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Introduction

 The geographical location of Argentina allows 
maize (Zea mays L.) to be grown over a vast area on 
a wide range of dates, positioning the country among 
the world leaders in production of this cereal, Santiago 
del Estero Province is responsible for 15 % to 20 % of 
the total country production (SIIA, 2018). The region 
is vulnerable to pathogenic fungi due to its highly va-
riable climatic conditions and fragile edaphic structu-
re, which, added to intensive farming processes, the 
availability of numerous new maize hybrids adapted to 
different agroclimatic environments and the effects of 
climate change on the precipitation regime (Cardini et 
al., 2018), among other factors, enable the prolonga-
tion of crop permanencein the area. These conditions 
facilitate an increased number of generations (multivol-
tines) of plague insects during the same crop growing 
season.

The main agents of damage in maize ears are the fall 
armyworm (Spodoptera frugiperda (J. E. Smith)) and 
the corn earworm (Helicoverpazea (Boddie)). S. frugi-
perda larvae have cutting and defoliating habits and 
may cause direct damage when feeding on the grains. 
H. zea larvae cause damage to the stigmas, penetrate 
the ear and feed on the grains(Pogue, 2002). Both spe-
cies cause economic losses due to the decrease in grain 
yield and in the commercial quality of the harvested 
grains. They facilitate the establishment of pathogens 
that cause ear rot and some also produce mycotoxins 
harmful to human and animal health, such as species 
of the genera Aspergillus and Fusarium (Boiça et al., 
2001; Chulze, 2010; García et al., 2006; Munkvold et 
al., 1997; Santos et al., 2016; Wu, 2007).

Insect resistant transgenic or Btmaize are genetical-
ly engineered plants that express insecticide proteins 
obtained from the sporulating bacteria Bacillus thurin-
giensis, which produces two types of toxins: Cry pro-
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Abstract

Maize (Zea mays L.) is one of the most widely cultivated crops in the world and Argentina is a leading producer 
worldwide. Lepidopteran pests such as the fall army worm (Spodoptera frugiperda -J. E. Smith-) and the corn 
earworm (Helicoverpazea -Boddie-) cause ear damage, producing yield losses and facilitating the entry of patho-
genic fungi such as Aspergillus flavus. Under conditions of high temperatures and drought stress,some Aspergillus 
strains can produce Aflatoxin B1 (AFB1), which is highly carcinogenic for humans and animals. The main aim of 
the current study was to determine the performance of PowerCore®, PowerCore® Ultra and Genuity® VT triple 
PRO®Bthybrid maize to corn ear caterpillar damage in Santiago del Estero, Argentina. Since 1990,the agricultu-
ral land area in this province has increased due to the forest clearance for agriculture. Climatic conditions in the 
region are favourable for aflatoxin. PowerCore® Ultra showed the highest yield and, PowerCore®registered the 
lowest severity of damage by corn ear caterpillar. The correlation between yield and insect damage severity was 
negative under the conditions evaluated.
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teins (Frankenhuyzen, 2009)and Vip proteins “Vegetati-
ve Insecticidal Protein” (Bravo et al., 2012). 

More than 96 % of the maize sown in Argentina is 
transgenic (ArgenBio, 2019) and the continuous entry 
of Bt hybrids to the market, with new and more gene 
stacking expressing different toxins, increases the avai-
lable tools to deal with insect attack. This technology 
needs to be accompanied by the creation of shelters 
by the farmers, with the purpose of delaying the emer-
gence of resistant insects, of which there is already evi-
dence (Trumper, 2014).

The experiment was conducted in the northwestern 
area of the Province, where since 1990 forest has been 
converted to agricultural land (Ginzo, 2015), allowing 
the development of large crop production centres and 
the increase of regional grinding facilities that add va-
lue to maize to achieve competitive advantages.

This study evaluatedthe performanceof PowerCore®, 
PowerCore® Ultra and Genuity® VT triple PRO® mai-
ze hybrids against corn ear caterpillar damage, their 
yields and aflatoxin levels.

Materials and Methods

 Experimental plan 

The experiment was performed during the years 2017 
and 2018 in Otumpa, Santiago del Estero, Argentina 
(-27.2155°; -62.0627°; 156 mamsl) on a typical Haplu-
stoll soil (INTA, 2019).The crop was planted by direct 
seeding in a field previously planted with soy. The plots 
were 546 m2 consisting of seven rows 0.52 m apart and 
150 m long with a density of 5.67 plants m-2.

