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Abstract

Spatially resolved estimates of change in soil organic carbon (SOC) stocks are nec-

essary for supporting national and international policies aimed at achieving land

degradation neutrality and climate change mitigation. In this work we report on

the development, implementation and application of a data-driven, statistical

method for mapping SOC stocks in space and time, using Argentina as a pilot. We

used quantile regression forest machine learning to predict annual SOC stock at

0–30 cm depth at 250 m resolution for Argentina between 1982 and 2017. The

model was calibrated using over 5,000 SOC stock values from the 36-year time

period and 35 environmental covariates. We preprocessed normalized difference

vegetation index (NDVI) dynamic covariates using a temporal low-pass filter to

allow the SOC stock for a given year to depend on the NDVI of the current as well

as preceding years. Predictions had modest temporal variation, with an average

decrease for the entire country from 2.55 to 2.48 kg C m−2 over the 36-year period

(equivalent to a decline of 211 Gg C, 3.0% of the total 0–30 cm SOC stock in

Argentina). The Pampa region had a larger estimated SOC stock decrease from

4.62 to 4.34 kg C m−2 (5.9%) during the same period. For the 2001–2015 period,

predicted temporal variation was seven-fold larger than that obtained using the

Tier 1 approach of the Intergovernmental Panel on Climate Change and United

Nations Convention to Combat Desertification. Prediction uncertainties turned

out to be substantial, mainly due to the limited number and poor spatial and
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temporal distribution of the calibration data, and the limited explanatory power of

the covariates. Cross-validation confirmed that SOC stock prediction accuracy was

limited, with a mean error of 0.03 kg C m−2 and a root mean squared error of

2.04 kg C m−2. In spite of the large uncertainties, this work showed that machine

learning methods can be used for space–time SOC mapping and may yield valu-

able information to land managers and policymakers, provided that SOC observa-

tion density in space and time is sufficiently large.

Highlights

• We tested the use of machine learning for space–time mapping of soil

organic carbon (SOC) stock.

• Predictions for Argentina from 1982 to 2017 showed a 3% decrease of the

topsoil SOC stock over time.

• The machine learning model predicted a greater temporal variation than the

IPCC Tier 1 approach.

• Accurate machine learning SOC stock prediction requires dense soil sam-

pling in space and time.
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1 | INTRODUCTION

The monitoring, modelling and mapping of soil organic
carbon (SOC) is important for many reasons. SOC, a
proxy for soil organic matter content, is a major determi-
nant of soil quality and soil fertility, SOC sequestration
can contribute substantially to climate change mitigation
(Batjes, 2019; Minasny et al., 2017), and SOC stock is one
of three Land Degradation Neutrality indicators used by
the United Nations Convention to Combat Desertifica-
tion (UNCCD). Parties to the UNCCD have agreed to
report on SOC stock trends at regular time intervals in
Nationally Determined Contributions (UNCCD, 2019).

By building on recent advances in digital soil mapping
(DSM), many SOC maps on national, continental and
global scales have been produced during the past decade
(e.g., Adhikari et al., 2014; FAO & ITPS, 2018; Hengl
et al., 2017; Kempen et al., 2019; Mulder, Lacoste, Richer-
de-Forges, & Arrouays, 2016; Stoorvogel, Bakkenes,
Temme, Batjes, & Ten Brink, 2017). However, the majority
of these maps are static, whereas SOC is dynamic and SOC
dynamics are of particular interest to carbon sequestration
and land degradation studies. Thus, there is a clear need to
extend spatial SOC mapping to space–time SOC mapping.

There are not that many studies on modelling and
mapping SOC variation in space and time at the national
to global scale, but several approaches can be

distinguished. Perhaps the simplest approach is that used
in the UNCCD-modified intergovernmental panel on cli-
mate change (IPCC) Tier 1 and Tier 2 methods
(IPCC, 2006; Mattina et al., 2018). Here, one starts with a
static, baseline SOC stock map for a reference year, and
models the SOC change from the reference year onward
by modification of the baseline map through multiplica-
tion with land-use change, management and input fac-
tors. This approach is commonly adopted by countries
when reporting on carbon trends to the UNCCD.
Although it is relatively simple, the disadvantages are
that it is not obvious how to derive a baseline SOC map
for a reference year, that management and input factors
are not easily obtained at the country scale (and hence in
practice often ignored), and that linking SOC change
directly to land-use change is challenging. Land-use
change in itself is difficult to model (Verburg et al., 2019),
strongly influenced by the land-use classification system
used, and there is considerable SOC variation within
land-use classes (Lamichhane, Kumar, & Wilson, 2019).

