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Members of the true fruit flies (family Tephritidae) are among the most serious
agricultural pests worldwide, whose control and management demands large and
costly international efforts. The need for cost-effective and environmentally friendly
integrated pest management (IPM) has led to the development and implementation
of autocidal control strategies. These approaches include the widely used sterile insect
technique and the incompatible insect technique (IIT). IIT relies on maternally transmitted
bacteria (namely Wolbachia) to cause a conditional sterility in crosses between released
mass-reared Wolbachia-infected males and wild females, which are either uninfected
or infected with a different Wolbachia strain (i.e., cytoplasmic incompatibility; CI).
Herein, we review the current state of knowledge on Wolbachia-tephritid interactions
including infection prevalence in wild populations, phenotypic consequences, and their
impact on life history traits. Numerous pest tephritid species are reported to harbor
Wolbachia infections, with a subset exhibiting high prevalence. The phenotypic effects
of Wolbachia have been assessed in very few tephritid species, due in part to the
difficulty of manipulating Wolbachia infection (removal or transinfection). Based on
recent methodological advances (high-throughput DNA sequencing) and breakthroughs
concerning the mechanistic basis of CI, we suggest research avenues that could
accelerate generation of necessary knowledge for the potential use of Wolbachia-based
IIT in area-wide integrated pest management (AW-IPM) strategies for the population
control of tephritid pests.
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INTRODUCTION

The Economic Importance and
Management of Tephritid Pest Species
Flies in the family Tephritidae (Diptera) include some of
the world’s most important agricultural pests. The family is
comprised of ∼4,900 described species within 481 genera, of
which six (Anastrepha, Bactrocera, Ceratitis, Dacus, Rhagoletis,
and Zeugodacus) contain ∼70 major pest species (White and
Elson-Harris, 1992; Norrbom, 2004a,b, 2010; Mengual et al.,
2017). Pest tephritids represent an enormous economic cost
because they cause direct losses to a diversity of crops
(fruits, vegetables, and flowers) (White and Elson-Harris, 1992).
Furthermore, they hamper the development of agriculture in
numerous countries, due to the strict quarantines imposed
by countries importing affected crops, and to the huge costs
associated with efforts aimed at prevention, containment,
suppression, and eradication.

To prevent or minimize the harmful effects of tephritid pests,
growers must comply with health and safety standards required
by the market, applying an area-wide management approach
involving chemical, biological, cultural, and autocidal control
practices (Reyes et al., 2000; Enkerlin, 2005). Autocidal refers
to methods that use the insect to control itself, by releasing
insects that are sterile or induce sterility upon mating with wild
insects in the next or subsequent generations (Black et al., 2011;
Leftwich et al., 2014; Handler, 2016). Autocidal strategies include
the sterile insect technique (SIT) (Knipling, 1955; Hendrichs
and Robinson, 2009); one of the most widespread control
methods used against fruit flies (reviewed in Dias et al., 2018).
SIT relies on the mass-rearing production, sterilization and
recurrent release of insects (preferentially males) of the targeted
species. Sterilization is typically attained by radiation (Bakri
et al., 2005), in a way that does not impair male mating and
insemination capabilities. Wild females that mate with sterilized
males lay unfertilized eggs. At the appropriate sterile:wild (S:W)
ratio, the reproductive potential of the target population can
be reduced (Knipling, 1955; Klassen and Curtis, 2005; Cáceres
et al., 2007). Historically, at least 28 countries have used the
SIT at a large-scale for the suppression or eradication of pests
(Hendrichs et al., 1995, 2005; Suckling et al., 2016). SIT has
been applied successfully for several non-tephritid insect pests
including the New World screw worm Cochliomyia hominivorax
(Coquerel), several species of tsetse fly (Glossina spp.), the codling
moth Cydia pomonella (L.) (reviewed in Robinson, 2002b; Dyck
et al., 2005; Bourtzis and Robinson, 2006), and mosquitoes
(Benedict and Robinson, 2003; Lees et al., 2015). Successful SIT
programs as part of Area-wide Integrated Pest Management
(AW-IPM) strategies have also been implemented for several
tephritids: Ceratitis capitata (Wiedemann); Anastrepha ludens
(Loew); Anastrepha obliqua (Macquart); Zeugodacus cucurbitae
(Coquillett); Bactrocera dorsalis Hendel; and Bactrocera tryoni
(Froggatt) (Enkerlin, 2005; Hendrichs et al., 2005; Klassen and
Curtis, 2005; Cáceres et al., 2007). SIT is currently being
developed for three additional tephritid species: Anastrepha
fraterculus (Wiedemann) (Cladera et al., 2014); Dacus ciliatus

Loew (Rempoulakis et al., 2015) and Bactrocera tau (Walker) (Du
et al., 2016). The advantages of the SIT over other pest control
approaches (e.g., use of pesticides) are that it is species-specific
and environmentally friendly (Lees et al., 2015; Bourtzis et al.,
2016), and resistance is less likely to evolve (but see Hibino and
Iwahashi, 1991; McInnis et al., 1996).

Another autocidal strategy where mating between mass-
reared and wild insects can be used to suppress pest populations
is the incompatible insect technique (IIT); coined by Boller
et al. (1976). The earliest successful pilot application of IIT was
in Culex mosquitoes (Laven, 1967), and interest in applying it
to mosquitoes has resurged in recent years (reviewed in Ross
et al., 2019b). IIT also relies on the principle of reducing female
fertility, but utilizes endosymbiotic bacteria instead of radiation,
to induce a context-dependent sterility in wild females. It is based
on the ability of certain maternally inherited bacteria (mainly
from the genus Wolbachia) to induce a form of reproductive
incompatibility known as cytoplasmic incompatibility (CI;
explained in the section below). Herein we review the current
knowledge on taxonomic diversity of Wolbachia-tephritid
associations and their phenotypic consequences, and identify
gaps in knowledge and approaches in the context of potential
application of IIT, alone or in combination with SIT, in AW-IPM
programs to control tephritid pests.

The Influence of Wolbachia on Host
Ecology
Insects and other arthropods are common hosts of maternally
inherited bacteria (reviewed in Duron and Hurst, 2013). These
heritable endosymbionts can have a strong influence on host
ecology. Typically, such vertically transmitted bacteria are vastly
(or fully) dependent on the host for survival and transmission.
Certain associations are obligate for both partners, and generally
involve a nutritional benefit to the host. Other heritable bacteria
are facultative, with such associations ranging from mutualistic
to parasitic from the host’s perspective. Among these, Wolbachia
is the most common and widespread facultative symbiont of
insects and arthropods (Hilgenboecker et al., 2008; Zug and
Hammerstein, 2012; de Oliveira et al., 2015; Weinert et al., 2015).

Wolbachia is a diverse and old genus (possibly older than 200
million years; Gerth and Bleidorn, 2016) of intracellular Gram-
negative Alphaproteobacteria (within the order Rickettsiales)
associated with arthropods and filarial nematodes. Wolbachia
cells resemble small spheres 0.2–1.5 µm, occur in all tissue
types, but tend to be more prevalent in ovaries and testes
of infected hosts, and are closely associated with the female
germline (reviewed by Harris et al., 2010; see also Sacchi et al.,
2010). Wolbachia is estimated to infect 40–66% of insect species
(Hilgenboecker et al., 2008; Zug and Hammerstein, 2012; de
Oliveira et al., 2015; Weinert et al., 2015). Within a species or
population, the infection prevalence of Wolbachia can be quite
variable over space (e.g., Kriesner et al., 2016) and time (e.g.,
Turelli and Hoffmann, 1991, 1995).

The most commonly documented effects of Wolbachia
on arthropod hosts fall under the category of reproductive
parasitism, which involves manipulation of host reproduction
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to enhance symbiont transmission and persistence, in general
by increasing the relative frequency of Wolbachia-infected vs.
uninfected females. Females are typically the sex that can transmit
Wolbachia and other heritable bacteria, although rare exceptions
exist (Hoffmann and Turelli, 1988; Moran and Dunbar, 2006;
Chafee et al., 2010). Wolbachia employs all four types of
reproductive manipulation (reviewed by Werren et al., 2008;
Saridaki and Bourtzis, 2010; Schneider et al., 2011). Feminization
converts genetic males into functional females, and occurs in
the orders Hemiptera, Lepidoptera, and Isopoda. Wolbachia-
induced parthenogenesis occurs in haplo-diploid hosts (e.g.,
Acari, Hymenoptera, and Thysanoptera), where unfertilized eggs,
which would otherwise develop into males, develop into females.
Male killing causes death of infected males to the presumed
advantage of surviving infected female siblings, and occurs
in Coleoptera, Diptera, Lepidoptera, and Pseudoscorpionida.
Cytoplasmic incompatibility (CI) (Yen and Barr, 1971) prevents
infected males from producing viable offspring upon mating with
females lacking Wolbachia (or a compatible strain of Wolbachia;
see below; Figure 1). CI is the most commonly reported
Wolbachia-induced reproductive phenotype, and is found in
Acari, Coleoptera, Diptera, Hemiptera, Hymenoptera, Isopoda,
Lepidoptera, and Orthoptera.

Cytoplasmic incompatibility was discovered almost half a
century ago (Yen and Barr, 1971), but its mechanism has not
been fully elucidated. A useful conceptual model to understand
the observed patterns of CI is “mod/resc” (Hurst, 1991; Werren,
1997). It postulates that Wolbachia has two functions: mod (for
modification), which acts as a toxin or imprint of the male
germline; and resc (for rescue), which acts as an antidote. The
mod function acts on the nucleus in the male germline, before
Wolbachia are shed from maturing sperm (Presgraves, 2000).
When a sperm nucleus affected by mod enters the egg of an
uninfected female, this nucleus encounters problems such as
delays in DNA replication and cell-cycle progression, leading to
embryo death. In contrast, if the appropriate resc (“the antidote”)
function is active in the egg, the defect caused by mod in the
sperm is rescued, and the embryo proceeds through normal
development. In the case of unidirectional CI (uni-CI), all or
some of the eggs from uninfected females that are fertilized by
sperm from Wolbachia-infected males (the “CI cross”) fail to
develop (Figure 1A). Wolbachia-infected females are compatible
with uninfected males, and thus have a reproductive advantage
over their Wolbachia-uninfected counterparts. Consequently,
above a certain threshold of Wolbachia infection frequency in
a host population, Wolbachia frequencies can rapidly increase
to a stable equilibrium frequency. When CI is strong (e.g., all
embryos from the CI cross fail), fitness costs of Wolbachia are
low, and maternal (vertical) transmission is high, the threshold
Wolbachia frequency to achieve invasion can be close to zero, and
the stable equilibrium frequency can be close to 100% (Caspari
and Watson, 1959; Turelli and Hoffmann, 1999; Rasgon, 2008).
Bi-directional CI (bi-CI) results from crosses involving two
different (incompatible) Wolbachia strains (Figure 1B). Crosses
between females and males infected with the same or compatible
Wolbachia strains are viable. Under bi-CI between two Wolbachia
strains with equivalent fitness effects on a host, the infection

FIGURE 1 | (A,B) Qualitative illustration of uni- and bidirectional cytoplasmic
incompatibility (CI) on the basis of the Wolbachia infection status of the parent
generation. Empty male and female symbols signify absence of Wolbachia.
Blue and yellow ovals represent distinct Wolbachia strains. Green tick
marks = Successful offspring production. Red crosses = no offspring
production. (C) A special case of unidirectional incompatibility in which one
Wolbachia strain (see text) can rescue another strain (i.e., the yellow one), but
not vice versa.

frequency of an introduced strain must exceed 50% to achieve
invasion (Rousset et al., 1991; Dobson et al., 2002). Special cases
of uni-CI and bi-CI patterns can occur. For example, a strain may
not induce CI, but is able to rescue the defect caused by a different
strain (Figure 1C) (Zabalou et al., 2004a).

