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Abstract: Mycoviruses appear to be widespread in Fusarium species worldwide. The aim of this 

work was to identify mycoviral infections in Fusarium spp., isolated from maize and sorghum 

grown in Argentina, and to estimate their potential effects on the pathogenicity and toxigenesis of 

the host fungus towards maize. Mycoviruses were identified in 2 out of 105 isolates analyzed; 

Fusarium verticillioides strain Sec505 and Fusarium andiyazi strain 162. They were characterized as 

members of the genus Mitovirus by high-throughput sequencing and sequence analysis. The F. 

verticillioides mitovirus was a novel mycovirus whereas the F. andiyazi mitovirus was found to be a 

new strain of a previously identified mitovirus. We have named these mitoviruses, Fusarium 

verticillioides mitovirus 1 (FvMV1) and Fusarium andiyazi mitovirus 1 strain 162 (FaMV1-162). To 

our knowledge, FvMV1 is the first mycovirus reported as naturally infecting F. verticillioides, the 

major causal agent of ear rot and fumonisin producer in corn. Both mitoviruses exhibited 100% 

vertical transmission rate to microconidia. The Fa162 strain infected with FaMV1-162 did not show 

phenotypic alterations. In contract, F. verticillioides Sec505 infected with FvMV1 showed increased 

virulence as well as microconidia and fumonisin-B1 production, compared with two uninfected 

strains. These results suggest that FvMV1 could have a role in modulating F. verticillioides 

pathogenicity and toxin production worth further exploring. 
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1. Introduction 

Mycoviruses are viruses that infect and replicate in fungal cells [1–3]. A great diversity of 

mycoviruses has been identified in a wide variety of fungal species [4,5]. The majority of 

mycoviruses have double-stranded RNA (dsRNA) genomes or positive sense single-stranded RNA 

(+ssRNA) genomes with dsRNA replicative intermediates [5,6]. However, mycoviruses with 

+ssRNA genomes with reverse transcriptase (+ssRNA-RT), negative sense ssRNA (-ssRNA) 

genomes, and DNA mycoviruses have also been reported [4]. Mycovirus genomes can be protected 

or not by a protein capsid [4,7]. According to the International Virus Taxonomy Committee 

(talk.ictvonline.org/taxonomy/), mycoviruses have been taxonomically grouped into 17 formal 

families. Mycoviruses with dsRNA genomes have been classified in 7 families (Megabirnaviridae, 

Partitiviridae, Quadriviridae, Reoviridae, Totiviridae, Chrysoviridae, and Endornaviridae) and one 

kingdom (Orthornavirae). Families Alphaflexiviridae, Barnaviridae, Gammaflexiviridae, Hypoviridae, 

Tymoviridae, Mitoviridae, and Narnaviridae have +ssRNA genomes. Families Mymonaviridae and 

Metaviridae are comprised of mycoviruses with –ssRNA and +ssRNA-RT genomes, respectively. 

Mycoviruses with single-stranded DNA (ssDNA) genomes have been classified in the family 

Genomoviridae [8]. New mycoviruses are constantly reported, and many still remain unclassified [6] 

or are classified into newly proposed families, such as Fusariviridae [9,10], Tetramycoviridae [11], 

Polymycoviridae [12], Alternaviridae [13], and Yadokariviridae [14]. 

Mycoviruses are isolated from fungi with very diverse lifestyles, and their infections are often 

cryptic, that is, no discernable phenotypic alterations are observed in the host [3–5]. However, in 

phytopathogenic fungi, there are mycoviruses that cause hypovirulence (reduced virulence) [15]. 

Hence, the study of mycoviruses from plant pathogens receives considerable attention due to their 

potential application as tools for the biocontrol of crop diseases [16–19]. The vast majority of 

mycoviruses lack an extracellular route of horizontal transmission, but they are efficiently 

transmitted by hyphal anastomosis between vegetatively compatible strains of the same species 

[3,20]. This feature allows transmission of the hypovirulence-inducing mycovirus to natural isolates 

of the pathogen, upon introduction of infected fungal strains in the environment, while preventing 

its horizontal jump to other fungal species and organisms. Mycoviruses have, therefore, the potential 

for being efficient and very safe biological control agents to be used in the field [19,21]. 

Chryphonectria hypovirus 1 (CHV1) was the first mycovirus reported to cause hypovirulence in its 

host, the ascomycete fungus Chryphonectria parasitica, the causal agent of chestnut blight [22,23]. A 

decrease in the incidence of chestnut blight in Europe was found to be associated with the natural 

spread of CHV1 in the populations of the pathogen [24]. This led to the implementation of a chestnut 

blight control program based on the use of CHV1, which is currently in effect in Europe [24–26]. The 

hypovirulence induced by CHV1 in C. parasitica is associated with other phenotypic alterations, such 

as a reduction in conidiation, pigmentation, and vegetative growth [15,23]. CHV1 is the type species 

of the genus Hypovirus, in the family Hypoviridae of capsidless mycoviruses with +ssRNA genomes. 

Currently, the ability of mycoviruses to induce hypovirulence and other host phenotypic alterations, 

from a great variety of viral families, has been reported [19]. Several mycoviruses, whose infection 

results, by contrast, in increased virulence towards the host plant have also been identified [27–29]. 

These mycoviruses are also of interest in plant pathology, since the characterization of their 

interaction with the host can provide new insights into the molecular regulation of virulence in 

fungi. 

Fusarium is a genus of filamentous fungi of the phylum Ascomycota, with recognized ability to 

cause disease. These fusariosis can result in symptoms like blights, rots, cankers, and wilts, in any 

organ and tissue, and affect a wide range of crops, including forest, cereal, and horticultural crops 

[30–33], causing significant economic losses [34,35]. In addition, some Fusarium species have the 
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capacity to produce mycotoxins, mainly fumonisins, being the B series (FBs), zearalenone, 

trichothecenes, and deoxynivalenol (DON), the ones that represent a considerable problem due to 

their toxicological implications in humans and farm animals [36,37]. In extensive cropping systems 

around the world, the use of synthetic fungicides is essential to prevent or cure fungal diseases, as 

part of an integrated disease management approach [38,39]. However, treatment with synthetic 

fungicides has frequently limited or no effect in the control of Fusarium diseases [40,41]. Moreover, 

the massive use of synthetic agrochemicals has negative impacts on the environment [42–44], public 

health [45,46], and food security [47,48]. Therefore, there is a need to explore new management 

strategies that are both efficient and environmentally friendly, such as those relying on biological 

control agents [44,49,50]. As in other major plant pathogens, the use of mycovirus-mediated 

hypovirulence has been proposed as a potential method for the biological control of Fusarium species 

[51]. The search for mycoviruses that attenuate fungal virulence, and have therefore potential as 

biological control agents [16], generally focuses on the identification and characterization of those 

naturally infecting the pathogen to be controlled [18,19]. To date, mycoviruses have been isolated 

from a variety of Fusarium species [51,52]. These mycoviruses belong to a wide range of viral families 

with dsRNA, +ssRNA, and −ssRNA genomes (recently reviewed by Li et al. [52]). However, only a 

limited number of them have been associated with the induction of phenotypic alterations in the 

host fungus. Mycoviruses associated with the attenuation of virulence in Fusarium species include 

Fusarium graminearum chrysovirus (FgV-China 9) [53] and Fusarium oxysporum chrysovirus 1 (FodV1) 

[54,55], both included within the family Chrysoviridae, Fusarium graminearum hypovirus 2 (FgHV2), 

which is a putative member of the family Hypoviridae [56], and Fusarium graminearum virus 1 

(FgV1) [57,58]. 