Another approach to modelling and mapping SOC in
space and time is to first derive a static, empirical DSM
model in the usual way and model the SOC temporal varia-
tion by recognizing that some of the covariates of the
model are in fact dynamic. SOC temporal variation may
then be derived by submitting these dynamic covariates to
the DSM model. Using this approach, Stockmann
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et al. (2015) derived a global topsoil SOC model that had
land-cover as a main driver of SOC change. By running this
model with moderate resolution imaging spectroradiometer
(MODIS) land-cover maps for 2001 and 2009, they derived
a global SOC change map between 2001 and 2009 at 1-km
resolution. Gray and Bishop (2016) mapped SOC changes
for New South Wales until 2070 by calibrating a decision
tree DSM model using legacy soil data and climate, terrain,
parent material, age and biota covariates, and running the
model on different climate change projections. Yigini and
Panagos (2016) used a similar space-for-time-substitution
approach to map SOC stocks in Europe under future cli-
mate and land-cover changes. Huang, Hartemink, and
Zhang (2019) mapped SOC stock for several years in the
1850–2002 period for the state of Wisconsin, USA. They first
calibrated a random forest DSM model using SOC data
from 1980 onwards and vegetation, climate and terrain
covariates. By utilizing the fact that climate and land-use
were important drivers of their model, substituting historic
land-use and climate maps provided insight into SOC stock
change over the past 150 years. Although the space-for-
time-substitution approach is attractive because it allows
derivation of SOC maps beyond the time period within
which SOC observations are made, it builds on the assump-
tion that the relationship between SOC and covariates can
be extrapolated over time. Szatmári et al. (2019) mapped
the SOC stock change between 1992 and 2010 for Hungary
by fitting separate DSM models for both years. They
benefited from the fact that in Hungary sampling sites were
revisited and SOC observations at the sampling sites were
available for both years. The advantage of this method is
that no time extrapolations are made, but it only works if
SOC data are available for both years and cannot predict
SOC in years for which no or insufficient SOC data are
available.

Approaches to capture SOC dynamics that do more
justice to the underlying physical, chemical and biologi-
cal processes make use of semi-mechanistic models, such
as RothC and CENTURY (e.g., Abramoff et al., 2018;
Gottschalk et al., 2012; Karunaratne, Bishop, Lessels, Bal-
dock, & Odeh, 2015; Lugato, Panagos, Bampa, Jones, &
Montanarella, 2014; Smith et al., 2005; Woolf &
Lehmann, 2019). Alternatively, Earth System Models
have also been used (e.g., Todd-Brown et al., 2014). The
semi-mechanistic approach is particularly attractive
when the goal of modelling is not just prediction but also
understanding, because it can integrate existing knowl-
edge on soil processes and account for different soil car-
bon pools, but application on national to global scales is
challenging. Different processes are dominant in different
parts of the world and must all be represented in a global
model. Model parametrization is difficult because it is
not realistic to assume that parameters are spatially

invariant in case of large-scale applications. Moreover,
boundary conditions and driving forces of semi-
mechanistic models are often poorly known. Computa-
tional requirements may also be limiting for large-scale
applications, although this is not a fundamental problem
given the rapid developments in geo-computation.

This paper has three main objectives. First, we extend
on existing space–time SOC mapping approaches by devel-
oping a fully data-driven, machine learning model that is
calibrated with SOC observations that cover the entire time
period for which predictions are to be made and that uses
static and dynamic covariates from that same period. We
decrease the risk of unwarranted extrapolations by requir-
ing that the same covariates are used for calibration and
prediction. We also require that the covariates are publicly
available for the globe and have sufficiently fine spatial
and temporal resolution, thus allowing future applications
of this work to map any region on the globe where tempo-
ral soil data are available. Second, we test the performance
of the model for a pilot area and time period. We use the
space–time topsoil SOC stock in Argentina between 1982
and 2017 as a case study. We analyse results by evaluating
spatial patterns and temporal trends, the latter both for the
country as a whole as well as for regions within Argentina.
We also quantify the accuracy of the model predictions,
both using 10-fold cross-validation and by deriving 90%
prediction interval maps for all years. Third, we compare
the results of our model for the pilot area with those
obtained with the UNCCD-modified IPCC Tier 1 approach
and interpret differences.

2 | MATERIALS AND METHODS

2.1 | Space–time digital soil mapping
methodology

The modelling approach used is machine learning
for DSM (Hengl et al., 2017). Specifically, we used the qua-
ntile regression forest (QRF) algorithm (Meinshausen,
2006; Szatmári et al., 2019; Vaysse & Lagacherie, 2017)
to establish a relation between topsoil SOC stock and
environmental covariates. The main difference with
purely spatial DSM is that the regression matrix used
for model calibration is derived from a space–time
instead of a spatial overlay of SOC observations on
covariates. This requires that the year of soil sampling
is known for all SOC observations and that dynamic
covariates are available for all years in which SOC
observations are made. Once the regression matrix is
derived, model calibration, cross-validation and predic-
tion are carried out in the usual way (e.g., Hengl
et al., 2017). Specific details of these steps, such as
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model selection, choice of hyperparameters and com-
putational aspects, are provided after the soil data and
covariates of the pilot study have been introduced.