 Commercial maize hybrids

Commercial temperate transgenic hybrids with diffe-
rent proteins introduced for lepidopteran insect control 
(ISAAA, 2019)and non-transgenic control were evalua-
ted with5 treatments (Table 1).

 Meteorological conditions

The meteorological data for the years 2017 and 2018 
at the Otumpa experimental site in Santiago del Este-
ro, Argentina (-27.2155°; -62.0627°; 156 mamsl)  were 
recordedat agrometeorological station of the Instituto 
Nacional de TecnologíaAgropecuaria (INTA) and the 
Sociedad Rural of Quimilí, Santiago del Estero (Fig 1).

 Sample collection and entomological  
 evaluations

 Once the crop reached physiological maturity, 300 
ears were collected from the five central rows of each 
treatment.

The severity of the caterpillar ear damage was estima-
ted as the percentage of damaged area by sampled 
ear. Since no decrease in yield was observed with low 
severity damage (Balbi and Flores, 2020), only the ears 
with damage severity over 3 % were analysed. 

Every ear was threshed manually. The grains obtained 
were stove-dried until they reached 14 % humidity and 
the yield (gear-1) was determined.

 Aflatoxin determination

Aflatoxins were detected and quantified in the diffe-
rent germplasms, following Trucksess et al. (1994). For 
this purpose, every sample was ground and homogeni-
sed to obtain 25 g of ground maize. An extraction so-
lution of acetonitrile:water (84:16, V/V) was added and 
the supernatant was shaken and filtered. Four ml of raw 
extract were filtered through a MycoSep®224 AflaZon-
cleanup column (Romer Laboratories, USA) and two ml 
of the purified extract were evaporated to dryness in 
gaseous nitrogen. The aflatoxins were detected and 
quantified by HPLC (high performance liquid chroma-
tography) using the methodology described by Alaniz 
Zanón et al., (2018). Detection limits were 1 µg kg-1.

 Yield evaluation

To evaluate the yield differences, a mixed linear model 
was adjusted, and a generalised linear model was adju-
sted to determine the proportion of individuals with 
damage severity higher than 3 %(Stroup, 2012).

 Statistical analysis

The means comparison was performed using the DGC 
test. For the statistical analysis, the InfoStatsoftware(Di 
Rienzo et al., 2019)was used with p<0.05.

The relations between the percentage of damaged 
ears, the yield for each treatment and the concentra-
tion of aflatoxinswere evaluated.

Hybrids Technology Protein (inserted 
transgenes)

510 PW PowerCore®
Cry1F, Cry1A.105, 

Cry2Ab2 

510 PWU
PowerCore® 

Ultra

Cry1F, Cry1A.105, Cry2Ab2, 
Vip3Aa20

510 RR Non - Bt

DK7210 VT3Pro
Genuity® VT triple 

PRO®

Cry1A105, Cry2Ab2, 
Cry3Bb1 

DK 7210 RR Non - Bt

Table 1 - Commercial hybrids evaluated in the years 2017 and 
2018 and their corresponding introduced proteins for lepidopte-
ran insect control.
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Results and discussion

 Yield evaluation

The analysis of the differences among the meanyields 
for each treatment identified three groups in decreasing 
yield order: group I,the 510 PWU hybrid with 162.76 g 
ear-1, followed by group II, theDK 7210 VT3Pro hybrid 
with 155.87 g ear-1, and lastly groupIII, formed by 
510 RR, DK 7210 RR and 510 PW, with 145.89 g ear-1, 
143.06 g ear-1 and 139.55 g ear-1, respectively (Fig2). 

Ma and Subedi (2005)found that, under controlled con-
ditions with no worm damage, there was no evidence 
of differences between Bt and non-Bt hybrids, which 
suggests that yield differences are due to the damage 
caused by caterpillars feeding on the ears (Betancourt 
and Scatoni, 1995; Bowen et al., 2014; Casmuz et al., 

2010; Marques et al., 2019). In regard to this, Bernardi 
et al. (2016) found that S. frugiperda larvae survive less 
time in Bt than in non-Btmaize grains, indicating lower 
feeding time and consequently less ear damage.