Several recent breakthrough studies have collectively
identified Wolbachia-encoded genes (of viral origin) that
contribute to the induction and rescue of CI (Beckmann
et al., 2017; LePage et al., 2017; Bonneau et al., 2018, 2019;
Lindsey et al., 2018; Shropshire et al., 2018; Beckmann et al.,
2019c; Chen et al., 2019; Shropshire and Bordenstein, 2019).
Wolbachia-encoded genes that rescue CI are labeled as cifA, cidA,
or cindA, depending on whether they rescue a defect caused by
deubiquitylase (d), nuclease (n), both (nd); “f” is used by certain
authors and/or when the nature of the defect is unknown (see
Beckmann et al., 2019a,b; Shropshire et al., 2019). In CI-inducing
Wolbachia strains, each of the above genes occurs upstream of a
gene (its “cognate”) similarly labeled, but with a “B” replacing the
“A” (i.e., cifB, cidB, or cindB, respectively) that seems to function
as a toxin. Certain Wolbachia strains have more than one “A–B”
pair, and the combination of these is consistent with patterns
of incompatibility in Drosophila (LePage et al., 2017) and Culex
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(Bonneau et al., 2018). Knowledge accrued to date indicates that
more than one Wolbachia-encoded mechanism of CI exists, and
thus, information on the genes encoded by Wolbachia genomes
can help predict expected patterns of incompatibility among
strains that have not been experimentally characterized.

In addition to its reproductive phenotypes on arthropods,
Wolbachia engages in obligate mutualistic interactions with
filarial nematodes (Werren et al., 2008) and with members
of five insect orders (reviewed in Zug and Hammerstein,
2015). As a facultative symbiont, Wolbachia can provide direct
fitness benefits to its insect hosts by influencing development,
nutrition, iron metabolism, lifespan, and fecundity (Dean, 2006;
Aleksandrov et al., 2007; Weeks et al., 2007; Brownlie et al.,
2009; Ikeya et al., 2009; Kremer et al., 2009; Newton and Rice,
2020), and most notably, by conferring resistance or tolerance
to pathogens, particularly single-stranded RNA viruses (Hedges
et al., 2008; Teixeira et al., 2008; Moreira et al., 2009). The
interference of Wolbachia with the replication and transmission
of certain viruses, along with its ability to spread in populations
via CI, form the basis of several population replacement programs
(reviewed in Ross et al., 2019b; Chrostek et al., 2020). Wolbachia
in Drosophila appears to confer an additional fitness benefit in
the form of increased recombination (Bryant and Newton, 2019;
Singh, 2019).

Certain host-Wolbachia combinations incur fitness costs to
the host, beyond reproductive parasitism, including reduced
longevity, sperm competitive ability, and fecundity, as well
as higher susceptibility to natural enemies (Hoffmann et al.,
1990; Min and Benzer, 1997; Snook et al., 2000; Champion de
Crespigny and Wedell, 2006; Fytrou et al., 2006; Vasquez et al.,
2011; Suh et al., 2017; Sumida et al., 2017). Similarly, certain host-
Wolbachia combinations may potentially enhance pathogen-
vectoring capacities (Hughes et al., 2012b; Baton et al., 2013;
Dodson et al., 2014; Murdock et al., 2014). Wolbachia has been
reported to influence positively or negatively numerous aspects
of their host’s behavior including sleep, learning and memory
capacity, mating, feeding, thermal preference, locomotion, and
agression (reviewed by Bi and Wang, 2019; Wedell, 2019).

METHODS TO STUDY Wolbachia

Methods to Assess Wolbachia Infection
Status
For purposes of this review, we consider a host species or
population as “infected” with Wolbachia, even if the infection
is transient or found at low titer. Wolbachia, and most
cytoplasmically transmitted endosymbionts, are fastidious to
culture outside host cells, such that their study typically
relies on culture-independent methods. A recommended flow-
chart of steps is depicted in Figure 2. The most utilized
approach to date for identifying hosts infected with Wolbachia
is through PCR screening of Wolbachia genes in DNA extracts
of hosts. Different PCR primers have been used to perform
such surveys, traditionally targeting a portion of the 16S
ribosomal (r)RNA gene or of a ubiquitous protein-coding
gene (e.g., wsp or ftsZ). Simoes et al. (2011) evaluated the

relative sensitivity and specificity of different primer pairs
aimed at Wolbachia detection and identification, revealing that
no single PCR protocol is capable of specific detection of
all known Wolbachia strains. A related method known as
“loop mediated isothermal amplification” (LAMP; not shown in
Figure 2), which requires less infrastructure than PCR, has been
successfully employed for Wolbachia detection in several insects
(da Silva Gonçalves et al., 2014).

The two major shortcomings of utilizing solely PCR (or
LAMP) to detect Wolbachia presence are the occurrence of
false negatives and false positives. A false negative occurs
when a specimen is infected by Wolbachia, yet the screening
approach fails to detect its presence. The efficiency of the PCR
can be affected by the presence of inhibitors (Marcon et al.,
2011; Beckmann and Fallon, 2012), by low concentration/poor
quality of the target DNA molecule, as well as type and
concentration of the polymerase and other PCR reagents.
At the very least, negative Wolbachia detection PCRs should
be validated by evaluating the quality of the DNA extract,
through positive amplification of a host-encoded gene (e.g., the
mitochondrial Cytochrome Oxidase subunit I or single-copy
nuclear genes). Several higher sensitivity approaches have been
devised, particularly for low-titer infections, such as: long PCR
(Jeyaprakash and Hoy, 2000); nested PCR (Arthofer et al., 2009a);
quantitative PCR (Mee et al., 2015); or the design of alternative
and/or more specific primers, including the use of Wolbachia
multi-copy genes as PCR targets (Schneider et al., 2014). These
methods, however, have not been widely implemented, likely due
to the higher effort or cost involved.

False positives occur when a specimen not harboring
Wolbachia is identified as Wolbachia-infected. Several instances
have been reported where insect chromosomes carry Wolbachia-
derived fragments, presumably from a horizontal gene transfer
event that occurred at some point in the host lineage as
the result of an active infection that was subsequently lost.
The size of the horizontally transmitted fragment can range
from ca. 500 bp to the equivalent of an entire Wolbachia
chromosome (Dunning Hotopp et al., 2007). In some cases,
entire Wolbachia chromosomes have been transferred more
than once onto the same host genome (Brelsfoard et al., 2014;
International Glossina Genome Initiative, 2014). The range of
hosts carrying Wolbachia-derived genome fragments is broad
and includes several dipterans (tephritids, Glossina morsitans
Westwood; Drosophila spp., mosquitoes), other insects, as well
as nematodes (Fenn et al., 2006; Dunning Hotopp et al., 2007;
Nikoh et al., 2008; Brelsfoard et al., 2014; Morrow et al., 2015;
Attardo et al., 2019). It is therefore desirable to corroborate PCR-
based inferences with approaches that detect Wolbachia cells
in host tissues. Such microscopy approaches can be based on
nucleic acid hybridization (e.g., Chen et al., 2005) or antibody-
based detection of Wolbachia proteins (e.g., wsp; Veneti et al.,
2003; and ftsZ; Newton et al., 2015). A major drawback of these
methods is that they require substantial investment in time and
equipment compared to PCR-based approaches. False positives
can also occur if the primers targeted at Wolbachia turn out
to amplify a fragment of the genome of the host (not derived
from Wolbachia) or of another symbiont of the host. Such false
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FIGURE 2 | Recommended steps to screen for Wolbachia infections in tephritids and other arthropods. A PCR is performed with Wolbachia-specific primers on
DNA isolated from whole, or parts of (e.g., abdomens), insect. Agarose gel electrophoresis of the PCR products is used to determine whether the amplicon is of the
expected size. Amplicons of expected size are directly sequenced (e.g., Sanger method). High sequence identity to other Wolbachia suggests Wolbachia infection.
Clean chromatograms are consistent with a single Wolbachia strain. Otherwise, a cloning step to identify different Wolbachia alleles is required. Other genes are then
amplified and sequenced for further genetic characterization of the strain. As an optional step, localization of Wolbachia cells within host tissues can be achieved by
Fluorescent In Situ Hybridization (FISH) with Wolbachia-specific rRNA probe or immunolabeling with antibody specific to Wolbachia protein. An amplicon of an
unexpected size might indicate the occurrence of a horizontally transmitted Wolbachia genome fragment to the insect chromosome, rather than a current infection.
Similarly, multiple nucleotide polymorphisms (NP) or insertions/deletions, compared to known strains, are suggestive of Wolbachia pseudogenes (e.g., horizontally
transferred to host genome). This can be further tested by in situ hybridization of Wolbachia-specific probe to host chromosomes, and/or by Whole Genome
Sequencing of host. Photo of fly (Anastrepha obliqua) by Fabiola Roque (ECOSUR-UT). Image from Fast et al. (2011) freely available at
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4030408/bin/NIHMS391830-supplement-Supporting_Online_Material.pdf (accessed April 01, 2019). Original
sources of other photographs are available in open access journals (Doudoumis et al., 2012; Brelsfoard et al., 2014; Joubert et al., 2016).
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positives are relatively easy to rule out upon sequencing and
analysis of the amplified product. Finally, as with any PCR work,
false positives can result from contamination of the specimen,
the DNA template, or the PCR reagents. Thus, it is important to
implement adequate sterile practices and negative controls.

The above approaches require destruction of specimens for
DNA isolation or for tissue fixation. As a rapid and non-
destructive alternative, Near-Infrared Spectroscopy (NIR) has
been developed for identification of specimens infected with
Wolbachia, including the distinction of two different Wolbachia
strains (Sikulu-Lord et al., 2016). This method, however, requires
standardization according to species, sex, age, or any other
condition that may affect absorbance, and is not 100% efficient.
To our knowledge, this method has not been employed to assess
Wolbachia infection in tephritids.