2.2 | Argentina terrain, climate, land-use
and soils

Argentina has a land surface area of 2.78 million km2

(about one-sixth of South America). Although the coun-
try is known for its spacious plains with fertile soils and
humid climate, these conditions represent less than one-
third of its surface area. The remaining space is domi-
nated by arid and semi-arid conditions. The climate is
predominantly temperate, although it is subtropical in
the north and subpolar in the far south. Argentina's
orography is characterized by the presence of mountains
in the west and plains in the east, with altitudes decreas-
ing generally from west to east (Gardi et al., 2014). The
main land-cover types are natural and semi-natural ter-
restrial vegetation (60%), cultivated and managed lands
(20%), and natural or semi-natural aquatic or regularly
flooded vegetation (8%). According to the Argentinian
Ministry of Environment and Sustainable Development,
more than 30,000 km2 of forest have been lost between
2007 and 2016. Argentina is a country of marked geolog-
ical, geomorphological and climatic contrasts, and thus
presents a wide variety of soils. Three USDA Soil Taxon-
omy soil orders (Mollisols, Entisols and Aridisols) cover
almost three-quarters of the country (Supporting Infor-
mation, Figure S1). Less extensive soil orders are
Alfisols, Inceptisols, Andisols, Vertisols, Histosols and
Ultisols.

2.3 | SOC concentration data for
Argentina

The soil dataset compiled for this project contains 18,768
observations on SOC concentration from 5,480 soil pro-
files throughout Argentina. The data were collected from
1955 onwards (Supporting Information, Figure S2). The
highest observation density is between 1970 and 1990,
corresponding with the national soil survey plan of the
country. Between 2005 and 2015, most data were col-
lected by soil fertility projects. The majority of observa-
tions (about 68%) are from the Argentinian SISINTA soil
database (Olmedo, Rodriguez, & Angelini, 2017), but to
increase sample size additional smaller datasets were
added. All observations were subjected to quality and
consistency checks and conversion factors applied to har-
monize SOC concentration data to the Walkley-Black
method (Richter, Massen, & Mizuno, 1973).

Most of the datasets that were merged for this study
correspond with soil observations down the profile at
multiple depths, sometimes using fixed intervals, some-
times by soil horizon. For all observations, the top and
bottom of the sampling depth interval were recorded.
Generally, there are more SOC observations for the upper
soil layers than for the deeper soil layers. Conversion to
0–30 cm, 30–60 cm and >60 cm depth intervals was
achieved by weighted averaging of SOC observations per
depth interval, assuming constant SOC concentration
within each sampling interval. Histograms of the SOC
concentration for the three depth intervals are provided
in the Supporting Information (Figure S3). Note that in
this study, we only used the topsoil SOC (0–30 cm).

2.4 | Conversion to SOC stock

Topsoil SOC stock values at sampling sites were derived
from observations of SOC concentration, bulk density
and coarse fragments as follows:

SOCstock kgCm−2
� �

=SOCconcentration g kg−1� �

�BD gcm−3
� � � 1−CRFð Þ �0:3 mð Þ, ð1Þ

where BD is bulk density and CRF the proportion of coarse
fragments. Here, all variables refer to the top 0–30 cm of
the soil. The proportion of coarse fragments at each sam-
pling location was derived from the betaSoilGrids2019 prod-
uct (SoilGrids, 2019). Bulk density was measured for only
940 out of the total of 18,768 soil samples. We “filled the
gaps” using a random forest pedotransfer function (PTF)
that predicts BD from other soil properties and environ-
mental covariates (Ramcharan, Hengl, Beaudette, &
Wills, 2017). We calibrated the PTF using a randomly
selected subset (n = 31,530) from the 2019 version of the
WoSIS database (Batjes, Ribeiro, & Van Oostrum, 2019) for
which BD observations were available, and used SOC con-
centration, global land-cover from 2009, and mean precipi-
tation and mean temperature from WorldClim (Fick &
Hijmans, 2017) as predictors. Comparison of BD predictions
with the remaining BD observations in WoSIS (n = 21,017)
yielded a root mean squared error (RMSE) of 0.171 g cm−3

(Figure 1, left panel). Comparison of PTF predictions for
the 940 BD observations of the Argentinian dataset resulted
in an RMSE of 0.243 g cm−3 (Figure 1, right panel).
Figure 1 also reports the mean error (ME) and the concor-
dance correlation coefficient (CCC) between predictions
and independent observations. Note that the PTF model
produced biased predictions in Argentina, which is not
unexpected because we applied a PTF model calibrated on
a global dataset to a local validation set.
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Using the PTF, we expanded the bulk density dataset
to all 18,768 soil samples of the Argentina soil dataset.
Thus, only 940 of these are real bulk density observations,
whereas all other bulk density values are PTF predictions.
Although the predictions are only proxies of the “true”
bulk density, we ignored PTF errors and treated all 18,768
BD values as if “error free”. After conversion to BD values
for the 0–30 cm depth interval using weighted averaging,
0–30 cm SOC stock observations were derived using Equa-
tion 1. Supporting Information Figure S4 shows a histo-
gram of the topsoil SOC stock data. The total number of
0–30 cm SOC stock values available for calibration of the
SOC stock machine learning model was 5,114.