 Entomological evaluations

Significant differences were observed in the proportion 
of individuals with more than 3 % severity. The hybrid 
510 RR had the highest caterpillar ear damage, fol-
lowed by hybrids DK 7210 RR and DK 7210 VT3Pro, 
and lastly hybrids 510 PWU and 510 PW with the best 
performance showing the lowest proportion of ears 
damaged by caterpillars considering severity over 3 % 
(Fig 2). Waquil et al. (2013) observed differences in the 
damage to ears caused by S. frugiperda, being higher 
in hybrids with only one Cry protein than in hybrids 
with two stacked Cry proteins. Marques et al. (2019)
determined that the Vip3Aa20 event and its stacking 
with different Cry proteins significantly reduced H. ze-
adamage to maize ears compared to the correspon-
ding non-Bt hybrids. Balbi and Flores (2015)analysed 
the presence of H. zea caterpillars in ears from several 
Bt hybrids and observed that the hybrids with Vipte-
ra technology (Cry1Ab, Vip3Aa20, mcry3A) presented 
only 7.5 % of ears infected by caterpillars, followed 
by VT3Pro (Cry1A.105, Cry2Ab, Cry3Bb1) with 58 %, 
Powercore (Cry1A.105, Cry2Ab, Cry1Fa2) with 83 % 
and lastly TDMax hybrids (Cry1Ab) in which caterpillars 
were found in all the ears analysed.Yang et al. (2015)re-
ported that Viptera 3111 technology (Vip3A, Cry1Ab) 
was highly effective against H. Zea damage compared 
to non-Bt hybrids. Similarly, Burkness et al. (2010) found 
that sweet corn with the Viptera trait was highly effec-
tive for the management of H. zea and S. frugiperda.

Fig. 1 - Ombrothermic diagram showing the evolution of the temperatures, precipitation and relative humidity of Otumpa, Santiago 
del Estero. Averages calculated withdata of temperature, precipitation and relative humidity collected from the INTA agrometeorolo-
gical station and the Sociedad Rural of Quimilí, Santiago del Estero.

Fig. 2 - Means yields (g ear-1) for commercial Bt maize 
hybridsplanted in Santiago del Estero, Argentina, during the 
years 2017 and 2018. Yield groups identified:Group I, 510 PWU; 
Group II, DK 7210 VT3Pro; Group III,510 PW, 510 RR and DK 
7210 RR.Mean values followed by the same letter are not signifi-
cantly different (P<0.05; DGC test).
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 Effect of treatments on aflatoxin concentration

For the limit of detection of 1 µg kg-1, the presence of 
aflatoxins was not detected in the different commercial 
hybridsevaluated.This can be linked to the accumula-
ted precipitation duringthe years 2017 and 2018 being 
similarto the area´s mean precipitation of 600 mm to 
700 mm annually (Fig1) (Galván et al., 2003). Probably, 
the crop did not undergo significant stress and the con-
ditions were not favourable for aflatoxin contamination 
(Coppock et al., 2018; Darwish et al., 2014; Ni et al., 
2011; Tola and Kebede, 2016; Villers, 2014).

 Correlation analysis

A negative correlation was observed between insect 
damage severity and yield, for every hybrid (Spearman 
correlation of -0.25). Diener et al. (1987) andWicklow 
(1991)determined that every time the percentage of 
ear damage caused by lepidopterans doubled, the 
aflatoxin levels increased 20 times.Williams et al. (2005) 
and Wu (2007)studied the damage caused by cater-
pillars in maize ears in different Bt and non-Bt maize 
hybrids, reporting that, whenever the damage in ears 
increased, it also increased the aflatoxin concentration. 
Cardwell et al. (2000)reported that the level of infection 
of maize ears with A. flavus and Fusarium verticillioides 
was lower in Btmaize hybrids than in its corresponding 
non-Bt lines, thus indicating the direct relationship with 
caterpillar damage in maize ears. Similar results were 
obtained by Bakan et al. (2002) when studying the pre-
sence of fungi of the Fusarium genus in Bt and non-
Btmaize hybrids. For aflatoxins,Hammond et al. (2004)
andFolcher et al. (2010) reported that the fumonisin 
level, produced by fungi of the Fusarium genus, waslo-
wer in Bt than in non-Btmaize hybrids.

Conclusions

PowerCore® Ultra (510 PWU) technology showed the 
highest maizeyield.

PowerCore® andPowerCore® Ultra with their commer-
cial hybrids 510 PW and 510 PWU, respectively,proved 
most resistant to ear caterpillars.

Yield and caterpillar damage severity levels, in the dif-
ferent hybrids, depended on the event technology or 
the stacking of Bt events employed, on the crop germ-
plasm and on the environmental conditions, in which 
the crop, insects and pathogen interact. 
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