Methods to Taxonomically Characterize
Wolbachia Strains
The main evolutionary lineages of Wolbachia are assigned to
“supergroups” (Zhou et al., 1998). Sixteen supergroups have
been recognized to date (Glowska et al., 2015; Bleidorn and
Gerth, 2017). Supergroups A and B are widespread in arthropods
and are common reproductive manipulators (Baldo et al., 2006;
Werren et al., 2008). Supergroups C and D are obligate mutualists
of filarial nematodes, whereas supergroup F is found in both
arthropods and nematodes (Ros et al., 2009). Other supergroups
have more restricted host distributions (Augustinos et al., 2011).
Wolbachia are generally compared and classified on the basis of
Multilocus Sequence Typing (MLST) systems (Baldo et al., 2006;
Paraskevopoulos et al., 2006). The most commonly used MLST is
based on the PCR amplification of fragments of five ubiquitous
genes: coxA, fbpA, ftsZ, hcpA, and gatB. However, this MLST
system has limitations, in that not all genes are readily amplified
in all Wolbachia strains, and it fails to distinguish among very
closely related strains (Augustinos et al., 2011; Bleidorn and
Gerth, 2017). Several additional genes commonly amplified and
reported are the 16S rRNA, groEL, gltA, and the wolbachia surface
protein (wsp) (O’Neill et al., 1992; Braig et al., 1998; Zhou et al.,
1998; Augustinos et al., 2011). The wsp gene is highly variable
and shows evidence of intragenic recombination (Werren and
Bartos, 2001; Ros et al., 2012). An MLST database1 is available
to compare sequences of alleles for the five MLST loci and the
wsp gene. Upon submission to the MLST database, new alleles
for the wsp and for each of the MLST loci are assigned a unique
number. A Wolbachia sequence type (ST) is defined on the
basis of MLST allele combinations, with each allele combination
assigned a unique ST number. Further characterization of each
MLST-defined strain can be achieved by examination of four
hypervariable regions (HVRs) of the wsp gene (Baldo et al., 2005).

Hosts can be infected by one or more distinct strains of
Wolbachia. Traditionally, direct Sanger sequencing of PCR
products that resulted in sequences with ambiguous base pairs
would be subjected to cloning followed by sequencing. The allele
intersection analysis method (AIA; Arthofer et al., 2011) can
then be used to assign MLST alleles to Wolbachia strains, but it

1https://pubmlst.org/wolbachia/

requires a priori knowledge on the number of strains present.
AIA identifies pairs of multiply infected individuals that share
Wolbachia and differ by only one strain. Alternative approaches
to circumvent cloning include the use of strain-specific primers
(e.g., for the wsp gene; Zhou et al., 1998; Arthofer et al., 2009b), or
of high throughput sequencing approaches (e.g., Illumina HiSeq,
MiSeq, and NovaSeq) to sequence MLST or other marker PCR
amplicons (e.g., Gibson et al., 2014; Brandon-Mong et al., 2015).
Primer bias, however, where the fragment of one Wolbachia
strain is preferentially amplified over the other, has been reported
(Arthofer et al., 2011), such that presence of certain Wolbachia
strains might be missed.

Use of the MLST system alone has two major drawbacks.
First, strains of Wolbachia sharing identical MLST or wsp alleles
can differ from each other at other loci (Paraskevopoulos et al.,
2006; Riegler et al., 2012). Secondly, the MLST, 16S rRNA,
and wsp loci contain limited phylogenetic signal for inferring
relationships within Wolbachia supergroups (Bleidorn and
Gerth, 2017). Therefore, to assess such intra-ST variation and to
infer evolutionary relationships among closely related Wolbachia
strains, additional (more variable) loci must be evaluated. The
multiple locus variable number tandem repeat analysis developed
by Riegler et al. (2012) allows distinction of closely related
Wolbachia strains based on PCR and gel electrophoresis.

Whole genome sequencing represents a powerful approach
to distinguish closely related Wolbachia strains, infer their
evolutionary relationships, test for recombination, and identify
genes of interest (e.g., Klasson et al., 2009; LePage et al.,
2017). Due to its fastidious nature (but see Uribe-Alvarez et al.,
2018 for a recent breakthrough) and occurrence of repetitive
elements, genome sequencing and assembly of Wolbachia (and
other host-associated uncultivable bacteria) has proven difficult.
Recent advances, particularly those based on targeted hybrid
enrichment (Lemmon and Lemmon, 2013) prior to high-
throughput sequencing (Bleidorn, 2016; Goodwin et al., 2016)
have been successfully applied to Wolbachia for short-read
technologies (i.e., Illumina; Kent et al., 2011; Geniez et al.,
2012). The combination of targeted hybrid capture and long-
read technologies, such as Pacific Biosciences’ Single Molecule
Real-Time (e.g., Wang et al., 2015) or Oxford Nanopore
Technologies’ platforms is expected to greatly advance Wolbachia
genomics research.

Methods to Functionally Characterize
Wolbachia Strains
A major challenge to investigating the effects of Wolbachia
on a host is to generate Wolbachia-present and Wolbachia-
free treatments while controlling for host genetic background.
The challenge stems from the difficulty of adding or removing
Wolbachia to/from particular hosts. Addition of Wolbachia to
a particular host background can be achieved by transinfection
(reviewed in Hughes and Rasgon, 2014). Because the vertical
transmission of Wolbachia appears to be dependent on its close
association to the host germline, successful artificial transfer
of Wolbachia typically relies on injection of cytoplasm from a
donor egg (but see Frydman et al., 2006) or early embryo into
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FIGURE 3 | Backcrossing procedure. Wolbachia infection is indicated by blue
oval. Host nuclear backgrounds are indicated by colors: white represents the
initial nuclear background of Wolbachia-infected host; red (darkest) indicates
the host background of the Wolbachia-free line contributing males every
generation. Different shades of red represent the increasing replacement of
“white” nuclear background over backcrossing generations (F1 to F8) by “red”
nuclear background.

a recipient embryo via microinjection (reviewed in Hughes and
Rasgon, 2014). The success rate of the transinfection procedure
is generally very low; in tephritids it is 0–0.09% (calculated as
the proportion of injected embryos that emerged as Wolbachia-
infected adult females that transmitted Wolbachia to offspring)
(Zabalou et al., 2004b, 2009; Apostolaki et al., 2011; Martinez
et al., 2016). The low success rate is generally a result of the low
survival of injected embryos, the low proportion of Wolbachia-
positive survivors, and the low/incomplete transmission of
Wolbachia to their offspring.

Intra-species (or between sibling species) transfer of
Wolbachia to a particular host nuclear background can also be
achieved through introgression, whereby males of the desired
background are repeatedly backcrossed with Wolbachia-infected
females (e.g., Dobson et al., 1999; Jaenike, 2007). Under this
scheme, after eight generations of consistent backcrossing,
∼99.6% of the host nuclear background is expected to have
been replaced (Figure 3). The drawback of this approach is
that the mitochondrial genome will not be replaced. Therefore,
the effects of mitochondrial type and Wolbachia infection
cannot be separated.

Due to less than perfect transmission, passive loss of
Wolbachia in certain host individuals may be used to obtain
Wolbachia-free and Wolbachia-infected hosts of equivalent
genetic background. Wolbachia removal has also been achieved
by “extreme” temperature treatment (e.g., 30◦C; Ribeiro, 2009).
The most common way of removing Wolbachia, however, is
achieved via antibiotic treatment, but several potential biases
must be addressed (reviewed by Li et al., 2014). Antibiotic
treatment is likely to alter the microbiota, other than Wolbachia,
associated with the host. In addition, antibiotics may affect the
host in a microbe-independent manner. For instance, antibiotic

treatment can affect host mitochondria (Ballard and Melvin,
2007), which in turn can reduce host fitness. A common practice
to circumvent these problems is to wait several generations after
antibiotic treatment, and to promote “restoration” of the host’s
pre-antibiotic microbiota, excluding Wolbachia (e.g., exposing
the insects to the feces of non-treated individuals). Wolbachia
does not appear to be efficiently transmitted via ingestion (e.g.,
Faria et al., 2016), but see discussion on horizontal transmission
routes below. It is essential to monitor Wolbachia infection
status of antibiotic-treated host strains, because antibiotics may
not always fully remove infection. Instead, they may reduce
Wolbachia densities to non-detectable levels in one or few
generations (Li et al., 2014); this has been our experience in both
Anastrepha (S.B. Lanzavecchia, C. Conte, and D.F. Segura, pers.
obs.) and Drosophila (M. Mateos, pers. obs.).

Unidirectional CI is tested by comparing the embryo hatching
rates of the CI cross (uninfected female X infected male) to
that of one or more control crosses. For testing bidirectional
CI, the reciprocal crosses of hosts infected by the different
Wolbachia strains are assessed. A significantly lower embryo
hatching rate of the CI cross(es) compared to that of the control
cross(es) constitutes evidence of CI. CI can be partial or complete
(100% embryo failure). As with any fitness assay, care must be
taken to prevent potential biases, including crowding and age
effects; which have been shown to influence CI (Hoffmann et al.,
1990; Turelli and Hoffmann, 1995; Reynolds and Hoffmann,
2002). Adequate assessment of fertilization must be performed
to ensure that failed embryos are not confused with unfertilized
eggs. This may require testing for insemination of females that
produce no larval progeny (e.g., Zabalou et al., 2009; Conte
et al., 2019), or exclusion of females that predominantly lay
unfertilized eggs, such as old Drosophila melanogaster virgin
females (Menon et al., 2014).

Wolbachia IN TEPHRITIDS

Taxonomic Distribution of
Wolbachia-Tephritid Associations
Based mostly on PCR and sequencing approaches, ∼66%
of ∼87 tephritid species screened have at least one record
of positive Wolbachia infection (excluding pseudogenes) in
laboratory and natural populations (see Supplementary File S1;
only supergroups A and B have been found in tephritids). For
the genus Anastrepha, all but one species (Anastrepha ludens) of
17 screened to date harbor Wolbachia (Werren et al., 1995; and
this study; Selivon et al., 2002; Coscrato et al., 2009; Martínez
et al., 2012; Mascarenhas et al., 2016; Morán-Aceves, 2016;
Prezotto et al., 2017; Conte et al., 2019; Devescovi et al., 2019).
Most Anastrepha species harbor Wolbachia strains assigned
to supergroup A. Anastrepha striata Schiner and Anastrepha
serpentina (Wiedemann), however, harbor supergroup B in
southern Mexico (Martínez et al., 2012; and H. Martinez
and M. Mateos, pers. obs.; see Supplementary File S1) and
supergroup A in Brazil (Coscrato et al., 2009). Up to three
Wolbachia sequence types have been detected per locality within
morphotypes of the A. fraterculus complex (Prezotto et al., 2017;
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Conte et al., 2019), but co-infection of a single individual is
generally not observed (except for one report in A. fraterculus;
Cáceres et al., 2009).