2.5 | Covariates for Argentina

We only used publicly available global covariates to
facilitate future extension of the model from the pilot
area to the globe. The main source of static covariates
was the database used by SoilGrids (Hengl et al., 2017)
and included a digital elevation model and derivatives,
land-cover, long-term average climate variables and
lithology. In particular we used MODIS products from
which a variety of vegetation indices were derived from
spectral bands, together with information about pri-
mary productivity and evapotranspiration.

Dynamic vegetation indices (i.e., normalized difference
vegetation index (NDVI)) were derived from advanced very-
high resolution radiometer (AVHRR) images, globally avail-
able from 1982 onwards. These indices were available as
daily values and were aggregated to seasonal values for each
year. These seasonal covariates were further processed by
generating weighted averages over multiple years, going
back in time. We did this so that the SOC stock for a given

year need not only depend on the NDVI for the seasons in
that same year, but might also depend on seasonal NDVI
values in previous years, because vegetation change has a
delayed effect on SOC change. For this we used an expo-
nential decay function (see Figure 2). All NDVI covariates
associated with three values of the exponential decay
parameter a were included in the machine learning algo-
rithm (i.e., a = 0.6, a = 0.8 and a = 0.9). Application of the
exponential decay function requires that covariates are
needed for years before the starting year of the prediction
time series. In order to not shorten the time series of the
SOC prediction maps, we assumed that the dynamic
covariates for the years before the starting year were equal
to the covariates of the starting year. To reduce computing
time, we also applied a threshold of 0.1, meaning that we
only included contributions from the past for which the
exponential decay function is above the threshold.

The original covariates varied in spatial resolution
from 100 m to 10 km and were brought to a common reso-
lution of 250 m and re-projected to an equal-area projec-
tion to avoid areal distortion (de Sousa, Poggio, &
Kempen, 2019). They were also brought to a common
extent by clipping to the pilot area (i.e., a gridded map of
Argentina from which all non-soil areas were filtered out).

2.6 | Model selection, cross-validation
and prediction

Recursive feature elimination analysis (RFE, Guyon,
Weston, Barnhill, & Vapnik, 2002) was used to select the
best performing subset of static covariates. The RFE pro-
cedure is similar to backward regression, in that it starts
with the maximum number of covariates and iteratively
removes the weakest explanatory variable until a

FIGURE 1 Density scatter plots of predicted against observed bulk density for a validation subset of the WoSIS database (left) and

independent Argentinian validation data (right). Solid line is the 1:1 line. ME, mean error; RMSE, root mean squared error; CCC,

concordance correlation coefficient
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specified number of covariates is reached. By doing this
for all possible numbers of covariates and plotting perfor-
mance indices computed on “out-of-bag” observations,
the optimal number of covariates to be included in
modelling is derived. Next, we extended the set of
covariates by adding all 12 dynamic NDVI covariates
(i.e., all combinations of four seasons and three exponen-
tial decay parameters). The QRF hyperparameters mtry
and ntree were set to default values, that is, the square
root of the number of covariates and 500, respectively.

The performance of the final model was evaluated
using 10-fold cross-validation. Thus, the dataset was ran-
domly split into ten equally sized folds, and nine of these
were used to calibrate the QRF model and predict the
SOC stock for the remaining fold. This procedure was
carried out 10 times, each time setting aside a different
fold. We plotted the predictions against the independent
observations and computed the ME, RMSE and CCC.

Predictions were made for the whole of Argentina at
250 m resolution for each year in the 1982–2017 period.
Note that because we used QRF, predictions could be made
for different quantiles. We used the 0.5-quantile (i.e., the
median) as a prediction of the SOC stock and the 0.05- and
0.95-quantiles as the lower and upper limits of a 90% predic-
tion interval, respectively. We also spatially aggregated the
maps of the median SOC stock for the entire country and
for specific regions within the country, and plotted the spa-
tial averages as time series to analyse temporal SOC stock
trends. Note that we could not derive the uncertainty
(i.e., the 0.05- and 0.95-quantiles) associated with these spa-
tial aggregates because this requires the spatial autocorrela-
tion of prediction errors (Kros et al., 2012; Plaza
et al., 2018), which is not computed by QRF.

2.7 | Implementation and computational
aspects

We used GRASS GIS (GRASS, 2019) for covariates
preparation, data storage and tiling of predictions. The

modelling was carried out with R software (R, 2019), in
particular the ranger package (Wright & Ziegler, 2017).
The procedure was implemented in parallel using a
High Performance Computing facility of Wageningen
University. The predictions were parallelized using a
tiling approach. The full workflow (model fitting,
cross-validation and prediction on a 250 m grid for
each of the 36 years) took approximately 3,000 CPU hr.