Several of the mycoviruses identified in Fusarium, in addition to causing hypovirulence and 

alterations in vegetative growth, affect mycotoxin production [59]. For instance, fungal strains 

infected with FgHV2 exhibit reduced DON production, whereas FgV1 infection affects trichothecene 

mycotoxin production [56,58]. These results show that mycoviruses may have potential to control 

both virulence and mycotoxins. The ability of some mycoviruses to either repress or induce 

mycotoxin production has been reported in other groups of fungi, including plant pathogens and 

species with other life styles. For example, the increase in pathogenicity observed in Alternaria 

alternata strains with high titer of the chrysovirus AaCV1 was associated with an overproduction of 

AK-toxin [28]. Tolypocladium cylindrosporum is a fumonisin-producing entomopathogenic fungus, 

which is also isolated as an endophyte from grasses. A survey of endophytic strains of this fungus 

showed a significant increase in fumonisin B2 production in mycovirus-infected strains [60]. 

Similarly, Nerva et al., [61] found that Aspergillus ochraceus virus (AoV), a partitivirus widespread in 

Aspergillus ochraceus, can cause an overproduction of the mycotoxin ochratoxin A (OTA). According 

to these results, there is a relationship between mycovirus infection and mycotoxins worth 

exploring, since it might have implications in their production in field conditions and/or be used to 

shed further light into the molecular mechanisms that regulate their synthesis. 

Fusarium verticillioides is a fungus known to infect maize, sorghum, and rice worldwide [62–64]. 

In corn, colonization pathways include different routes of entry such as roots, stems, floral stigma, 

and grains [64]. Upon plant colonization, it may behave as an endophyte not causing symptoms [65], 

or become a parasitic agent generating different symptoms, such as seedling blight, stalk rot in adult 

plants, and ear rot [63,64]. Moreover, F. verticillioides is the major FB producer (FB1, FB2, FB3, and FB4) 

in grains [66,67], causing both significant economic losses and toxic effects on farm animals and 

humans [68–71]. Fungicides are not efficient in managing F. verticillioides disease symptoms and 

fumonisin contamination of maize kernels, and more efficient and environmentally-friendly 

approaches have to be found to control this fungus and its mycotoxins. In contrast to other Fusarium 

species, including major pathogens of cereal crops, there were no reports on mycoviruses isolated 

from F. verticillioides. The objective of the present study was to identify mycoviruses infecting F. 

verticillioides and to characterize their potential effects on the host. For that reason, we conducted a 

survey of mycoviral infection in a collection of Fusarium isolates obtained from maize and sorghum 

grown in Argentina. This analysis led to the identification of Fusarium verticillioides mitovirus 1 



Viruses 2020, 12, 1161 4 of 22 

 

(FvMV1) as the first mycovirus known to naturally infect F. verticillioides. Initial data suggests that 

FvMV1 infection might result in increased virulence and fumonisin production. Additionally, in an 

F. andiyazi isolate from sorghum, we identified a new virus strain of Fusarium andiyazi mitovirus 1 

(FaMV1-162). Unlike FvMV1, preliminary studies indicate that FaMV1-162 has no effect on its host 

phenotype. 

2. Materials and Methods 

2.1. Fungal Isolates 

A total of 99 strains of Fusarium spp. were isolated from maize kernels collected from different 

areas of Argentina. Maize grains were disinfected by immersion in 5.0% NaClO solution for 1 min, 

rinsed twice with sterile distilled water, and incubated on potato dextrose agar (PDA) medium 

(Britania Lab. S.A, CABA, Bs. As. Arg.) at 25 °C, until fungal growth was observed. Monosporic 

cultures were prepared from fungal colonies with typical morphology, pigmentation, and growth 

rates of F. verticillioides [72]. In a subset of 11 isolates, species ascription was confirmed by PCR using 

specific primers for F. verticillioides PQF5-F: 5′-GAGCCGAGTCAGCAAGGATT-3′ and PQF5-R: 

5′-AGGGTTCGTGAGCCAAGGA-3′, as described by Sampietro et al. [73]. The species identity of the 

mycovirus-infected Fusarium isolates and the uninfected F. verticillioides and F. andiyazi isolates used 

for phenotypic comparisons was confirmed molecularly by the amplification and sequencing of 

beta-tubulin (β-TUB) and translation elongation factor 1 alpha (α-TEF 1) genes. Primers combinations 

Tub1 (5′-AACATGCGTGAGATTGTAAGT-3′) and Tub2 (5′-TAGTGACCCTTGGCCCAGTTG-3′), 

and Ef1 (5′-ATGGGTAAGGARGACAAGAC-3′) and Ef2 (5′-GGARGTACCAGTSATCATG-3′) were 

used to amplify ß-TUB and α-TEF 1 gene fragments, respectively. Amplified fragments were 

sequenced by the Sanger method, and subjected to Basic Local Alignment Search Tool (BLAST, 

blast.ncbi.nlm.nih.gov/Blast.cgi) searches against a The National Center for Biotechnology 

Information (NCBI, www.ncbi.nlm.nih.gov) Fusarium nucleotide collection database. The wild-type 

mycotoxigenic isolate F. verticillioides strain M3125 [74] was provided by Dr. Robert Proctor (United 

States Department of Agriculture, Agricultural Research Service, National Center for Agricultural 

Utilization Research, Peoria, IL, USA). Additionally, six Fusarium spp. isolates, obtained from 

sorghum provided by Iglesias, J. (INTA—UNNOBA), were included in our survey of mycovirus 

infection. These were morphologically identified as F. andiyazi. 

2.2. Detection of dsRNAs in Fusarium Isolates 

To test for the presence of large molecules of double-stranded (ds) RNA indicative of viral 

infection, strains were grown in potato dextrose broth for 96 h at 25 °C. Fungal mycelium was then 

collected by filtration through Miracloth membranes (EMD Millipore Corp. Burlington, 

Massachusetts, United States) and ground to a fine powder in a mortar and pestle in the presence of 

liquid nitrogen. Approximately 3.5 g of ground fungal tissue from each isolate was used to purify 

dsRNAs by chromatography on cellulose (CAS# 9004-34-6; Sigma-Aldrich Corp. Burlington, MA, 

USA), following the methodology described by Valverde et al. [75]. Nucleic acids were 

electrophoretically fractionated on a 0.8% agarose gel. When dsRNA bands were observed, their 

molecular nature was confirmed by digestion with DNase I (La Roche Ltd., Basilea, Suiza) and S1 

nuclease (Promega Corp. Madison, WI, USA), which degrade single- and double-stranded DNA, 

and single-stranded DNA and RNA, respectively. 