Of the ∼49 species of Bactrocera that have been examined,
∼14 are reported to harbor Wolbachia (supergroup A and/or B)
and three (Bactrocera peninsularis Drew & Hancock, Bactrocera
perkinsi Drew & Hancock, and Bactrocera nigrofemoralis
White & Tsuruta) carry what appear to be Wolbachia-derived
pseudogenes, but not active infections (Kittayapong et al., 2000;
Jamnongluk et al., 2002; Morrow et al., 2014, 2015). There
is also the case of Bactrocera zonata Saunders, B. dorsalis,
and Bactrocera correcta Bezzi that have been found to carry
both active infections (cytoplasmic) and pseudogenized
Wolbachia sequences (Asimakis et al., 2019). Up to five
Wolbachia strains have been reported in a single individual
of Bactrocera ascita Hardy (Jamnongluk et al., 2002), and
double/multi infections have been reported in individuals of
the following five Bactrocera species in Australia: Bactrocera
bryoniae Tryon; Bactrocera decurtans May; Bactrocera frauenfeldi
Schiner; Bactrocera neohumeralis Hardy; and Bactrocera
strigifinis Walker (Morrow et al., 2014, 2015). Within the genus
Bactrocera, polyphagous species are more likely to harbor
Wolbachia compared to stenophagous or monophagous ones
(Kittayapong et al., 2000).

For the genus Ceratitis, two species have been screened
for Wolbachia. No evidence of Wolbachia was found
in Ceratitis fasciventris Bezzi. Also, no evidence of
infection was found in several populations of C. capitata,
the Mediterranean fruit fly (medfly), in the early
‘1990s’ (Bourtzis et al., 1994). PCR amplification and
sequencing of the 16S rRNA gene in several field and lab
specimens of C. capitata from Brazil suggested infection
with Wolbachia supergroup A (Rocha et al., 2005).
However, recent thorough surveys of wild populations
and lab colonies indicate that Wolbachia is absent in
C. capitata from numerous localities in different continents
(Supplementary File S1).

Wolbachia is reported in the four species of Rhagoletis
examined to date: Rhagoletis cerasi L.; Rhagoletis pomonella
Walsh; Rhagoletis cingulata Loew; and Rhagoletis completa
Cresson (Zabalou et al., 2004b; Arthofer et al., 2009b;
Drosopoulou et al., 2011; Schuler et al., 2011, 2012, 2013, 2016b;
Augustinos et al., 2014; Bakovic et al., 2018). Both A and B
supergroups are found in R. cerasi and R. completa, including a
putative A–B recombinant strain, and co-infections are common
(e.g., R. cerasi and R. pomonella).

In Zeugodacus (formerly Bactrocera), both Z. cucurbitae and
Z. diversa are reported to harbor Wolbachia or Wolbachia
pseudogenes (Kittayapong et al., 2000; Jamnongluk et al., 2002;
Asimakis et al., 2019). Two out of the six species of Dacus
examined to date are reported to harbor Wolbachia: Dacus
axanus Hering (Morrow et al., 2014); and Dacus destillatoria
Bezzi (Jamnongluk et al., 2002). Wolbachia has not been
detected in the monotypic genus Dirioxa (Morrow et al., 2015).
Wolbachia (supergroup A) has been reported in Carpomya
vesuviana (Karimi and Darsouei, 2014) and Neoceratitis asiatica
(Wang et al., 2019).

Wolbachia Prevalence in Tephritids (in
Time/Space)
Numerous studies report Wolbachia infection frequencies (or
data from which this measure can be estimated) in natural
populations of tephritids. Few of these studies, however, have
adequate sample sizes for such inferences (e.g., many such studies
are based on 10 or fewer individuals). Notwithstanding, inferred
Wolbachia prevalence in tephritid populations is highly variable.
In Anastrepha, ∼10 species harbor at least one population with
prevalence∼100%, whereas populations of three species reported
lower frequencies (e.g., 88%, 51–60%, and 8.7%) (Supplementary
File S1). In Bactrocera, one population of B. caudata had 100%
prevalence, whereas all other species with positive Wolbachia
results exhibited low prevalence.

The best studied tephritid system in terms of spatial and
temporal variation in Wolbachia prevalence is that of R. cerasi
in Europe, which was surveyed over a ∼15-year-period in 59
localities (Schuler et al., 2016b). Collectively, at least six strains
wCer1–6 have been identified from Europe and the Middle East.
In an early (1998) survey, Riegler and Stauffer (2002) found all
European R. cerasi individuals infected by one strain (wCer1),
most central and southern European populations harbored an
additional strain wCer2 (i.e., wCer1 + wCer2), and at least
one Italian population harbored wCer1 + wCer4 (Zabalou
et al., 2004b). A rapid spread of wCer2 (a strain associated
with cytoplasmic incompatibility) has been detected. Multiple
infections, in various combinations of all five known Wolbachia
strains from Europe, have been revealed recently. Samples from
Poland, Italy, and Austria, are infected with strains wCer1–5
those from Czech Republic (prior to 2009) and Portugal lacked
wCer2 only, while the Swiss samples lacked wCer3 (Arthofer
et al., 2009b). A more recent study of the Czech Republic (2015)
and Hungary (2016) revealed that wCer2 is spreading at a speed
of 1.9 and 1 km/yr, respectively (Bakovic et al., 2018). Analysis
of 15 Greek, two German and one Russian population confirm
fixation for wCer1 in all R. cerasi populations, and the presence of
complex patterns of infections with four of the five known wCer
European strains (1, 2, 4, and 5) and the possible existence of
new Wolbachia strains for the southernmost European R. cerasi
population (i.e., Crete; Augustinos et al., 2014) and from Iran
(wCer6) (Karimi and Darsouei, 2014). Similarly, strain wCin2
(which is identical to wCer2 based on loci examined to date) is
fixed in all populations of R. cingulata; a species native to the
United States, but introduced into Europe at the end of the 20th
century. Invasive populations in Europe harbor wCin1 (identical
to wCer1 based on loci examined to date) at frequencies that
vary over space and time (up to 61.5%), as a result of horizontal
transfer (multiple events) from R. cerasi (Schuler et al., 2016b).
The above studies indicate that the prevalence of Wolbachia types
in R. cerasi and R. cingulata is highly dynamic.

Phenotypic Effects of Wolbachia in
Tephritids
Despite the numerous reports of Wolbachia in tephritids,
the fitness consequences of such associations remain mostly
unknown. The studies reporting phenotypic effects of Wolbachia
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have relied on transinfection and on antibiotic-curing; only
two species of tephritids have been successfully transinfected
with Wolbachia (Table 1). Evidence of Wolbachia-induced CI
has been detected in four species of tephritids. Early studies
(Boller and Bush, 1974; Boller et al., 1976) identified reproductive
incompatibilities in R. cerasi that were later attributed to the
Wolbachia strain wCer2 (100% embryonic mortality in the
CI cross; Riegler and Stauffer, 2002). Artificially transferred
Wolbachia (strains wCer2 and wCer4) originally from R. cerasi
to C. capitata also resulted in strong CI (100% embryonic
mortality). wCer2 in two genetic backgrounds of B. oleae resulted
in strong CI as well (Apostolaki et al., 2011). In addition,
wCer2 and wCer4 are bi-directionally incompatible in C. capitata
(Zabalou et al., 2004b, 2009).

In addition to CI, Wolbachia-infected C. capitata females
(Benakeio strain) exhibit higher embryonic mortality (17–
32% in crosses with Wolbachia-free males and 65–67% in
crosses with Wolbachia-infected males) than their Wolbachia-
free counterparts crossed with Wolbachia-free males (12%
embryonic mortality). Therefore, it appears that wCer2 and
wCer4 have additional fertility effects on medfly females, other
than CI. It is also possible that these Wolbachia strains can
only partially rescue the modification that they induce in sperm
(Zabalou et al., 2004b). A similar pattern is reported in the
Vienna 8 genetic sexing strain (GSS) infected with wCer2
(Zabalou et al., 2009). The wCer2 strain also causes increased
embryo death in non-CI crosses of B. oleae (Apostolaki et al.,
2011). In D. simulans, wCer2 causes fecundity costs, moderate
levels of CI, and incomplete rescue of its own CI modification
(Riegler et al., 2004). Interestingly, a recent study examined the
genome of wCer2 and revealed the presence of three pairs of
Type I cif genes and one Type IV cifB gene without a cifA
complement, which might explain its idiosyncratic expression of
CI (Morrow et al., 2020).

Two studies conducted several years apart (Sarakatsanou
et al., 2011; Kyritsis, 2016; Kyritsis et al., 2019) examined
the effects of a single Wolbachia strain (wCer2) on fitness
components of two C. capitata genotypes (i.e., Benakeio and
Vienna 8 GSS laboratory lines), as well as the effects of two
different Wolbachia strains (wCer2 and wCer4) on a single
medfly genotype (Benakeio). The following general patterns
emerged (exceptions noted): (a) Wolbachia causes higher egg-
to-larva mortality; (b) Wolbachia causes higher egg-to-adult
mortality (exception: Vienna 8 GSS + wCer2 in Sarakatsanou
et al., 2011); (c) Wolbachia shortens egg-to-adult development
time (exception: Benakeio + wCer2 in Kyritsis, 2016; Kyritsis
et al., 2019). In addition, Sarakatsanou et al. (2011) found
that Wolbachia shortens both male and female adult lifespan
(exception: males of Vienna 8 GSS and wCer2), and reduces
life time female net fecundity. However, Kyritsis (2016) and
Kyritsis et al. (2019) reported no effects of Wolbachia infection
on adult lifespan, and a reduced fecundity in the case of wCer4
infection only. Even though wCer2 and wCer4 in general tended
to have consistent effects on medfly, the magnitude of their effects
differed. Collectively, the results from these studies indicate
that the effect of Wolbachia infection on life history traits
depends both on the C. capitata genetic background and on

the Wolbachia strain. Furthermore, inconsistencies between the
two studies might be indicative of evolution of the host and/or
Wolbachia strain during that period. Evidence of Wolbachia
evolving reduced fitness costs has been reported in D. simulans
(Weeks et al., 2007). Adult flight ability and longevity under stress
conditions also appear to be determined by the interaction of
Wolbachia strain and medfly genotype (Kyritsis, 2016; Kyritsis
et al., 2019). A more recent study (Dionysopoulou et al., 2020)
demonstrated Wolbachia effects on medfly reared in natural host
fruits and at different temperatures. Medlfies infected with wCer4
had low survival rates in both apples and bitter oranges, whereas
those infected with wCer2 were less vulnerable in apples than in
bitter oranges. In addition, wCer4 infected flies were particularly
susceptible to high temperatures.