2.8 | Comparison with UNCCD-modified
IPCC Tier 1 results

Maps of the 0–30 cm SOC stock change for Argentina
between 2001 and 2015 were also derived separately
using the UNCCD-modified IPCC approach. This
approach was reviewed in the Introduction and is docu-
mented in more detail in Chapter 4 of the UNCCD Good
Practice Guidelines (Mattina et al., 2018). It is also
implemented in the Trends Earth Plugin tool (Trends.
Earth, 2019). We restrict ourselves here to the Tier
1 approach, which is based on readily available global/
regional earth observation data and geospatial modelling
techniques. Starting from a baseline SOC stock map, the
UNCCD-modified IPCC Tier 1 approach (IPCC, 2006)
considers three change factors:
1 a land-use factor (FLU) that reflects carbon stock

changes associated with land-use change;
2 a management factor (FMG) representing the main

management practice specific to the land-use sector
(e.g., different tillage practices in croplands); and

3 an input factor (FI) representing different levels of car-
bon input to soil.

Assuming land-cover can be a stand-in for land-use,
the FLU change factor can be populated from land-cover
and its annual transitions. The European Space Agency
(ESA) CCI-LC 300 m dataset was selected as default Tier
1 data for the assessment of the land-cover trend. Because
there are no known reliable global or Argentinian data at

FIGURE 2 Exponential decay

function used to weigh dynamic

covariates over previous years. The

horizontal dashed line shows the

threshold value below which

exponential functions were truncated
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sufficient spatial resolution to obtain information on
FMG and FI, these change factors were not included in
the analysis.

3 | RESULTS

3.1 | Model selection

Recursive feature elimination indicated that the optimal
number of static covariates to be included was around
20 (Figure 3). Including more covariates did not lead to a
further decrease of the RMSE. Climate covariates were
most important, with precipitation covariate ranks
between 1 and 12 and temperature covariate ranks
between 8 and 35 (Figure 4). Elevation (rank 9) and
NDVI (ranks between 13 and 33) also contributed. NDVI
covariates were important for all three exponential decay
parameter values, indicating that considerable temporal
smoothing of NDVI was applied before it was used to pre-
dict SOC stock (see Figure 2).

3.2 | Cross-validation

A density scatter plot of predicted against observed SOC
stock (Figure 5) shows that predictions were not biased
(ME was small, 0.03 kg C m−2) and that prediction
errors were in some cases high (RMSE, 2.04 kg C m−2).
Note that SOC stock values in the low range prevailed
and that in this range, predictions and observations
were concentrated along the 1:1 line. We also computed
the modelling efficiency (Janssen & Heuberger, 1995).
This showed that the QRF model only explained 45% of
the 0–30 cm SOC stock variation. Figure 5 also shows
that the predictions had less variation than the observa-
tions. This is a common characteristic of statistical pre-
diction methods.

3.3 | Prediction maps

The spatial distribution of the 0–30 cm SOC stock was
quite stable over the 1982 to 2017 time period (Figure 6).
An animated GIF of the time series of annual predictions
is provided in Supporting Information Figure S5. From

FIGURE 3 Root mean squared

error (RMSE) for different numbers of

static covariates included in the

quantile regression forest (QRF) model

as obtained with recursive feature

elimination. Filled disc refers to the

optimal number of static covariates

FIGURE 4 Variable importance for the 0–30 cm soil organic

carbon (SOC) stock model (acronyms defined in Supporting

Information, Table S1)
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Figure 6 it is difficult to detect temporal trends in the
SOC stock (but see Figures 8 and 9 below). The spatial
pattern largely agreed with the 2017 Baseline Neutrality
Land Degradation (BNLD) 0–30 cm SOC stock map of
Argentina (Supporting Information Figure S6). The larg-
est SOC stock is observed in the mountainous regions
along the border with Chile and in the very south of Pata-
gonia. The lowest SOC stock is found in other parts of
Patagonia, whereas higher SOC stocks occur in the west-
ern part of the country, such as in the Pampa, southwest
of Buenos Aires.

The RMSE statistic shown in Figure 5 indicated that
prediction uncertainties were large. This was confirmed
by the quantile maps (shown in Figure 7 for the year
2017; results for the other years are similar). The differ-
ence between the 0.05- and 0.95-quantile SOC stock maps
is large, indicating that the 90% prediction interval was
wide for the whole country.

3.4 | Time series of spatial aggregates

For the entire country of Argentina, the average
0–30 cm SOC stock showed a small downward trend
over time, although it stabilized between 1990 and
2000, and slightly increased after 2010 (Figure 8). The
overall decrease from 1982 to 2017 is 0.0758 kg C m−2,
which equals 210.7 Gg (3.0% of the total 0–30 cm SOC
stock in Argentina). Time series of the 0–30 cm SOC
stock were also derived for three eco-regions of Argen-
tina, whose geographic extent is shown in Supporting

Information Figure S7. The Pampa region presented the
highest mean SOC stock and had an overall decreasing
trend, with a temporary increase from 1995 to 2002.
The Espinal region had the lowest mean SOC stock of
all three eco-regions considered. Its SOC stock gradu-
ally decreased from 2.86 kg C m−2 in 1982 to 2.69 kg C
m−2 in 2017. The Chaco Seco region had stable SOC
stocks over time.