2.3. Next Generation Sequencing of dsRNAs and Data Analysis 

To obtain RNA for sequencing, Czapek-Dox Liquid (Oxoid) cultures were prepared from 

infected strains F. verticillioides FvSec505 and F. andiyazi Fa162. Fungal tissue was collected by 

filtration through Miracloth (EMD Millipore Corp. Burlington, MA, USA) membranes and ground in 

a mortar and pestle in the presence of liquid nitrogen to form a fine powder. Total RNA was 

extracted and purified using RNeasy Plant Mini Kit (QIAGEN N.V. Hilden, Germany), following the 

manufacturer’s protocol. To eliminate any trace of DNA, the samples were treated with RQ1 
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RNase-Free DNase (Promega Corp., Madison, WI, USA) RNA was quantified using a BioSpec-nano 

(Shimadzu Corp. Nakagyo-ku, Kyoto, Japan) spectrophotometer. The quality of the RNA samples 

was determined by standard agarose gel electrophoresis (0.8%) in TAE buffer. The samples were 

depleted of rRNA using the Ribo-Zero kit (Illumina, Inc., San Diego, CA, USA) and subjected to 

250~300 bp insert stranded-specific cDNA library construction. The cDNA library was then enriched 

by PCR and subjected to deep sequencing using Illumina NovaSeq platforms with paired-end 150 bp 

(PE 150) sequencing strategy. Library construction and deep sequencing were performed by 

Novogene Corporation Inc. (University of California, Sacramento, CA, USA). Illumina NovaSeq 

high-throughput sequencing (HTS) of RNA from the F. verticillioides Sec505 isolate sample rendered 

a total of 24,788,316 paired end (PE) 150 nt reads. After trimming and quality filtering using Trim 

Galore (www.bioinformatics.babraham.ac.uk/projects/trim_galore/), the remaining 24,785,446 PE 

reads were de novo assembled with Trinity v2.8.6 

(https://github.com/trinityrnaseq/trinityrnaseq/wiki), with standard parameters, resulting in 25,440 

transcripts (mean length 1851 nt). The obtained contigs were subjected to bulk BLASTx searches 

(E-value < 1 × 10-5) against a viral reference sequence (RefSeq) dataset, from NCBI available at 

https://ftp.ncbi.nlm.nih.gov/refseq/release/viral/viral.1.protein.faa.gz. Only a single 2468 nt long 

transcript obtained a significant hit (E-value = 0), sharing 44.48% identity with the RdRp of 

Alternaria arborescens mitovirus 1 (YP_009270635.1). The virus-like contig was subsequently 

polished by re-mapping the filtered reads using Bowtie 2 

(http://bowtiebio.sourceforge.net/bowtie2/index.shtml), with the very-fast-local preset parameter, 

which rendered a highly supported (mean coverage = 12,136 X; total virus PE reads = 192,206; virus 

reads as % of total reads = 0.77%) virus sequence of 2471 nt in length. The HTS of F. andiyazi 162 RNA 

rendered a total of 24,856,719 PE-150 reads. After trimming and quality filtering using Trim Galore, 

the remaining 24,852,431 PE reads were de novo assembled with Trinity, resulting in 25,451 

transcripts (mean length 1617 nt). The obtained contigs were subjected to bulk BLASTx searches 

(E-value < 1 × 10-5) against a NCBI virus proteins refseq database. Only a single 2437 nt long 

transcript obtained a significant hit (E-value = 0), sharing 49.71% identity with the RdRp of Fusarium 

poae mitovirus 1 (YP_009272898.1). The virus-like contig was subsequently polished by re-mapping 

the filtered reads using Bowtie 2, which rendered a highly supported (mean coverage = 28,836 X; 

total virus PE reads = 466,102; virus reads as % of total reads = 1.87%) virus sequence of 2441 bp. 

Then, the cured viral sequences were annotated by scanning for Open Reading Frames (ORF). To 

this end, the nucleotide sequences were imported into ORFinder, as implemented in 

https://www.ncbi.nlm.nih.gov/orffinder/, with a minimal 150 nt ORF length, and genetic code 4 

parameters. Conserved domains of the predicted translated products were searched using the NCBI 

Conserved Domain Database v3.18 tool (CDD; www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). 

Potential secondary structure predictions of the predicted UTR regions and free energy (dG) 

estimations were conducted using MFOLD software (MFOLDROOT: 

http://unafold.rna.albany.edu/). The protein deduced molecular weights were estimated in the 

online software: https://web.expasy.org/peptide_mass/. 

The virus sequences characterized in this study are available at NCBI-GenBank, under 

accession numbers MT506024 (FvMV1) and MT506025 (FaMV1-162).  

2.4. Phylogenetic Analyses 

Phylogenetic insights were generated following the descriptions of Nibert et al. [76] and Yao et 

al. [77], with some modifications. Multiple sequence alignments of RdRp sequences were performed 

by optimized automatic adjustment using MAFTT version 7 [78] at 

http://mafft.cbrc.jp/alignment/server/ (iterative refinement methods: L-INS-i strategy). The 

phylogenetic tree was constructed using the MEGA X version 10.1.5 software [79]. Abbreviated 

mitoviruses names and NCBI accession numbers (partial sequences were excluded): AaMV1 

(QDB74990.1), Aarb.MV1 (YP_009270635.1), BcMV1 (YP_002284334.2), BcMV3 (YP_009182161.1), 

BcMV4 (CEZ26303.1), BsMV1 (AHY03257.1), CcMV1b (AY328477.1), Cfal.MV1 (MK279482.1), 

Cfru.MV1 (LC497424.1), CpMV1 (NP_660174.1), Enec.MV1 (YP_009465715.1), Enec.MV2 
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(ATS94399.1), Enec.MV3 (YP_009465717.1), EnMV1 (QDB74989.1), FaMV1-DH06 (QIQ28423.1), 