A recent study by Conte et al. (2019) examined the
phenotypic effects induced by two Wolbachia strains native to
A. fraterculus (sp1). No evidence of bidirectional cytoplasmic
incompatibility was detected in reciprocal crosses among singly
infected laboratory strains. However, the same work described
the presence of slightly detrimental effects on larval survival
and a female-biased sex ratio, suggesting the induction of male-
killing phenomena. Moreover, Devescovi et al. (2019) found that
Wolbachia reduced the embryo hatching in crosses involving
cured females and infected males (uni-directional CI) within
two morphotypes of this cryptic species complex; stronger
CI was detected within the Peruvian morphotype than the
Brazilian-1 morphotype (also referred as to “A. fraterculus sp.
1”). No evidence of bidirectional CI was detected in the crosses
between the two morphotypes, leading Devescovi et al. (2019) to
conclude that Wolbachia is not directly involved in the speciation
process of these morphotypes. Ribeiro (2009) reported evidence
consistent with CI caused by Wolbachia in A. obliqua and in
“A. fraterculus sp. 1,” which according to wsp sequences, are
identical. Nonetheless, confounding effects of the treatment to
remove Wolbachia (removed by exposure of pupae to 30◦C) or
other potential biases cannot be ruled out, as all intraspecific
crosses involving at least one cured parent resulted in much lower
(<30%) embryo hatching than the intraspecific crosses involving
both infected parents (66 and 81% embryo hatching).

Recent work demonstrates that Wolbachia infection can affect
male sexual competitiveness of C. capitata. Different Wolbachia
strains (wCer2 and wCer4) exerted differential impact on males
mating competitiveness, and a single strain (wCer2) had different
impact on different medfly genotypes (Benakeio and Vienna 8
GSS laboratory lines) (Kyritsis, 2016; Kyritsis et al., 2019).

Modes of Horizontal Transmission of
Wolbachia Between Tephritid Hosts
Considering the dynamics of Wolbachia associated with
arthropods in general, at the population level Wolbachia appears
to be predominantly maintained by vertical transmission.
Above the species level, however, the lack of congruence
between the host and symbiont phylogenetic trees implies that
Wolbachia horizontal transfers and extinctions are common and
underlie its widespread taxonomic and geographic distribution
(Bailly-Bechet et al., 2017).

Frontiers in Microbiology | www.frontiersin.org 9 June 2020 | Volume 11 | Article 1080

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01080 June 1, 2020 Time: 18:4 # 10

Mateos et al. Wolbachia in Tephritid Flies

TABLE 1 | Successful and unsuccessful Wolbachia transfection attempts in tephritids.

ID of successfully
transfected tephritid strain

Donor species/strain Recipient species (and strain) Wolbachia
strain

References

C. capitata WolMed 88.6 R. cerasi C. capitata Benakeio strain wCer2 Zabalou et al., 2004b

C. capitata WolMed S10.3 R. cerasi C. capitata Benakeio strain wCer4 Zabalou et al., 2004b

C. capitata VIENNA 8-E88 C. capitata WolMed 88.6 C. capitata VIENNA 8 Genetic
Sexing Strain (GSS)

wCer2 Zabalou et al., 2009

C. capitata VIENNA 8-E88 Bactrocera oleae wCer2 Apostolaki et al., 2011

N/A (unsuccessful) A. striata A. ludens wAstriB Martinez et al., 2016

The possible routes by which Wolbachia may be horizontally
acquired by a new host can generally be classified as via ingestion
or via a vector. In both cases, to become established as a stable
cytoplasmically inherited infection, Wolbachia must cross one or
more cell types or tissues. For example, if Wolbachia invaded the
host hemolymph directly as a result of a vector (e.g., parasitoid
wasp or ectoparasitic mite), it would have to invade the egg
during oogenesis. Similarly, if Wolbachia were acquired via
ingestion (e.g., as a result of scavenging), it would have to cross
the gut into the hemolymph, before it invaded the egg. Support
for the above routes comes from studies reporting: (a) that
Wolbachia can retain viability outside cells and infect mosquito
cell lines, as well as ovaries and testes that are maintained
ex vivo (Rasgon et al., 2006; Hughes et al., 2012a); (b) that
Wolbachia cells injected into Drosophila hemolymph reach the
germline after crossing multiple somatic tissues (Frydman et al.,
2006); (c) that Wolbachia can move between parasitic wasp
larvae (Trichogramma) sharing the same host egg, and achieve
vertical transmission (Huigens et al., 2004); and (d) that parasitic
wasps of the white fly, Bemisia tabaci (Gennadius), can transfer
Wolbachia from an infected to a naïve host, as a result of non-
lethal probing (i.e., probing without oviposition), whereby the
parasitoid ovipositor or mouthparts function as a “dirty needle”
(Ahmed et al., 2015).

No direct evidence of Wolbachia transmission via parasitoids
exists in tephritids, but sharing of Wolbachia strains between a
parasitoid and several sympatric tephritids (Morrow et al., 2014;
Mascarenhas et al., 2016) is consistent with parasitoid-mediated
transmission, or transmission from tephritid host to parasitoid
(Johannesen, 2017). The potential for horizontal transfer of
Wolbachia among tephritids via parasitoids is high, due to
the multiple instances where a single parasitoid utilizes several
different tephritid host species (Quilici and Rousse, 2012; Murillo
et al., 2016; Schuler et al., 2016a), and the high frequency of
superparasitism by some fruit fly parasitoids (Tormos et al., 2012;
Devescovi et al., 2017).

Wolbachia may invade a new host species via introgressive
hybridization between two host species. This mechanism would
also transfer mitochondria from the infected to the uninfected
species nuclear background, akin to the artificial backcrossing
approach described above (Figure 3). Ability of tephritids to
hybridize in the lab has been reported in numerous species
(Table 2), and hybridization in nature has been documented in
B. dorsalis/B. carambolae (Wee and Tan, 2005), members of the
Ceratitis FAR complex (Virgilio et al., 2013), and R. cingulata/R.

cerasi in Europe (Johannesen et al., 2013). Thus, there is potential
for wild tephritid populations to acquire Wolbachia infections
via hybridization.

CONSIDERATIONS FOR
Wolbachia-BASED IIT IN TEPHRITIDS

There are two main approaches for implementing IIT, which
depend on whether uni- or bi-directional CI will be used.
If the target pest population lacks Wolbachia, such as the
tephritids C. capitata, B. oleae (Gmelin), and A. ludens [and the
mosquito Aedes aegypti (L.)], only unidirectional CI is feasible.
In target populations that harbor one (or more) CI-inducing
Wolbachia strain(s) (i.e., native strain; yellow in Figure 4),
bi-directional CI can be achieved by releasing males that
lack the native strain(s) and harbor one (or more) “foreign”
Wolbachia strain(s) (blue in Figure 4) that is incompatible
with the native strain. In contrast, if the released males are
doubly infected with the native and foreign strains, the CI
pattern employed for population suppresion is uni-directional
(Figure 4).

In the case of Uni-CI patterns, the accidental release of
Wolbachia-infected females, which would be reproductively
compatible with wild and released males, may result in the
replacement of the target pest population with a population
harboring the Wolbachia infection of the released males, leading
to failure of the IIT-based suppression program (Bourtzis,
2008). As described in Section “The Influence of Wolbachia on
Host Ecology,” under certain conditions, a Wolbachia infection
with frequency close to zero might be able to rapidly spread
through a host population. Thus, without efficient sex separation
mechanisms (outlined in section below), it is desirable to ensure
that accidentally released females are sterile. In several tephritid
systems, female sterility is achieved at a lower irradiation dose
than male sterility, such as A. ludens, A. obliqua, Anastrepha
suspensa, A. serpentina, B. tryoni, and Z. curcubitae (Toledo et al.,
2004; Bakri et al., 2005; Rull et al., 2007; Collins et al., 2009).
Therefore, an IIT program that used radiation at doses to ensure
female sterility without compromising male quality (e.g., male
competitiveness) could be effective (e.g., Drosophila suzukii based
on results to date; Nikolouli et al., 2020).

In an IIT program based on bi-CI pattern (e.g., the recent
field study of Aedes albopictus; Caputo et al., 2019), accidental
release of fertile transinfected females, which would only be
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TABLE 2 | Representative tephritid genera where hybridization between one or
more species has been reported.

Tephritid genera containing species that
can hybridize

Reference(s)

Bactrocera

B. tryoni × B. neohumeralis Smith, 1979; Morrow et al.,
2000; Meats et al., 2003; Pike
et al., 2003

B. tryoni × B. jarvisi Cruickshank et al., 2001

B. aquilonis × B. tryoni Drew and Lambert, 1986

B. jarvisi × B. neohumeralis Gilchrist et al., 2014

B. dorsalisS
× B. philippinensisS Schutze et al., 2013

B. invadensS
× B. dorsalisS Bo et al., 2014

B. dorsalisS
× B. papayaeS Schutze et al., 2013

B. papayaeS
× B. philippinensisS Schutze et al., 2013

B. papayae × B. carambolae Ebina and Ohto, 2006

B. tryoni × B. jarvisi Shearman et al., 2010

Ceratitis

C. rosa × C. fasciventris Erbout et al., 2008

Anastrepha

Within A. fraterculus complex Selivon et al., 1999, 2005;
Cáceres et al., 2009; Segura
et al., 2011; Roriz et al., 2017;
Rull et al., 2018

A. fraterculus × A. obliqua Dos Santos et al., 2001

A. sororcula × A. obliqua Dos Santos et al., 2001

A. fraterculus × A. sororcula Dos Santos et al., 2001

Rhagoletis Schwarz and McPheron, 2007;
Rull et al., 2010, 2012; Arcella
et al., 2015; Tadeo et al., 2015

R. mendax × R. pomonella Bierbaum and Bush, 1990;
Schwarz and McPheron, 2007

Within R. pomonella complex Rull et al., 2010

R. completa × R. zoqui Rull et al., 2012

R. pomonella × R. zephyria Arcella et al., 2015

R. cingulata × R. indifferens Doellman et al., 2019

Within R. cingulata Tadeo et al., 2015

R. cerasi × R. cingulata Johannesen et al., 2013

Eurosta

Within Eurosta solidaginis Craig et al., 1997

SB. papayae, B. philippinensis, and B. invadens are now considered junior
synonyms of B. dorsalis (Drew and Romig, 2013; Schutze et al., 2015). Bold-face
names are species where at least one report of Wolbachia infection exists (see
Supplementary File S1).

compatible with the released males, would not necessarily lead to
population replacement and program failure. This is due to the
generally higher threshold density required to achieve invasion
(theoretically above 50% when the two incompatible Wolbachia
strains exert equivalent fitness costs/benefits; see Section “The
Influence of Wolbachia on Host Ecology”). Nonetheless, the
actual outcome is strongly dependent in multiple factors (see
Dobson et al., 2002; Moretti et al., 2018a). Therefore, for both
uni-CI- and bi-CI-based IIT programs, as pointed out by Bourtzis
et al. (2014), the outcome of accidental releases of infected
females must be thoroughly evaluated via modeling and/or semi-
field assays prior to field applications.