3.5 | Comparison with UNCCD-modified
IPCC Tier 1 results

We also compared the predicted 0-30 cm SOC stock
change map between 2001 and 2015 with that obtained
using the UNCCD-modified IPCC Tier 1 method
(Figure 9).

• According to the UNCCD Tier 1 method, there was
hardly any change in the topsoil SOC stock.

• Based on the machine learning model, there are areas
where the topsoil SOC stock changed substantially,
with in some cases predicted changes (both up and
down) of more than 1.2 kg C m−2.

• According to the machine-learning approach, the top-
soil SOC stock for the entire country, over the 15-year
period, decreased by 153.4 Gg C, which is seven-fold
larger than the 22.7 Gg C estimated by the UNCCD
Tier 1 method.

4 | DISCUSSION

4.1 | Space–time modelling has high
uncertainty using currently available data

The spatial patterns of SOC changes obtained by the QRF
machine learning model agreed with recently published
baseline maps of Argentina developed using “conven-
tional” spatial DSM (Guevara et al., 2018), although these
baseline maps had systematically higher SOC stocks. The
systematic difference may be caused by the fact that we
predicted the median SOC stock, whereas these studies
derived the mean SOC stock (which is greater than the
median for right-tailed distributions). Another cause of
differences is that we excluded SOC data from before
1982 for model calibration, which is a substantial subset
of the total dataset (Supporting Information Figure S2).

All of the tested dynamic covariates to account for the
delayed effect of vegetation changes on SOC contributed
to the model performance. Performance may further
improve if more flexibility is applied and different decay

FIGURE 5 Density scatter plot of predicted against observed

0–30 cm soil organic carbon (SOC) stock (kg C m−2) for 1982–2017.
Solid line is the 1:1 line. ME, mean error; RMSE, root mean

squared error; CCC, concordance correlation coefficient
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functions are used. In particular, the model could be
extended with other dynamic covariates, such as dynamic
climate variables.

The added value of the approach taken in this paper
compared to static DSM studies is that in addition to

spatial patterns, we also derived temporal trends in SOC
stock, with annual prediction maps for a 36-year time
period. These trends appear realistic, but should be inter-
preted with care. The predicted changes in the 0–30 cm
SOC stock over time at point locations were an order of

FIGURE 6 Prediction maps of the 0-30 cm soil organic carbon (SOC) stock (kg C m−2) for the years 1982–2017, here shown in 5-year

time increments (all 36 maps are shown as an animation in the Supporting Information)
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magnitude smaller than the uncertainty associated with
these predictions. Apparently, the signal-to-noise ratio
was too weak to get sufficiently narrow prediction inter-
vals. This may not come as a surprise, in view of the
scales considered here. SOC temporal variation is much
smaller than SOC spatial variation, by over one order of

magnitude. Being based on a calibration set of “only”
5,114 SOC stock observations, computed for points (pro-
files) unevenly sampled in space and time, one cannot
expect highly accurate results at point locations. Both
quantile regression forest and 10-fold cross-validation
showed substantial uncertainty, where the latter may

FIGURE 6 (Continued)
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have underestimated the uncertainty somewhat. Default
cross-validation tends to yield too optimistic results in
the case of clustered sampling, in which case spatial or

spatiotemporal cross-validation may provide more realis-
tic uncertainty estimates (Meyer, Reudenbach, Hengl,
Katurji, & Nauss, 2018; Roberts et al., 2017). Note that
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FIGURE 8 Time series of the 0-30 cm spatial average soil organic carbon (SOC) stock (kg C m−2) for three eco-regions of Argentina (Pampa,

Espinal and Chaco Seco, Supporting Information Figure S7) and the entire country, for the 1982–2017 period

FIGURE 7 Maps of the 0.05 (left), 0.5 (centre) and 0.95-quantiles (right) of the 0-30 cm soil organic carbon (SOC) stock (kg C m−2) for

the year 2017
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additional uncertainty was introduced because bulk den-
sity measurements were available for only 10% of the
sites sampled for SOC. The PTF for bulk density pro-
duced biased predictions and had a large random error
component, although part of the differences shown in
Figure 1 are likely caused by measurement errors in the
bulk density validation data. The tendency to over-
estimate bulk density may have led to a systematic over-
estimation of the Argentina 0–30 cm SOC stock.

4.2 | Averaging predicted SOC stocks
over regions and the entire country

Although the uncertainty at point locations is large, pre-
dictions become less uncertain when averaged over
regions. This is because within a given region both posi-
tive and negative prediction errors occur, which are can-
celled out when spatial averages are taken
(Heuvelink, 1998, Section 2.5). This is why we computed
time series of spatial averages for the whole country and
three selected eco-regions. Although not quantifiable
without modelling the spatiotemporal correlation of pre-
diction errors, the trends shown in Figure 8 have lower
uncertainty than the point support predictions shown in
Figure 7. Although one must take care with interpreting
these time series, some tentative observations can
be made.