FaMV2 (MN295970.1), FbMV1 (BBG56024.1), FcMV1 (AHI43533.1), FcMV2.1 (AHI43534.1), FcoMV1 

(YP_009126873.1), FgMV1 (YP_009126872.1), FodMV1 (QIC51112.1), FpMV1 (YP_009272898.1), 

FpMV2 (YP_009272899.1), FpMV3 (YP_009272900.1), FpMV4 (BAV56292.1), FsMV1 (QIQ28428.1), 

GaMRVS2 (YP_077184.1), GsMV1 (MN043682.1), HfMV1 (AIU44705.1), LbMV1 (YP_009553599.1), 

LjMV1 (MK279483.1), MpMV1 (ALD89100.1), MpMV3 (KT823703.1), NlMV1 (YP_009388498.1), 

NoMV1 (MH823901.1), NoMV2 (MH823902.1), NpMV1 (QDB74992.1), Oph.MV5 (NP_660180.1), 

OnuMV6 (NP_660181.1), Oph.MV1a (AM087548.1), Oph.MV3a (NP_660176.1), OsMV1 

(MK279484.1), OsMV2 (MK279485.1), SnMV1 (ANJ77669.1), SnMV2 (ANJ77670.1), SsMV1 

(YP_009121785.1), SsMV2 (YP_009551566.1), SsMV3 (CEZ26305.1), SsMV4 (AGC24233.1), SsMV5 

(AHX84132.1), SsMV6 (AXI69836.1), SsMV7 (AHX84135.1), SsMV8 (AHF48624.1), SsMV9-A 

(AWY10972.1), SsMV11 (AHF48627.1), SsMV12 (AHF48628.1), SsMV14-A (AWY10977.1), SsMV15 

(AHF48631.1), SsMV17 (ALD89134.1), SsMV18 (KP900925.1), SsMV19 (ALD89136.1), SsMV20 

(ALD89137.1), SsMV27 (AWY10985.1), SsMV28 (MF444258.1), SsMV29 (AWY10985.1), SsMV30 

(MF444260.1), StMV1 (AZT88625.1), TaMV (YP_004564622.1), and TbMV (YP_002822229.1). 

2.5. Analysis of Fungal Vegetative Growth and Mycovirus Transmission to Conidia 

Growth rate and conidia production were analyzed in infected strains FvSec505 and Fa162, and 

the virus-free strains which were used for phenotypic comparisons. The virus-free strains selected 

from each Fusarium species were isolates confirmed to lack dsRNA bands consistent with viral 

infection. Regarding F. verticillioides, infected strain FvSec505, uninfected reference strain FvM3125, 

and a second virus-free strain, FvArv2300, collected from maize obtained in the same area that 

FvSec505 (Manfredi, Córdoba province, Figure 1), were included in the analysis. On the other hand, 

vegetative growth of F. andiyazi infected strain, Fa162, was compared with that of virus-free strain F. 

andiyazi 210 (Fa210), collected from sorghum obtained in the same area (Manfredi, Córdoba 

province, Figure 1). To assess growth rate, 10 µL conidia suspensions containing 1.0 × 104 conidia/mL 

of each strain were inoculated into the center of PDA Petri dishes, which were then incubated in the 

dark for 7 days, at 25 °C. The radial growth was measured daily to determine the growth rate and 

lag phase. At the end of the experiment, plates were used to quantify conidia production. For that 

purpose, microconidia from each sample were harvested twice by adding 15.0 mL of Tween-20 

(Sigma-Aldrich Corp., Burlington, MA, USA) 0.5% in sterile distilled water to the plate and rubbing 

the surface with a sterile bent glass rod. The obtained suspension was filtered through Miracloth 

(EMD Millipore Corp., Burlington, MA, USA) membranes, and the microconidia were counted 

using a hemocytometer [80]. Four replicas were performed for each strain, and the experiment was 

repeated twice. In the case of infected strains FvSec505 and Fa162, the conidia collected were also 

used to prepare monosporic subcultures to analyze mycovirus vertical transmission rates. A total of 

50 monosporic cultures were performed for F. verticillioides strain Sec505, and 11 for F. andiyazi strain 

162. Then, these monosporic isolates were analyzed by chromatography on cellulose, as described 

above, to determine the presence of the dsRNA band. 
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Figure 1. Source location of the Fusarium spp. isolates used for the mycovirus survey. (a) South 

America political map in which the Argentine national territory is painted in dark gray, and black 

lines indicate international divisions. (b) Zoom-in view of the central and northern regions of 

Argentina; red dots represent the areas where maize and sorghum grains were taken to sample for 

Fusarium spp. isolates. The blue star indicates the site where the Fusarium isolates infected with 

mycovirus were obtained (F. verticillioides isolate FvSec505 from maize and F. andiyazi isolate Fa162 

from sorghum). Black lines indicate provincial limits, and white lines, departmental regions within 

provinces in Argentina (grey), whose names are indicated. 

2.6. Fumonisins B Production 

Fumonisins B (FBs) production was determined in F. verticillioides infected strain FvSec505 and 

virus-free strains FvM3125 and FvArv2300. To that effect, conidial suspensions (500 µL containing 

0.5 × 106 conidia/mL) of each strain were inoculated into 50 mL GYAM liquid medium (0.67 g malic 

acid, 1.2 g 1-asparagine, 0.0992 g NaCl, 0.766 g K2HPO4, 0.492 g MgSO4, 0.976 g CaCl2, 0.5 g yeast 

extract and 40 g glucose, per liter, adjusted to pH 3.0). Cultures were incubated in the dark, with 

shaking at 28 °C for 7 days. Then, 1000 µL of each liquid culture were centrifuged for 15 min at 9000 

RCF. The obtained supernatants were diluted with HPLC grade acetonitrile (Sintorgan S.A. Villa 

Martelli, Buenos Aires, Arg.) at a 1:1 ratio, and the FBs content was determined in a Perkin Elmer 

HPLC equipped with a fluorescence detector, following the methodology proposed by Shephard et 

al. [81]. The quantification of FB1 was carried out by comparing the peak areas obtained from 

samples with FB1 analytical standards (PROMEC, Tygerberg, Republic of South Africa), using HP 

Chemstation Rev. A.07.01 software [82]. Five replicas were prepared for each sample, and the 

experiment was repeated twice. 

2.7. Phytopathogenicity Assay 

The virulence of infected and mycovirus-free strains towards maize seedlings (Zea mays L.) was 

assayed in a growth chamber under controlled conditions, according to the protocol by Arias et al. 

[82] with some modifications. Susceptible ACA474 Hib. seeds were harvested before the experiment 

and stored at −20 °C in a semi-permeable bag. Prior to the inoculation, seeds were superficially 

disinfected by immersion in 5.0% NaClO solution for 1 min, and rinsed three times with sterile 

distilled water. Seeds were inoculated by overnight incubation in a conidia suspension (1.0 × 106 

conidia/mL) of each strain. Ten seeds were used per treatment. Inoculated seeds were then placed in 

Petri dishes with moistened paper and incubated at 25 °C in darkness for 48 h. Then, the germinated 

seeds were transferred to hydroponic culture in a growth chamber with a photoperiod of 12 h of 

light and 12 h of darkness, relative humidity at 75%, and constant temperature at 25 °C. The 

irrigation and concentrations of the macro and micronutrients of the hydroponic solution were 

carried out according to Zörb et al. [83]. Two parameters were used to assay virulence, stem height, 

and plant biomass. Stem height data were recorded from each plant on day one, four, eight, and 

fifteen post-germination, considering day one when the coleoptile or the first leaf exceeded 5 cm in 

height. Measurements were taken from the seed to the distal end of the longest leaf. At the end of 
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this period, the dry weight of the seedlings (biomass) was obtained after drying them at 60 °C for 7 

days. 

