phenuiviridae includes 19 ICTV-recognized
genera (Figure 1). Only the established genus Tenuivirus
and likely two recently accepted new genera Coguvirus and
Rubodvirus (2019.026M.A.v1.Phenuiviridae_4gen79sp.xlsx)
contain species of plant-infecting viruses (Navarro et al., 2018b;
Diaz-Lara et al., 2019). Phylogenetic relationships with other
phenuiviruses support their classification within this family
(Diaz-Lara et al., 2019).

Coguvirus
This genus is composed of two previously unknown viruses
that have bi-segmented genomes, which have been discovered
using HTS of citrus (Navarro et al., 2018a,b), while two
tentative coguviruses that have tri-segmented genomes, have
been discovered using HTS in watermelon (Xin et al., 2017)
(Table 1). Total RNA and small RNAs were used as template
sources for HTS on Illumina platforms (Table 1). Recently, the
complete tri-segmented genomes of four cogu-like viruses were
determined when the virome of grapevine was characterized
(Bertazzon et al., 2020; Chiapello et al., 2020) (Table 1).

Moreover, partial segments of a cogu-like virus were
discovered when the virome of ornamental flowers was analyzed
by HTS (Wylie et al., 2019). However, it will be necessary
to complete the genome characterization and perform further
analyses of these viruses to confirm if they are in fact plant-
infecting viruses or arthropod-infecting viruses whose RNA
was co-purified along with the plant RNA. This additional
information would enable further characterization of these
putative coguviruses, thus increasing our understanding of the
plant-infecting phenuivirus diversity and evolutionary history.

Rubodvirus
This genus is composed of species for two previously unknown
viruses that have tri-segmented genomes which have been
discovered using HTS in apple (Rott et al., 2018; Wright et al.,
2018), while two tentative rubodviruses were discovered using
HTS in grapevine (Diaz-Lara et al., 2019) (Table 1). DsRNA and
total RNA were the templates used as sources for HTS on Illumina
platforms (Table 1).

Tenuivirus
Tenuiviruses have a segmented genome of four to eight single-
stranded RNA segments with negative-sense or ambisense
polarity (Gaafar et al., 2019a). The application of HTS led to
the discovery of two new tenuiviruses, one infecting melon and
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black medic (Gaafar et al., 2019a; Lecoq et al., 2019) and the other
from sugarcane associated with Ramu stunt disease (Mollov et al.,
2016) (Table 1). In addition, a recent HTS study resulted in the
molecular characterization of a wheat tenuivirus, the biological
properties of which had been previously characterized in the
1960s (Sõmera et al., 2020) (Table 1). Total RNA and small RNAs
were used as sources for HTS on Illumina platforms (Table 1).
Moreover, the use of HTS facilitated sequencing of a tenuivirus
from rice, for which only the sequence of RNA4 and its biological
properties were known previously (Table 2). At the time of
writing this review, only partial genomic sequence of four other
tenuiviruses are known: maize stripe virus (complete sequences
of RNAs 2, 3, 4 and 5), maize yellow stripe virus (partial sequences
of RNAs 1, 2, 3, 4 and complete sequence of RNA 5), Iranian
wheat stripe virus (complete sequences of RNAs 2, 3 and 4),
wheat yellow head virus (complete sequence of the nucleoprotein
gene) (Huiet et al., 1991; Estabrook et al., 1996; Seifers et al.,
2005; Heydarnejad et al., 2006; Mahmoud et al., 2007). HTS
would be an essential tool to obtain the complete genomes of
these viruses and expand our knowledge of genomic architecture
of tenuiviruses.

CONCLUSION AND PERSPECTIVES

The number of NSR plant viruses identified so far represents
a negligible fraction of the potential number of NSR viruses
present in the virosphere. The discovery and in-depth molecular
characterization of these viruses has been challenging given their
extensive divergence, their outstanding diversity in terms of
genomic architecture, and mostly, the negligible share of plant
species studied for virus discovery. However, the widespread

implementation of HTS, a cost-effective and efficient technology
platform, allowed the discovery and molecular characterization of
the genome sequences of at least 70 NSR plant viruses in the last
few years. Thus, we predict that the increasing use of HTS, not
only for plant samples but also in arthropod vectors, will allow
the identification of many novel NSR phytoviruses which will be
crucial to unravel the evolutionary landscapes of many NSR virus
clades that are poorly characterized today. Nevertheless, as many
more novel NSR viruses are being discovered, careful analysis
will be essential to confirm their correct ecological context,
to determine whether the new viral agents are plant-infecting
viruses, fungi- or arthropod-infecting viruses whose RNA was
co-purified along with the plant RNA, or just contamination-
inadvertently sampled environmental viruses.

As soon as the virome characterization of multiple samples of
cultivated and wild plants becomes more routine, more viruses
with unique features and novel phylogenetic relationships will
likely be discovered. As we assess the viral ‘dark matter,’ we will
start to grasp the evolutionary history of plant viruses, eventually
leading us to untangle the diversity of the NSR virosphere and
gain increased knowledge about its complex evolutionary and
phylogenetic relationships. A rich picture of the plant virome
landscape will also provide an essential framework for improved
taxonomic classification of plant NSR viruses as part of the realm
Riboviria. In conclusion, HTS-based methods for virus discovery,
our ‘new eyes,’ are unraveling in real time the richness and
magnitude of the plant RNA virosphere.
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