The overall decreasing trend in SOC stock for the
Pampa region over the 36-year time period may be
explained by the loss of natural grasslands and pastures

during this period (Viglizzo et al., 2011). After dropping
from 1982 to 1993, the time series showed an increase
from 1993 to 2001, followed by a drop of the same magni-
tude until 2009, after which it is stable until 2017. These
changes may have multiple causes, for example the
implementation of zero-tillage in cropping systems, a
widespread practice from 1993 onwards (Nocelli
Pac, 2017), and the expansion of the soybean cropping
area at the expense of grasslands (Piquer-Rodríguez
et al., 2018).

The Espinal region showed a gradual decrease of the
SOC stock in the period considered. According to
Viglizzo et al. (2011), this region has been dominated by
grasslands, which have been slightly reduced at the
expense of annual crops. Also, Piquer-Rodríguez
et al. (2018) showed that most of the land-use change in
this region between 2000 and 2010 was from grazing land
to cropland.

The stable SOC stock level between 1982 and 2017 in
the Chaco Seco region seems to be not in concordance
with the land-use change; in fact, during the last decades,
this region has been listed as a global deforestation
hotspot. According to the Argentinian Ministry of Envi-
ronment and Sustainable Development, the annual defor-
estation rate in the Chaco region varied between 170,000
and 320,000 hectares between 2001 and 2013. Baldassini
and Paruelo (2020) showed that land-use change in this
region has generally had a negative effect on SOC stocks,
but not in all cases. It also depends on land management.
They also showed that conversion from shrublands to
grazing areas might even increase SOC. This may explain

FIGURE 9 Predicted change

in 0-30 cm soil organic carbon

(SOC) stock (kg C m−2) between

2001 and 2015. Red colours indicate

a decrease over time, green colours

an increase. Left: United Nations

Convention to Combat

Desertification (UNCCD) Tier

1 approach. Right: space–time

machine learning model

12 HEUVELINK ET AL.



why the predicted SOC stock in this region was stable
over time, although a more thorough analysis is needed
to investigate this explanation. Given the substantial
uncertainty in our predictions, we cannot rule out that
the Chaco Seco region did experience a SOC stock
decrease during the time period considered, but that we
were not able to detect it with the available data.

4.3 | Machine-learning approach is more
sensitive than UNCCD Tier 1 approach

The lack of observed change in SOC stock between 2001
and 2015 using the UNCCD-modified IPCC Tier
1 approach may be a result of the fact that we ignored
the land management and input factors when computing
these maps, because of lack of information. By ignoring
land management and input factors, SOC stock change
could only occur where land-use change occurred. In
reality, there may be large variations in SOC stock and
important changes in SOC stock over time within the
same land-use type. This suggests that the SOC stock
change as predicted here using the UNCCD Tier
1 approach underestimates the real change.

4.4 | Recommendations for
improvement of predictions

Although spatial aggregation reduces uncertainty, from a
policy and decision-making perspective it is desirable to
assess SOC stock change at high spatial resolution. For
instance, this is crucial to evaluate the effectiveness of
carbon sequestration projects in specific regions, and to
identify regions within countries and agro-ecological
zones where unexpected increases and decreases of SOC
stocks occur (e.g., “hot spots”), and relate this to land-use
and land-management change. Sufficiently accurate
information at high spatial resolution may be obtained
using local SOC monitoring campaigns (e.g., De Gruijter
et al., 2016), but ideally a more global coverage of SOC
stock change at high spatial resolution is obtained, such
as using the approach presented in this work. For this, it
is imperative that the prediction accuracy is improved.

This study was an initial attempt to extend DSM from
spatial to space–time SOC prediction. We identify four
main ways to substantially improve prediction accuracy.

1 Collect more SOC observations. This is an obvious rec-
ommendation but that does not make it less true. One
possibility is to enlarge the study area and incorporate
high-quality SOC data from other countries. Note that
machine learning models can benefit from calibration

data that are collected in very different parts of the
world, provided the environmental conditions (i.e., the
soil forming factors) are similar. Thus, prediction accu-
racy is likely to improve if we add soil data from other
parts of the world that have similar conditions to the
data-poor areas (e.g., the Andes). The Argentina
dataset was also “deficient” in the sense that it con-
tains no repeated measurements over time at the same
locations (e.g., data from monitoring networks), which
still is the case for many countries (Smith et al., 2020).
Modelling temporal change can benefit greatly from
such repeated measurements, because it filters out spa-
tial variation. In recent years, various countries and
organizations have implemented soil monitoring cam-
paigns (e.g., Gubler, Wächter, Schwab, Müller, &
Keller, 2019; Orgiazzi, Ballabio, Panagos, Jones, &
Fernández-Ugalde, 2018; Smith et al., 2020); making
these data available for modelling could greatly
improve prediction accuracy. Such monitoring
schemes are becoming much easier to practically
implement with the use of soil sensing technologies, as
reviewed in Smith et al. (2020). However, it should be
noted that for SOC stock mapping we not only need
measurements of SOC concentration, but also bulk
density and proportion of coarse fragments. Apart
from repeated measurements over time, the spatial dis-
tribution of the sampling locations may also be opti-
mized for random forest (Wadoux, Brus, &
Heuvelink, 2019).