2.8. Statistical Analyses 

Statistical analyses of fumonisin B1 production data and phytopathogenicity assay data were 

performed by one-way analysis of variance (ANOVA) (p ≤ 0.05). The normality and homogeneity of 

variance were tested. Data are presented as mean ± standard error, and differences between means 

were considered significant if probability p ≤ 0.05. DGC test was used for means comparisons. 

Statistical analyses of growth rate and conidia production were performed by one-way ANOVA (p ≤ 

0.05), and Fisher test (p ≤ 0.05) was used for means comparisons. All statistical analyses were 

performed using InfoStat v2020 software (Córdoba, Córdoba, Arg.) [84]. 

3. Results and Discussion 

The advent and application of next generation sequencing techniques (e.g., RNA-seq and 

Metagenomic) have greatly increased the pace of mycovirus discovery in a wide diversity of fungi 

[5,6]. Up to date, mycoviruses had been identified in 16 different Fusarium species [52,58,77,85] 

including F. andiyazi, F. asiaticum, F. boothii, F. circinatum, F. coeruleum, F. globosum, F. graminearum, F. 

incarnatum, F. langsethiae, F. oxysporum, F. poae, F. pseudograminearum, F. sacchari, F. solani, F. culmorum 

and F. virguliforme. However, no mycovirus had been reported so far in F. verticillioides, the major 

causal agent of corn ear rot and fumonisin producer in the grains. The primary goal of this study 

was to identify and characterize mycoviruses in the fungal pathogen F. verticillioides. Consequently, 

we generated a large collection of Fusarium isolates sampled from maize kernels, both with and 

without disease symptoms, collected in different areas of Argentina (Figure 1). Isolates with the 

macroscopic appearance of F. verticillioides, which is the predominant Fusarium species in maize from 

the temperate region [86,87], were selected, and analyzed by PCR using specific primers for F. 

verticillioides (see Materials and Methods for details). Moreover, six isolates morphologically 

identified as F. andiyazi, an important Fusarium pathogen in sorghum [88,89], were also included in 

this survey. The identification of dsRNAs in fungal strains generally indicates mycovirus infection, 

as fungi lack large endogenous dsRNA molecules (larger than 100 nt) [90,91]. To test for the presence 

of dsRNAs in our fungal collection, chromatography on cellulose extracts were prepared for each 

isolate and analyzed by agarose gel electrophoresis (Figure 2a). Large dsRNA molecules compatible 

with viral genomes [92] were identified in only 2 out of 105 Fusarium isolates tested (99 F. 

verticillioides and 6 F. andiyazi) (Figure 2b). These were F. verticillioides strain Sec505 (FvSec505) and F. 

andiyazi strain 162 (Fa162), obtained from maize and sorghum, respectively, in Manfredi, Córdoba 

province (Figure 1) (see abbreviations in Table 1). In both strains, FvSec505 and Fa162, a single 

dsRNA molecule of approximately 2.5 kilobase pairs (kb) was detected (Figure 2b). Treatment of 

samples with DNase I and Nuclease S1 did not degrade the observed bands, confirming their 

dsRNA nature (Figure 2c). Furthermore, these dsRNAs bands were stable through repeated 

subculturing of the host fungal strains. 
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Figure 2. Molecular characterization of Fusarium verticillioides mitovirus 1 (FvMV1) and Fusarium 

andiyazi mitovirus 1 strain 162 (FaMV1-62). (a) Representative Agarose gel electrophoresis (0.8% w/v 

in buffer TAE) of chromatography on cellulose extracts prepared from monosporic cultures of fungal 

strains for the identification of dsRNA mycoviruses. Lane M: DNA molecular weight marker (1Kbp, 

NZYDNA Ladder III, NZYTech® Paço do Lumiar, Lisboa, Portugal); lane 2: F. verticillioides isolate 

FvSec505; lanes 1 and 3 through 8: other Fusarium isolates from survey. (b) Agarose gel 

electrophoresis (0.8% w/v in buffer TAE) of chromatography on cellulose extracts from Fusarium 

andiyazi strain 162 (lane a) and Fusarium verticillioides strain Sec505 (lane b) showing dsRNA bands 



Viruses 2020, 12, 1161 10 of 22 

 

indicative of mycoviruses infection. (c) Agarose gel electrophoresis of the dsRNA bands identified in 

F. andiyazi strain 162 (lane a), and F. verticillioides strain Sec505 (lane b) after treatment with DNase 

and S1 Nuclease; as observed, both bands resisted digestion confirming their dsRNA nature. Lane M: 

DNA molecular weight marker (1Kbp, NZYDNA Ladder III, NZYTech®, Paço do Lumiar, Lisboa, 

Portugal). Gels were stained with ethidium bromide and nucleic acids visualized and photographed 

under UV light using a transilluminator (EC3 Imaging System—UVP, LLC). (d) Schematic 

representation of the genomes of FvMV1 and FaMV1-162. The blue rectangles represent the single 

ORF (5′ to 3′ sense) identified in each mycovirus. Start and Stop codons are noted in parentheses, and 

numbers represent their positions in the mycovirus sequenced genome. The grey rectangles 

represent the 5′- and 3′-untranslated regions (UTR) with their lengths indicated in parenthesis. Scale 

bar is drawn in nucleotide unit (nt). (e) Schematic representation of predicted RNA dependent RNA 

polymerase (RdRp) proteins encoded by FvMV1 and FaMV1-162. The gray box represents the full 

length predicted proteins from their amino-terminus (N-) to the carboxyl-terminus (-C). Blue dots 

indicate the positions of UGA-encoded tryptophan. The dark-red line drawn above the gray 

rectangles indicates the position (numbers indicate the aa position) of the conserved domain of the 

mitoviral RdRp Superfamily (pfam05919). Scale bar is drawn in amino acid unit (aa). 

Table 1. Abbreviations. 