The Advantage of Genetic Sexing Strains
(GSS)
In general, SIT and IIT are most effective when only males are
produced and released (Kerremans and Franz, 1995; Rendón
et al., 2004). The release of only males in a large-scale operation
can be accomplished by either killing female zygotes during
development or by selectively removing them from the mass-
reared population prior to release (Robinson, 2002a; Gilles et al.,
2014; Lutrat et al., 2019). Genetic sexing strains (GSS) are those in
which individuals can be separated by sex prior to the adult stage
on the basis of a sex-linked phenotype (Franz, 2005). The earlier
in development the females are removed, the most cost-effective
the mass rearing operation will be, as investment in growth of
females would be null or minimized. In most tephritids, male
sex is determined by the presence of the maleness factor on the
Y chromosome (Pane et al., 2002). GSS based on male-linked
[e.g., Y chromosome – autosome (Y;A)] translocations have
been developed in a few species to produce conditional female
lethality (e.g., temperature sensitive lethality during embryonic
development) or a visual sex marker (e.g., pupal color). Examples
of tephritid species for which GSS are available include C. capitata
(Franz, 2005), A. ludens (Zepeda-Cisneros et al., 2014), Z.
cucurbitae (McInnis et al., 2004), B. dorsalis (Isasawin et al., 2012),
and B. carambolae (Isasawin et al., 2014). Unfortunately, despite
substantial efforts, GSS are still lacking for most tephritid pests.
The recent development of CRISPR/Cas9-mediated mutagenesis
in tephritids, however, might enable a faster development of
tephritid GSS (Reid and O’Brochta, 2016; Choo et al., 2017; see
reviews by Ogaugwu and Durvasula, 2017).

Choice and Evaluation of Wolbachia
Strains
The target population and the donor colony should be
thoroughly screened for Wolbachia, ideally with the higher
sensitivity methods described in Section “Methods to Assess
Wolbachia Infection Status,” to detect low-titer and multi-
strain infections. The Wolbachia strain selected should cause
strong uni-CI with a Wolbachia-free, or strong bi-CI with
Wolbachia-infected, target population. The selected Wolbachia
strain should be artificially transferred to one or more lab
colonies, representative of the genetic background of the
target pest population. Most cases of successful establishment
of stable transinfected insect lines have relied on embryonic
microinjection (Hughes and Rasgon, 2014). Introgressive
backcrossing might be feasible in scenarios where geographically
isolated populations of the same target species harbor distinct
Wolbachia strains (e.g., A. striata in Mexico vs. A. striata in
Brazil; Supplementary File S1).

A thorough biological characterization of the artificial host-
Wolbachia association should be conducted, as both host
background and Wolbachia strain are important determinants
of CI expression and other relevant fitness parameters (Bourtzis
and Robinson, 2006; reviewed in Bourtzis, 2008; see also Kyritsis
et al., 2019). The main desired characteristics of the association
are: strong induction of CI; no rescue by Wolbachia strain(s)
present in the target population; small or no fitness cost for
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FIGURE 4 | Use of bi-directional CI in IIT-based population suppression programs. (A) Patterns of compatibility with two bi-directionally incompatible strains, when
doubly infected hosts occur. Empty male and female symbols signify absence of Wolbachia. Blue and yellow ovals represent distinct (mutually incompatible)
Wolbachia strains. Green tick marks = Successful offspring production. Red crosses = no offspring production. (B) Options for implementing IIT-based population
suppression when the target wild population harbors a CI inducing strain (yellow = “native”), according to the patterns of compatibility depicted in panel a.
Bi-directional CI is achieved when the released males only harbor a strain (blue = “foreign”) that is incompatible with the native strain. Additional options exist,
including double infections of both target and released insects with different Wolbachia strains (not shown), such as in Aedes albopictus (Moretti et al., 2018b).

parameters relevant to the program. These fitness parameters
can be classified into those related to a cost-effective mass
production (e.g., female fecundity including embryo hatching
success) and those related to the success of released males (e.g.,
mating and sperm competitive ability, as well as dispersal/flight

ability). Some host-Wolbachia combinations result in higher
female fecundity, such as D. simulans after many generations
(Weeks et al., 2007) and Drosophila mauritiana Tsacas and
David (Fast et al., 2011). In contrast, other host-Wolbachia
combinations result in lower fertility (e.g., low embryo success in
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C. capitata and B. oleae; Zabalou et al., 2004b, 2009; Apostolaki
et al., 2011). Wolbachia could affect male mating success by
influencing assortative mating; a phenomenon detected in some
studies of Drosophila (e.g., Koukou et al., 2006; Miller et al., 2010),
but not others (e.g., Champion de Crespigny and Wedell, 2007;
Arbuthnott et al., 2016; Cooper et al., 2017). Such influence of
Wolbachia on mating preferences was questioned (Sharon et al.,
2010) on the basis of evidence that gut microbiota influence
assortative mating in Drosophila (Sharon et al., 2010; Ringo et al.,
2011; Arbuthnott et al., 2016), a finding that itself has been
questioned recently (Leftwich et al., 2017, 2018). In addition, at
least one case has been reported where sperm from Wolbachia-
infected males was less competitive (Champion de Crespigny
and Wedell, 2006). Similarly, Wolbachia-infected D. simulans
produce fewer sperm (Snook et al., 2000). All of the above
parameters should be evaluated under relevant conditions known
to interact with Wolbachia, such as temperature and nutrition
(reviewed in Bourtzis and Robinson, 2006; e.g., Serbus et al.,
2015; Corbin et al., 2017; Ross et al., 2019a), interaction with
other microorganisms (e.g., Hughes et al., 2014; Ye et al.,
2017), as well as male age, paternal grandmother age, and
mating status (e.g., Karr et al., 1998; Awrahman et al., 2014;
Layton et al., 2019).

Other Considerations
Species Recalcitrant to Wolbachia?
Certain species or clades appear to be “resistant” to Wolbachia
infection, based on their lack of infection in nature and
the failure to achieve stable transfections. The reasons are
unknown, but could involve host and/or bacterial factors.
For example, none of the members of the diverse repleta
species group of Drosophila, comprised mostly of cactophilic
flies (Markow and O’Grady, 2005), has ever been found
to harbor Wolbachia (Mateos et al., 2006). Similarly, due
to numerous failed transinfection attempts, and the lack of
natural infection in wild Anopheles mosquitoes, this genus
was regarded impervious to Wolbachia (reviewed in Hughes
and Rasgon, 2014). This view has been challenged by the
successful establishment of Wolbachia-transfected Anopheles
stephensi Liston (Bian et al., 2013), and the recent discovery
of a natural stable Wolbachia infection in Anopheles coluzzii
Coetzee & Wilkerson (Shaw et al., 2016). Nonetheless, reports
of Wolbachia in other species of Anopheles have been called
into question (Sicard et al., 2019). The lack of natural infections
and transinfection failure in A. ludens may reflect a general
refractoriness to Wolbachia. Nonetheless, initial attempts to
transinfect C. capitata also failed and transfection with Wolbachia
was attained subsequently with different Wolbachia strains
(Zabalou et al., 2004b). Hence, transinfection attempts with
additional Wolbachia strains may result in successful and stable
infection in A. ludens as well.

Potential for Target Populations to Become Resistant
to Sterile Males
There are two ways in which a target population may become
resistant to the effects of released Wolbachia-infected males.
The first is endosymbiont-based, whereby the target population

may acquire (e.g., via horizontal transmission) a Wolbachia
strain that can rescue the modification (sterility) induced
by the strain present in the released males. Generally, such
acquisition of a Wolbachia strain during the relatively short
lifespan of a release program seems unlikely. Nonetheless,
knowledge on the Wolbachia infection status and strain identity
of interacting species, such as other fruit flies sharing the
same host plant and parasitoids, might aid in the selection
of Wolbachia strains that are unlikely to be compatible with
strains that can potentially be horizontally acquired by the
target population. Permanent screening of wild flies from
the target population could provide valuable information in
order to foresee potential lack of effectiveness of the method.
Laboratory experiments in which the conditions for horizontal
transmission are favored (or even forced) might also help
to determine the probability of such phenomena to occur
in nature.

The second mechanism is host-based, whereby pre- or
post-mating selection on wild females to avoid or reduce
fertilization by incompatible sperm (reviewed by Wedell,
2013), acts on standing (or de novo) genetic variation.
Evidence consistent with the influence of Wolbachia on
premating mechanisms comes from the observation that
females and males of Drosophila paulistorum Dobzhansky and
Pavan exhibit assortative mating according to the Wolbachia
strain they harbor (Miller et al., 2010; Schneider et al.,
2019). In addition, treatment with antibiotic (which removed
Wolbachia) decreases mate discrimination in D. melanogaster
(Koukou et al., 2006). The evolution of resistance to mating
with mass-reared males by wild females can be potentially
minimized by frequently refreshing the genetic background
of the mass-reared strain, with or without artificial selection
(McInnis et al., 2002; Gilchrist et al., 2012; Zygouridis
et al., 2014; Quintero-Fong et al., 2016; Sánchez-Rosario
et al., 2017), which is a routine process in mass-rearing
programs aimed at countering inbreeding and adaptation
to mass rearing that is detrimental the success of released
males (Robinson and Hendrichs, 2005). Nonetheless, if the
basis for mate discrimination were solely determined by
Wolbachia infection state (e.g., if females could distinguish
Wolbachia-infected vs. Wolbachia-uninfected males solely on
the basis of a Wolbachia-encoded factor), refreshing the fly
genetic background of mass-reared strain is unlikely to slow
down the evolution of resistance to released males in the
target population.

Several lines of evidence are consistent with the influence of
Wolbachia infection on post-mating mechanisms. The existence
of genetic incompatibility is predicted to favor polyandry
(multiple mating by females) as a female strategy to minimize
the probability of her eggs being fertilized by sperm from
incompatible males (Zeh and Zeh, 1996). Consistent with this
prediction, uninfected D. simulans females remate sooner than
Wolbachia-infected females (Champion de Crespigny et al.,
2008). Furthermore, Wolbachia modifies the length of the
spermathecal duct of females of the cricket Allonemobius
socius Scudder (Marshall, 2007), which in turn may afford the
female greater control on the outcome of sperm competition
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(e.g., D. melanogaster; Miller and Pitnick, 2002). Finally, the
fact that host background can influence the CI phenotype
(reviewed by Bourtzis and Robinson, 2006), suggests that target
populations may have genetic variants that are more resistant
to CI, which could increase in frequency as a result of the
strong selection exerted by the massive release of Wolbachia-
infected males.