2 Include more relevant covariates. The accuracy of
machine learning DSM models is largely determined
by the predictive power of the covariates. In the case of
space–time DSM, it is essential that these covariates
capture the dynamics of the soil properties considered.
In this study we only used a vegetation index as
dynamic covariate, albeit for multiple seasons within a
year and using different exponential decay functions.
In particular, climate-related covariates could poten-
tially improve prediction, but time series on land man-
agement or other land-use-related variables are
important too. In our case, we limited this study to
dynamic covariates that are globally available (recall
that we used the Argentina case as a pilot to test a
method to be applied globally). Starting from around
the year 2000 instead of 1982 would allow inclusion of
many more remote sensing sources, whereas regional
applications could benefit from dynamic covariates
specifically available for those regions, such as local-
scale agricultural information on cropping area and
crop production.

3 Use better models. Within the machine learning frame-
work, we might explore recent model improvement
approaches such as deep learning (e.g., Wadoux, 2019)
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and random forest spatial interpolation (Sekuli�c,
Kilibarda, Heuvelink, Nikoli�c, & Bajat, 2020). Regression
kriging (i.e., kriging of the residuals of the machine learn-
ing model) will also improve prediction accuracy (Hengl,
Heuvelink, & Stein, 2004), at least in areas and time
periods that have higher sampling density. Note that this
would require the use of space–time kriging, the theory
of which and software packages for are well-developed
(Gräler, Pebesma, & Heuvelink, 2016). Mechanistic
modelling approaches (see the Introduction and Paustian
et al., 2019) potentially can get around some of the limita-
tions of the space–time DSM approach. However, they
also have disadvantages, such as lack of detailed informa-
tion about model inputs, and initial and boundary condi-
tions, but also here remote sensing might provide
solutions and generate the required information. Hybrid
approaches, such as machine learning on the residuals of
mechanistic models, might be a valuable approach too.

4 Aggregate predictions over space and/or time. We
already indicated that averaging predictions over space
and/or time reduces uncertainty because positive and
negative errors within a region and/or time period are
cancelled out. Thus, if we are willing to sacrifice reso-
lution in space and time, we can more quickly reach
required accuracy levels. Although intuitively clear,
this can also be shown mathematically using
geostatistical approaches. The theory of block kriging
is well developed and quantifies the reduction of
uncertainty caused by spatial aggregation (Webster &
Oliver, 2007 Section 4.8). In our case, this would
require that the space–time semivariogram of the
residuals of the machine learning SOC stock model is
known, after which space–time regression block
kriging could be applied.

The proposed solutions for reducing prediction uncer-
tainty are computationally challenging and major invest-
ments are needed to narrow down prediction uncertainty
to fit specific “user-demands”. In particular, standardized
soil sampling and soil monitoring schemes are needed
(De Gruijter et al., 2016; Gubler et al., 2019; Orgiazzi
et al., 2018; Smith et al., 2020), although these only offer
solutions for the future, not for the past and present. If in
addition the resulting data are shared in a common data-
base (Paustian et al., 2019) and covariate data are easily
available, then jointly we should be able to get a reliable
system in place that informs on the status and trends in
soil organic carbon and other key soil properties. Our
ambition is to ultimately visualize SOC changes in near
real time, as is currently possible for monitoring forest
biomass change (Baccini et al., 2017). This is a true chal-
lenge, because forests are much more easily observed
through remote sensing technology than soils, but given

sufficient resources it is feasible. This could be embedded
in a strategic research agenda for monitoring SOC change
(Bray et al., 2019).

5 | CONCLUSION

In this paper we extended machine learning for digital
soil mapping from spatial to space–time applications.
From a methodological point of view this is not a compli-
cated task because the algorithms used do not change
fundamentally, but it is imperative that all soil calibra-
tion data have a time stamp as well as geographic coordi-
nates, that dynamic covariate maps that have sufficient
predictive power are available for the entire prediction
period, and that computational resources are adequate to
train the model and run it for all space–time prediction
points. Further, a dense, well-distributed coverage of soil
data in space, time and covariate space is important.

This research showed that major and sustained
investments in soil monitoring, database development,
covariate selection and modelling are needed to reduce
prediction uncertainties and detect statistically significant
SOC stock changes at high spatial resolution. Many coun-
tries and organizations across the world have
implemented, or are implementing, soil monitoring cam-
paigns. Prediction accuracy of space–time SOC stock
models will dramatically increase if this becomes the
norm and the data are shared for modelling.
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