Abbreviations Meaning 

FB B-series fumonisins 

(+)ssRNA positive sense single-stranded RNA 

dsRNA double-stranded RNA 

FvSec505 F. verticillioides strain Sec505 (infected with FvMV1) 

FvM3125 Virus-free strain F. verticillioides M3125 

FvArv2300 Virus-free strain F. verticillioides Arv2300 

Fa162 F. andiyazi strain 162 (infected with FaMV1-162) 

Fa210 Virus-free strain F. andiyazi 210 

FvMV1 Fusarium verticillioides mitovirus 1 

FaMV1-162 F. andiyazi mitovirus 1 strain 162  

To characterize dsRNAs at the molecular level, we performed deep sequencing of total RNAs 

depleted of rRNA in the strains harboring them, FvSec505 and Fa162. Illumina NovaSeq HTS of F. 

verticillioides strain Sec505 RNA, and sequence analysis (see Materials and Methods) identified a 

single virus-like contig 2471 nt long, with a 28.7% GC richness. This putative new mycovirus was 

found to contain a single ORF (genetic code 4) 2184 nt in length, expanding from nt positions 219 

(AUG) to 2402 (UAA), flanked by 5′- and 3′-untranslated regions (UTRs) 218 nt and 69 nt in length, 

respectively (Figure 2d). The genome size of 2471 nt determined by NGS is in line with the one 

predicted by the aforementioned electrophoretic analysis (Figure 2c). Given the high support of 

virus reads, the presence of typical UTR sizes, and a total length consistent with that of other similar 

viruses [93], we entertain the hypothesis that the determined virus sequence is coding complete (CC) 

and nearly complete. A similarity search using BLASTp against the nr NCBI database showed that 

the predicted aa sequence of the protein encoded by the single ORF shared significant sequence 

identity with the RdRps of viruses in the genus Mitovirus, family Narnaviridae (recently changed to 

Mitoviridae—Cryppavirales). Moreover, a conserved domain search (CDD, NCBI) indicated that it 

contained a conserved motif of the Mitovirus RNA dependent RNA polymerase Superfamily 

(Accession: cl05469; E-value = 1.13 × 10−113) (Figure 2e). This deduced protein sequence has 727 aa 

with a molecular mass of 84.85 kDa. The virus identified in the F. verticillioides strain FvSec505 

exhibited the highest similarity to Fusarium andiyazi mitovirus 2 strain FS09 with 83.63% identity. 

The species demarcation criteria in the genus Mitovirus, defined by the ICTV 9th Report 

(https://talk.ictvonline.org/), indicate that mitoviruses with homologies in amino acid sequence of 

RdRp proteins greater than 90%, belong to different strains of the same mitovirus species. Therefore, 

we can conclude that the dsRNA segment identified in the F. verticillioides strain FvSec505 

corresponds to a novel mycovirus, a tentative member of a new species, belonging to the genus 
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Mitovirus of mitochondrial mycoviruses with +ssRNA genomes. We have named this novel 

mycovirus, the first reported in this fungal pathogen, Fusarium verticillioides mitovirus 1 (FvMV1). 

A phylogenetic analysis (Figure 3) clustered the novel mitovirus FvMV1 isolated from F. 

verticillioides (Subcl. Hypocreomycetidae) with mitovirus FaMV2 isolated from F. andiyazi, and with 

the mitovirus NoMV2, isolated from a species of other fungal genus, Nigrospora oryzae (Subcl. 

Xylariomycetidae). Sequence identity between FvMV1 and NoMV2 was, however, clearly lower 

than that between FvMV1 and FaMV2, 50.28% and 83.36%, respectively. 

 

Figure 3. Phylogenetic analysis of mitoviruses (Mitoviridae) isolated from fungi of the Ascomycota 

phylum. The tree is displayed as a rectangular phylogram of 73 mitoviruses and rooted on the 

branch to members of the genus Narnavirus (Narnaviridae) as external group (FpNV1: 

YP_009272902.1, Sacc.20RNV: NP_660178.1 and Sacc.23RNV: NP_660177.1). The tree was inferred 
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using the Neighbor-Joining method, based on multiple sequence alignments through MAFTT 

software (L-INS-i, automatized election). The evolutionary distances were computed using the 

Poisson correction method (uniform rates between sites), and are in the units of the number of amino 

acid substitutions per site. All positions containing gaps and missing data were eliminated (complete 

deletion option). The percentage of replicate trees in which the associated taxa clustered together in 

the bootstrap test (1000 replicates) is shown as node labels (values are in percentage and less than 

90% were hidden in the graph). The scale bar represents substitutions per site. The viruses identified 

and characterized in this study are indicated with a blue star. 

In the F. andiyazi strain Fa162, HTS of RNAs and sequence analysis also identified a single virus 

genome, 2441 bp in length with high AT richness (GC = 29.5%). The mycovirus genome was found to 

contain a single ORF (genetic code 4) of 2175 nt, extending from nt 225 (AUG) to nt 2399 (UAG) 

(Figure 2d), flanked by 5′- and 3′-UTRs 224 nt and 42 nt in length, respectively. This single ORF 

encoded a 724 aa protein, with a molecular mass of 84.63 kDa. A similarity search showed that this 

protein shared strong similarity with the RdRps of mitoviruses. A conserved domain search (CDD, 

NCBI) also identified a motif conserved in the Mitovirus RNA dependent RNA polymerase 

Superfamily (Accession: cl05469; E-value = 9.64 × 10−118). The predicted protein encoded by this 

mycovirus was found to be most similar (95.44% identity) to the RdRp of Fusarium andiyazi 

mitovirus 1 (FaMV1) (accession: QIQ28423.1). Therefore, according to ICTV rules, the mycovirus 

identified in F. andiyazi in this work represents a new strain of a previously identified mitovirus, 

which we have named Fusarium andiyazi mitovirus 1 strain 162 (FaMV1-162). FaMV1 was 

identified in a recent study on sugarcane pathogens in China, by Yao and coworkers [77], together 

with a second mitovirus, Fusarium andiyazi mitovirus 2 (FaMV2). Interestingly, FaMV1 and 

FaMV1-162 also shared a 95.44% identity with a mitovirus identified in a different Fusarium species, 

Fusarium circinatum mitovirus 2-1 (FcMV2.1) isolated from the conifer pathogen F. circinatum in 

Spain [94]. Considering the high aa sequence identity, these mycoviruses isolated from two different 

Fusarium species represent three strains of the same mitovirus species. In some fungal genera, like 

Heterobasidium, mycoviruses appear to be readily transmitted between species [95]. Future studies 

should be carried out in order to evaluate the mycovirus interspecific transmission between these 

Fusarium species with close phylogenic relationship. 

Members of the genus Mitovirus are characterized by having a mono-segmented and 

non-encapsidated +ssRNA genome, so-called naked RNA replicons, and a subcellular localization in 

the host mitochondria [93,96]. Their genome is generally small in size, ranging from 2.0 to 4.5 kb, and 

rich in A-U (generally > 60%), with a single long open reading frame (ORF) that encodes an RdRp 

[96]. The genomes of FvMV1 and FaMV1-162 have these typical features of mitoviruses with sizes 

close to 2.5 kb, and 71.4% and 70.6% AU content, respectively. The UTRs of mitoviruses usually form 

looped structures with dsRNA regions, which are proposed to be involved in replication [93]. We 

predicted that the 5′- and 3’-UTRs of FvMV1 and FaMV1-162 have the ability to self-fold to form 

looped structures with dsRNA regions stable at room temperature (Supplementary Figure S1). 

Another feature of mitoviruses is that they contain a high amount of UGA codons in their genome 

[96]. The UGA codon is a stop signal in the mRNA translation system of cytoplasmic ribosomes. 