Potential Alternative Ways of Implementing
Wolbachia-Based Approaches
The recent identification of Wolbachia “CI genes” offers potential
alternative ways of harnessing reproductive incompatibility
in control of pest tephritids. First, to identify strains with
the desired characteristics, at least ability to induce CI,
a productive endeavor might be to search for CI loci in
the genomes of candidate strains being considered for IIT,
prior to artificial transfer efforts. A candidate Wolbachia
strain that lacks CI loci homologs, or that contains CI loci
homologs that are highly similar to (and thus potentially
compatible with) strains present in target population, should
be avoided. Secondly, it may be possible in the future to
genetically engineer Wolbachia strains with the desired
characteristics (e.g., one or more specific CI operons) for
IIT programs, or to replace strains used previously in
a control program, as a means of addressing resistance
phenomena (Sullivan and O’Neill, 2017). Finally, a thorough
understanding of the CI mechanism might enable the
development of IIT based on Wolbachia transgenes, rather
than Wolbachia infection. This might be particularly helpful in
the control of species that are resistant to Wolbachia infection.
Nonetheless, the release of such genetically modified insects
might not be feasible due to regulatory hurdles and lack of
public acceptance.

It has recently been shown that some Wolbachia strains
can provide protection against major pathogens and parasites
of insects, including RNA viruses and bacteria (Hedges et al.,
2008; Teixeira et al., 2008; Ye et al., 2013; Martinez et al.,
2014). It is very common for pathogens to appear in rearing
facilities. Thus, if a Wolbachia strain could simultaneously
cause strong CI and protect against one or more pathogens
(e.g., RNA virus), this would have multiple benefits in an
operational Wolbachia-based population suppression program.
Furthermore, a Wolbachia strain that does not induce (strong)
CI, but protects against pathogens might be desirable in a
program that does not rely on CI (e.g., SIT) for population
suppression. Wolbachia-mediated pathogen protection
would enable high production and quality levels, thereby
contributing to a cost-effective and sustainable insect pest
management program.

Potential Influence of Other Symbionts
Multiple studies have revealed that although Wolbachia
appears to be the dominant facultative heritable symbiont of
arthropods, numerous other diverse bacteria (e.g., Spiroplasma,
Arsenophonus, Rickettsia, and Cardinium) form such associations
with insects, causing a diversity of reproductive and non-
reproductive phenotypes (reviewed in Zchori-Fein and

Bourtzis, 2011; Hurst and Frost, 2015; McLean et al., 2018).
Despite the long-standing recognition that “Wolbachia
do not walk alone” (Duron et al., 2008), many studies of
Wolbachia fail to rule out the association of their study
organism with other facultative heritable symbionts. Even
intensely studied groups in terms of heritable symbionts,
such as tsetse flies (genus Glossina), can yield surprises of
bacterial associates (e.g., the recent discovery of Spiroplasma
in two species of Glossina; Doudoumis et al., 2017). With
few exceptions (Martínez et al., 2012; Augustinos et al.,
2015; Asimakis et al., 2019; Conte et al., 2019; Devescovi
et al., 2019), research on tephritid facultative heritable
bacteria has not examined the possibility of players other
than Wolbachia. Therefore, we urge that such research
include screens for other symbionts, including viruses,
protozoans, and fungi.

Tephritids are hosts to non-heritable bacteria, generally
harbored in their gut (for recent reviews see Noman et al.,
2019; Raza et al., 2020). Whether Wolbachia influences tephritid
interactions with other microbes, has not been evaluated, but
evidence for such interactions exists for other systems (reviewed
in Brinker et al., 2019). For example, in Drosophila neotestacea
Grimaldi, James, and Jaenike, the presence of Wolbachia
promotes the abundance of Spiroplasma, and is positively
correlated with abundance of Bacteroidales and Lactobacillales
(Fromont et al., 2019). Similarly, Wolbachia influences the
microbiome of D. melanogaster (Simhadri et al., 2017) and
Armadillidium vulgare (Latreille) (Dittmer and Bouchon, 2018).
It is therefore important to evaluate interactions between
Wolbachia and the microbiome that influence negatively or
positively aspects of mass-reared tephritids used in IIT or SIT.

CONCLUSION

Given the widespread occurrence of Wolbachia in tephritids and
its known fitness consequences in this group of dipterans and
in other host taxa, Wolbachia is likely an influential component
of tephritid ecology and evolution. Further exploration of
Wolbachia-tephritid associations is expected to reveal a diversity
of effects, including interactions with other microbial partners, as
seen in more extensively studied systems such as Drosophila and
mosquitoes. The recent exciting progress in understanding the
basis of CI, and many other aspects of Wolbachia biology, should
accelerate progress in the development of Wolbachia-based IIT
for tephritid species, particularly with the aid of comparative
Wolbachia genomics to identify potential CI patterns on the
basis of CI gene composition. We consider that one of the
major obstacles to effectively implementing IIT will be to avoid
population replacement due to accidental release of Wolbachia-
infected females. The threshold number of accidentally released
females, which is generally much higher in systems that
employ bidirectional-CI compared to unidirectional-CI, must
be thoroughly investigated prior to any field implementation.
Where an unacceptable risk of population replacement exists,
we recommend that SIT be explored as a complementary
strategy to support IIT.

Frontiers in Microbiology | www.frontiersin.org 14 June 2020 | Volume 11 | Article 1080

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01080 June 1, 2020 Time: 18:4 # 15

Mateos et al. Wolbachia in Tephritid Flies

AUTHOR’S NOTE

An earlier version of manuscript has been released as a Pre-Print
at https://www.biorxiv.org/content/10.1101/358333v1.

AUTHOR CONTRIBUTIONS

MM led the drafting. HM, PL, JT, BM-A, KG, SL, DS, CC, AA,
GT, EA, VD, NP, and GK edited multiple drafts.

FUNDING

Funding was provided by the Joint FAO/IAEA Coordinated
Research Project “Use of Symbiotic Bacteria to Reduce Mass-
Rearing Costs and Increase Mating Success in Selected Fruit
Pests in Support of SIT Application” and TAMU-CONACYT
(050 Proposal # 10586).

ACKNOWLEDGMENTS

K. Bourtzis provided valuable suggestions on an earlier version of
this manuscript. We thank two reviewers for their thorough and
helpful feedback.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.
2020.01080/full#supplementary-material

FILE S1 | Compilation of published reports of screenings of Wolbachia (and other
heritable bacteria) in pest Tephritidae. In our counts of species, A. fraterculus
morphotypes (Hernández-Ortiz et al., 2015) are regarded as separate species.
Additional references not cited in main text but cited in this table (Drosopoulou
et al., 2010; Karimi and Darsouei, 2014; Yong et al., 2017; Gichuhi et al., 2019;
Schebeck et al., 2019; Wang et al., 2019).

REFERENCES
Ahmed, M. Z., Li, S. J., Xue, X., Yin, X. J., Ren, S. X., Jiggins, F. M., et al. (2015).

The intracellular bacterium Wolbachia uses parasitoid wasps as phoretic vectors
for efficient horizontal transmission. PLoS Pathog. 10:e1004672. doi: 10.1371/
journal.ppat.1004672

Aleksandrov, I., Aleksandrova, M., Goriacheva, I., Roshchina, N., Shaikevich,
E., and Zakharov, I. (2007). Removing endosymbiotic Wolbachia specifically
decreases lifespan of females and competitiveness in a laboratory strain of
Drosophila melanogaster. Genetika 43, 1372–1378.

Apostolaki, A., Livadaras, I., Saridaki, A., Chrysargyris, A., Savakis, C., and
Bourtzis, K. (2011). Transinfection of the olive fruit fly Bactrocera oleae with
Wolbachia: towards a symbiont-based population control strategy. J. Appl.
Entomol. 135, 546–553.

Arbuthnott, D., Levin, T. C., and Promislow, D. E. (2016). The impacts of
Wolbachia and the microbiome on mate choice in Drosophila melanogaster.
J. Evol. Biol. 29, 461–468. doi: 10.1111/jeb.12788

Arcella, T., Hood, G. R., Powell, T. H., Sim, S. B., Yee, W. L., Schwarz, D.,
et al. (2015). Hybridization and the spread of the apple maggot fly, Rhagoletis
pomonella (Diptera: Tephritidae), in the northwestern United States. Evol. Appl.
8, 834–846. doi: 10.1111/eva.12298

Arthofer, W., Riegler, M., Avtzis, D. N., and Stauffer, C. (2009a). Evidence for low-
titre infections in insect symbiosis: Wolbachia in the bark beetle Pityogenes
chalcographus (Coleoptera, Scolytinae). Environ. Microbiol. 11, 1923–1933. doi:
10.1111/j.1462-2920.2009.01914.x

Arthofer, W., Riegler, M., Schneider, D., Krammer, M., Miller, W. J., and Stauffer,
C. (2009b). Hidden Wolbachia diversity in field populations of the European
cherry fruit fly, Rhagoletis cerasi (Diptera, Tephritidae). Mol. Ecol. 18, 3816–
3830. doi: 10.1111/j.1365-294X.2009.04321.x

Arthofer, W., Riegler, M., Schuler, H., Schneider, D., Moder, K., Miller, W. J.,
et al. (2011). Allele intersection analysis: a novel tool for multi locus sequence
assignment in multiply infected hosts. PLoS One 6:e22198. doi: 10.1371/journal.
pone.0022198

Asimakis, E. D., Doudoumis, V., Hadapad, A. B., Hire, R. S., Batargias, C., Niu,
C., et al. (2019). Detection and characterization of bacterial endosymbionts
in Southeast Asian tephritid fruit fly populations. BMC Microbiol. 19:290. doi:
10.1186/s12866-019-1653-x

Attardo, G. M., Abd-Alla, A. M. M., Acosta-Serrano, A., Allen, J. E., Bateta, R., and
Benoit, J. B. (2019). Comparative genomic analysis of six Glossina genomes,
vectors of African trypanosomes. Genome Biol. 20:187. doi: 10.1186/s13059-
019-1768-2

Augustinos, A. A., Asimakopoulou, A. K., Moraiti, C. A., Mavragani-Tsipidou,
P., Papadopoulos, N. T., and Bourtzis, K. (2014). Microsatellite and

Wolbachia analysis in Rhagoletis cerasi natural populations: population
structuring and multiple infections. Ecol. Evol. 4, 1943–1962. doi: 10.1002/e
ce3.553