However, in the mitochondria of filamentous fungi, UGA is the codon for the amino acid tryptophan 

[97]. The replacement of UGG by UGA as the codon for tryptophan in the genome of the member of 

the genus Mitovirus, as a consequence of the mitochondrial translation system selective pressure 

[98], implies that they cannot replicate in the cytoplasm. In accordance with the mitovirus replicative 

cycle, two artificial groupings could be established. One includes mitoviruses that can reproduce 

theoretically in both the mitochondria and cytoplasm (ORF with relation UGA/UGG = 0), while a 

much broader one includes mitoviruses that can be only reproduced in the host mitochondria (ORF 

with UGA/UGG ratio > 0). In the genome of FvMV1, 100% of the tryptophan (11/11) is encoded by a 

UGA codon. Similarly, in the FaMV1-162 genome, 92% of the tryptophan (11/12) is encoded by a 

UGA codon. These results indicate that FaMV1-162 and FvMV1 might replicate exclusively in the 

fungal host’s mitochondria. Furthermore, this highly probable exclusive mitochondrial localization 

of FaMV1-162 and FvMV1 could explain their very efficient transmission to conidia, since during 
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formation of conidia, it necessarily receives one or more mitochondria from the conidiophore hypha 

and, therefore, the legacy of the Mitoviruses. 

Mitoviruses are widely distributed in nature [76,99,100], including a great diversity of fungal 

species [96]. Mitoviruses are the most common mycoviruses isolated from Fusarium species 

[52,77,96]. Infections caused by the majority of the mitoviruses reported so far are asymptomatic. 

However, some mitoviruses that produce phenotypic alterations have been identified. Wu et al., 

[35,101] reported hypovirulence and growth alterations caused by the mitovirus BcMV1 in Botrytis 

cinerea. A similar effect was attributed to SsMV1 infection in Sclerotinia sclerotium [102]. Alterations in 

the ultrastructure, size, and quantity of mitochondria have been associated with the presence of 

mitoviruses TbMV [103] and BcMV1 [101] in their natural hosts Chalara elegans (Thielaviopsis 

basicola) and Botrytis cinerea, respectively. As a first approach to determining if the identified 

mycoviruses might induce alterations in the host, we compared the phenotype of FvSec505 and 

Fa162 with that of mycovirus-free isolates of the same species. The phenotypic characterization 

included analysis of growth rate, lag phase, conidia production (Table 2), FB1 production (Figure 4), 

and pathogenicity (Figure 5). In F. andiyazi, FaMV1-162 infected strain Fa162 and a virus-free strain 

sample in the same area, Fa210, exhibited no significant differences in growth, conidiation, or 

virulence. These results are in agreement with those by Yao et al., [77] who reported that FaMV1 

caused asymptomatic infection in F. andiyazi. In contrast, the F. verticillioides strain Sec505 infected 

with the novel mitovirus FvMV1 showed clear phenotypic differences with two virus-free F. 

verticillioides strains, FvM3125 and FvArv2300. Interestingly, what we observed was a significant 

increase in conidia and FB1 production in the F. verticillioides strain FvSec505 harboring mitovirus 

FvMV1, compared with the two uninfected strains (Table 2 and Figure 4). We also observed an 

increase in virulence in the presence of FvMV1. Thus, there was a significant reduction in the 

seedlings growth rate and seedling biomass when seeds were inoculated with FvSec505 conidia, 

compared with FvM3125 and FvArv2300 infections (Figure 5a,b). Several studies have shown that 

fumonisin production is a key factor involved in the F. verticillioides pathogenicity [104,105]. Hence, 

the relatively higher virulence of FvSec505 and its increased FB1 production could be linked. 

Observation of phenotypic alterations in an infected strain can be an indication that this virus 

infection has effects on the host. However, to confirm that those phenotypic alterations are caused by 

the mycovirus, isogenic infected and virus-free strains have to be generated. To our knowledge, 

there are no reports on mitoviruses being linked to increased severity of fungal disease. The 

molecular analysis of mycovirus–fungus interactions that result in increased virulence and 

fumonisin production can provide new insights into the regulation of these processes. As a result, 

we considered of interest to conduct the analysis of the FvMV1–F. verticillioides interaction. Bearing 

this in mind, single spore cultures of FvSec505 were produced as an avenue to select a virus-free 

version of this strain, and also to analyze the transmission rates of FvMV1 to the next generations 

(vertical transmission). Single spore cultures of F. andiyazi Fa162 infected with FaMV1-162 were also 

produced to get a general picture of vertical transmission rates to the conidia of both mitoviruses 

identified in this study. Analysis of monosporic cultures by chromatography on cellulose showed 

that all of them still contained the virus (Figure 6). Therefore, unfortunately, production of 

monosporic cultures of FvSec505 and Fa162 failed to generate a virus-free version of these strains, 

since the transmission rate of FvMV1 and FaMV1-162 to conidia was 100%. In addition to single 

spore cultures, a hyphal tip isolation strategy was also developed in order to obtain infected and 

uninfected isogenic strains. However, this was not successful. These results led us to conclude that 

FvMV1 infection is very stable in the fungus tissues. Other approaches to generate strains for the 

analysis of F. verticillioides phenotypic traits in the presence/absence of FvMV1 in the same genetic 

background are being implemented. 
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Table 2. Growth rate, lag phase, and conidia production of the mycovirus-infected and 

mycovirus-free strains. 

Fusarium Isolate 
Growth Rate (mm/Day) Lag Phase (Hour) 

Conidia/mL/mm2 
PDA CDA PDA CDA 

FvM3125 4.89 ± 0.09a 6.06 ± 0.10a 46.58 ± 1.13b 31.58 ± 0.85a 3303.85 ± 463.13a 

FvSec505 6.53 ± 0.09b 7.09 ± 0.0c 35.40 ± 1.04a 31.38 ± 0.95a 5346.24 ± 463.14b 

FvArv2300 6.97 ± 0.08c 6.65 ± 0.10b 37.73 ± 0.90a 28.88 ± 0.95a 3797.20 ± 463.14a 

Fa162 6.20 ± 0.08y 8.18 ± 0.09z 32.88 ± 0.96z 31.35 ± 0.62z 4472.34 ± 401.94z 

Fa210 6.79 ± 0.08z 7.15 ± 0.10y 32.31 ± 0.90z 31.22 ± 0.60z 5006.96 ± 401.94z 

Growth rate, lag phase, and conidia production of the mycovirus-infected strains (Fusarium andiyazi 

162, Fa162, with FaMV1-162 and F. verticillioides Sec505, FvSec505, with FvMV1), and of the virus-free 

strains (F. andiyazi 210, Fa210, F. verticillioides M3125, FvM3125, and F. verticillioides Arv2300, 

FvArv2300). Values were expressed as means ± standard error. The infected FvSec505 strain was 

compared with the virus-free FvM3125 and FvArv2300 strains. In addition, Fa162 was compared 

with the virus-free Fa210 strain. Values having different letters are significantly different between 

treatments, according to the Fisher test of multiple ranges (p ≤ 0.05). The experiments were 

performed twice with 4 replicates for each strain. 

 

Figure 4. Fumonisin B1 (FB1) production of F. verticillioides strain FvSec505 infected with FvMV1 

compared with two virus-free strains, FvM3125 and Fvarv2300. FB1 production (µg/mg of mycelium 

biomass) in GYAM culture medium at 25 °C was expressed as means and SE. Bars with different 

letters are statistically different from each other, according to the DGC multiple range test (p ≤ 0.05). 

Whiskers show standard error. Five replicas were prepared for each sample, and the experiment was 

repeated twice. 
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Figure 5. Phytopathogenicity of infected and mycovirus-free strains towards seedling of Zea mays L. 

(a) Growth of corn seedlings infected with the different fungal strains. The inoculation was carried 

out in the seeds, and the seedlings were cultivated in a hydroponic system with controlled 

photoperiod, temperature, and humidity. The height of the plant stem was measured after 

germination, when the coleoptile or the first leaf exceeded 5 cm in height. Measurements were taken 

on day one, four, eight, and fifteen post germination. The values are expressed as means of plant 

height, and the whiskers show standard error. The asterisk indicates a significant difference with 

respect to the other measurements on the same day (multiple range DGC test, p < 0.05). (b) Plant 

biomass of infected seedlings. Values are expressed as biomass mean, and whiskers show standard 

error. The values containing an asterisk are statistically different from the others, according to the 

multiple range DGC test (p < 0.05). In panels (a,b), Fusarium verticillioides and F. andiyazi strains were 

evaluated separately. The mycovirus-infected strains are Fusarium andiyazi 162 (Fa162 with 

FaMV1-162) and F. verticillioides Sec505 (FvSec505 with FvMV1), and the virus-free strains are F. 

andiyazi 210 (Fa210), F. verticillioides M3125 (FvM3125) and F. verticillioides Arv2300 (FvArv2300). 

 

Figure 6. Agarose gel electrophoresis (0.8% w/v in buffer TAE) of chromatography on cellulose 

extracts prepared from monosporic cultures of mycovirus-infected fungal strains. Lanes 1 through 

11: extracts from monosporic cultures prepared from F. andiyazi strain Fa162; lanes 12 through 20: 

extracts from monosporic cultures prepared from F. verticillioides strain Fv505; Lanes M, 1 Kb DNA 

molecular weight marker (NZYDNA Ladder III, NZYTech®, Paço do Lumiar, Lisboa, Portugal). 
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The present survey of mycoviruses in F. verticillioides isolated from maize produced in 

Argentina showed a very low incidence of virus infection in this fungal species; only 1 out of 99 

isolates (1.01%) analyzed by chromatography on cellulose was confirmed to harbor a mycovirus. 

This is a quite low viral infection rate compared with that found in other Fusarium species, although 

it should be noted that numbers greatly varied in different studies. For instance, a survey in China 

using RNA-seq technology identified mycovirus sequences in 9 out of 41 F. andiyazi isolates (21.9%) 

and 6 out of 42 F. sacchari isolates (15.3%) analyzed [77]. Surveys in Korea and Iran have shown 2.3% 

and 3.6% incidence of viral infection in F. graminearum isolates from maize, respectively [58]. In 

contrast, incidence of viral infection was found to be very high in a collection of F. virguliforme 

isolates, where 23 out of 44 isolates (52%) showed presence of mycoviruses [106]. On the other hand, 

in F. andiyazi, we found that 1 out of 6 isolates from sorghum analyzed was infected. However, we 

consider that the sample was too small and not representative enough to allow us to draw any 

conclusion regarding the mycovirus infection rate of this Fusarium species infecting sorghum in 

Argentina. Hyphal anastomosis is the main route of mycovirus horizontal transmission [3,20]. This 

process is regulated by a series of fungal loci, designated hsi (heterokaryon self-incompatibility), het 

(heterokaryon incompatibility), vic (vegetative incompatibility), or sup (suppressors) [107]. Fusarium 

verticillioides has at least 10 vic loci, and assuming that each vic locus in the population segregates 

only two alleles, the number of VCGs that theoretically can be found in the population is 2 × 1010 = 

1024 [72,107]. A study carried out by Chulze et al. [108] in Córdoba, Argentina, on maize sampled 

within a 50Km diameter area, indicated that in 36 F. verticillioides isolates tested, the VCG/isolate 

ratio was 0.77, that is, it was rare that two or more isolates belonged to the same VCG [108]. It can be 

hypothesized that the highly complex VCG structure contributed to limit the spread of mycoviruses 

in this fungal pathogen. However, it is unlikely that a complex VCG structure alone can explain the 

low incidence of viral infection we reported here for F. verticillioides, since there is little evidence in 

the literature of a clear correlation between mycovirus incidence and the complexity of VCG 

structure [109,110]. Additional mycovirus surveys will be required to determine if the low incidence 

of viral infection in F. verticillioides reported here extends to other world regions. We will conduct 

future studies on the transmission of FvMV1 and FaM1-162 to the ascospores, since sexual 

reproduction in F. verticillioides is known to be relatively frequent in the fields of central Argentina 

[108], and sexual reproduction might provide an avenue for mycovirus transmission between 

vegetative incompatible fungal strains [111]. 

In the coming years, a higher incidence of Fusarium diseases is expected in most corn-producing 

regions, due to a prevailing trend towards higher temperatures, higher evapotranspiration, and an 

increase in the frequency of extreme weather events [112,113]. Due to the low efficiency of fungicides 

in reducing F. verticillioides disease symptoms and fumonisin contamination, and their negative 

environmental impact, there is a need to develop new disease management approaches. The use of 

mycoviruses represents an interesting biological control strategy to explore. The development of 

efficient mycovirus-based control strategies requires the analysis of important aspects, such as 

efficiency of mycovirus transmission and the mechanisms that control the mycovirus–host 

interaction leading to stable virus infection in fungal cells. Furthermore, mycoviruses that induce 

alteration in growth, virulence, and/or mycotoxin production might provide an interesting tool to 

shed light on the molecular mechanisms that control these processes. To our knowledge, the results 

presented here represent the first contribution to the study of mycoviruses in the major fungal 

pathogen F. verticillioides. The findings reported include the analysis of the mycovirus infection rate 

in a large collection of isolates of F. verticillioides, the molecular description of the first mycovirus 

isolated from this species, the study of its transmission rate to conidia, and the uncovering of 

potential phenotypic effects on the host, which are worth further exploring. A strategy based on 

protoplast fusion is being developed in order to obtain the infected and uninfected F. verticillioides 

isogenic strains (same genetic background), and to evaluate the effect of FvMV1 on fungal growth, 

fumonisin production and fungal pathogenicity in maize. Furthermore, future study on the 

transmission of FvMV1 to the sexual spores of F. verticillioides will be carried out to better 

understand the biology of the fungus–virus interaction. 
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Supplementary Materials: The following are available online at www.mdpi.com/1999-4915/12/10/1161/s1. 

Figure S1: Predicted secondary structures (2-D representation of this self-folding) of the terminal untranslated 
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