Augustinos, A. A., Drosopoulou, E., Gariou-Papalexiou, A., Asimakis, E. D.,
Cáceres, C., Tsiamis, G., et al. (2015). Cytogenetic and symbiont analysis of
five members of the B. dorsalis complex (Diptera, Tephritidae): no evidence
of chromosomal or symbiont-based speciation events. Zookeys 2, 273–298.
doi: 10.3897/zookeys.540.9857

Augustinos, A. A., Santos-Garcia, D., Dionyssopoulou, E., Moreira, M.,
Papapanagiotou, A., Scarvelakis, M., et al. (2011). Detection and
characterization of Wolbachia infections in natural populations of
aphids: is the hidden diversity fully unraveled? PLoS One 6:e28695.
doi: 10.1371/journal.pone.0028695

Awrahman, Z. A., Champion, de Crespigny, F., and Wedell, N. (2014). The impact
of Wolbachia, male age and mating history on cytoplasmic incompatibility and
sperm transfer in Drosophila simulans. J. Evol. Biol. 27, 1–10. doi: 10.1111/jeb.
12270

Bailly-Bechet, M., Martins-Simões, P., Szöllõsi, G. J., Mialdea, G., Sagot, M.-F., and
Charlat, S. (2017). How long does Wolbachia remain on board? Mol. Biol. Evol.
34, 1183–1193. doi: 10.1093/molbev/msx073

Bakovic, V., Schebeck, M., Telschow, A., Stauffer, C., and Schuler, H. (2018).
Spatial spread of Wolbachia in Rhagoletis cerasi populations. Biol. Lett. 14:161.
doi: 10.1098/rsbl.2018.0161

Bakri, A., Mehta, K., and Lance, R. (2005). “Sterilizing insects with ionizing
radiation,” in Sterile Insect Technique, Principles and Practices in Area-Wide
Integrated Pest Management, eds V. A. Dyck, J. Hendrichs, and A. S. Robinson,
(Cham: Springer), 233–268.

Baldo, L., Dunning Hotopp, J. C., Jolley, K. A., Bordenstein, S. R., Biber, S. A.,
Choudhury, R. R., et al. (2006). Multilocus sequence typing system for the
endosymbiont Wolbachia pipientis. Appl. Environ. Microbiol. 72, 7098–7110.
doi: 10.1128/AEM.00731-06

Baldo, L., Lo, N., and Werren, J. H. (2005). Mosaic nature of the Wolbachia surface
protein. J. Bacteriol. 187, 5406–5418.

Ballard, J. W., and Melvin, R. G. (2007). Tetracycline treatment influences
mitochondrial metabolism and mtDNA density two generations after treatment
in Drosophila. Insect Mol. Biol. 16, 799–802. doi: 10.1111/j.1365-2583.2007.
00760.x

Baton, L. A., Pacidonio, E. C., Goncalves, D. S., and Moreira, L. A. (2013). wFlu:
characterization and evaluation of a native Wolbachia from the mosquito Aedes
fluviatilis as a potential vector control agent. PLoS One 8:e59619. doi: 10.1371/
journal.pone.0059619

Beckmann, J. F., Bonneau, M., Chen, H., Hochstrasser, M., Poinsot, D., Merçot,
H., et al. (2019a). Caution does not preclude predictive and testable models of

Frontiers in Microbiology | www.frontiersin.org 15 June 2020 | Volume 11 | Article 1080

https://www.biorxiv.org/content/10.1101/358333v1
https://www.frontiersin.org/articles/10.3389/fmicb.2020.01080/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2020.01080/full#supplementary-material
https://doi.org/10.1371/journal.ppat.1004672
https://doi.org/10.1371/journal.ppat.1004672
https://doi.org/10.1111/jeb.12788
https://doi.org/10.1111/eva.12298
https://doi.org/10.1111/j.1462-2920.2009.01914.x
https://doi.org/10.1111/j.1462-2920.2009.01914.x
https://doi.org/10.1111/j.1365-294X.2009.04321.x
https://doi.org/10.1371/journal.pone.0022198
https://doi.org/10.1371/journal.pone.0022198
https://doi.org/10.1186/s12866-019-1653-x
https://doi.org/10.1186/s12866-019-1653-x
https://doi.org/10.1186/s13059-019-1768-2
https://doi.org/10.1186/s13059-019-1768-2
https://doi.org/10.1002/ece3.553
https://doi.org/10.1002/ece3.553
https://doi.org/10.3897/zookeys.540.9857
https://doi.org/10.1371/journal.pone.0028695
https://doi.org/10.1111/jeb.12270
https://doi.org/10.1111/jeb.12270
https://doi.org/10.1093/molbev/msx073
https://doi.org/10.1098/rsbl.2018.0161
https://doi.org/10.1128/AEM.00731-06
https://doi.org/10.1111/j.1365-2583.2007.00760.x
https://doi.org/10.1111/j.1365-2583.2007.00760.x
https://doi.org/10.1371/journal.pone.0059619
https://doi.org/10.1371/journal.pone.0059619
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01080 June 1, 2020 Time: 18:4 # 16

Mateos et al. Wolbachia in Tephritid Flies

cytoplasmic incompatibility: a reply to Shropshire et al. Trends Genet. 35:399.
doi: 10.1016/j.tig.2019.03.002

Beckmann, J. F., Bonneau, M., Chen, H., Hochstrasser, M., Poinsot, D., Merçot,
H., et al. (2019b). The toxin–antidote model of cytoplasmic incompatibility:
genetics and evolutionary implications. Trends Genet. 35, 175–185. doi: 10.
1016/j.tig.2018.12.004

Beckmann, J. F., and Fallon, A. M. (2012). Decapitation improves detection of
Wolbachia pipientis (Rickettsiales: Anaplasmataceae) in Culex pipiens (Diptera:
Culicidae) mosquitoes by the polymerase chain reaction. J. Med. Entomol. 49,
1103–1108. doi: 10.1603/me12049

Beckmann, J. F., Ronau, J. A., and Hochstrasser, M. (2017). A Wolbachia
deubiquitylating enzyme induces cytoplasmic incompatibility. Nat. Microbiol.
2:17007. doi: 10.1038/nmicrobiol.2017.7

Beckmann, J. F., Sharma, G. D., Mendez, L., Chen, H., and Hochstrasser, M.
(2019c). The Wolbachia cytoplasmic incompatibility enzyme CidB targets
nuclear import and protamine-histone exchange factors. eLife 8:26. doi: 10.
7554/eLife.50026

Benedict, M. Q., and Robinson, A. S. (2003). The first releases of
transgenic mosquitoes: an argument for the sterile insect technique.
Trends Parasitol. 19, 349–355. doi: 10.1016/s1471-4922(03)00
144-2

Bi, J., and Wang, Y.-F. (2019). The effect of the endosymbiont Wolbachia on the
behavior of insect hosts. Insect Sci. 1–13. doi: 10.1111/1744-7917.12731

Bian, G., Joshi, D., Dong, Y., Lu, P., Zhou, G., Pan, X., et al. (2013).
Wolbachia invades Anopheles stephensi populations and induces refractoriness
to Plasmodium infection. Science 340, 748–751. doi: 10.1126/science.1236192

Bierbaum, T. J., and Bush, G. L. (1990). Genetic differentiation in the viability
of sibling species of Rhagoletis fruit flies on host plants, and the influence
of reduced hybrid viability on reproductive isolation. Entomol. Exp. Appl. 55,
105–118.

Black, W. C., Alphey, L., and James, A. A. (2011). Why RIDL is not SIT. Trends
Parasitol. 27, 362–370. doi: 10.1016/j.pt.2011.04.004

Bleidorn, C. (2016). Third generation sequencing: technology and its potential
impact on evolutionary biodiversity research. Syst. Biodivers. 14, 1–8.

Bleidorn, C., and Gerth, M. (2017). A critical re-evaluation of multilocus sequence
typing (MLST) efforts in Wolbachia. FEMS Microbiol. Ecol. 94:fix163. doi: 10.
1093/femsec/fix163

Bo, W., Ahmad, S., Dammalage, T., Tomas, U. S., Wornoayporn, V., Haq, I. U.,
et al. (2014). Mating compatibility between Bactrocera invadens and Bactrocera
dorsalis (Diptera: Tephritidae). J. Econ. Entomol. 107, 623–629. doi: 10.3897/
zookeys.540.6568

Boller, E., and Bush, G. (1974). Evidence for genetic variation in populations of
the European cherry fruit fly, Rhagoletis cerasi (Diptera: Tephritidae) based on
physiological parameters and hybridization experiments. Entomol. Exp. Appl.
17, 279–293.

Boller, E., Russ, K., Vallo, V., and Bush, G. (1976). Incompatible races of
European cherry fruit fly, Rhagoletis cerasi (Diptera: Tephritidae), their
origin and potential use in biological control. Entomol. Exp. Appl. 20,
237–247.

Bonneau, M., Atyame, C., Beji, M., Justy, F., Cohen-Gonsaud, M., Sicard, M., et al.
(2018). Culex pipiens crossing type diversity is governed by an amplified and
polymorphic operon of Wolbachia. Nat. Commun. 9:319. doi: 10.1038/s41467-
017-02749-w

Bonneau, M., Caputo, B., Ligier, A., Caparros, R., Unal, S., Perriat-Sanguinet, M.,
et al. (2019). Variation in Wolbachia cidB gene, but not cidA, is associated with
cytoplasmic incompatibility mod phenotype diversity in Culex pipiens. Mol.
Ecol. 28, 4725–4736. doi: 10.1111/mec.15252

Bourtzis, K. (2008). Wolbachia-based technologies for insect pest population
control. Transgen. Manag. Vect. Borne Dis. 627, 104–113. doi: 10.1007/978-0-
387-78225-6_9

Bourtzis, K., Dobson, S. L., Xi, Z., Rasgon, J. L., Calvitti, M., Moreira, L. A.,
et al. (2014). Harnessing mosquito-Wolbachia symbiosis for vector and disease
control. Acta Trop. 132(Suppl.), S150–S163. doi: 10.1016/j.actatropica.2013.11.
004

Bourtzis, K., Lees, R. S., Hendrichs, J., and Vreysen, M. J. (2016). More than one
rabbit out of the hat: radiation, transgenic and symbiont-based approaches for
sustainable management of mosquito and tsetse fly populations. Acta Trop. 157,
115–130. doi: 10.1016/j.actatropica.2016.01.009

Bourtzis, K., Nirgianaki, A., Onyango, P., and Savakis, C. (1994). A prokaryotic
dnaA sequence in Drosophila melanogaster: Wolbachia infection and
cytoplasmic incompatibility among laboratory strains. Insect Mol. Biol. 3, 131–
142. doi: 10.1111/j.1365-2583.1994.tb00160.x

Bourtzis, K., and Robinson, A. (2006). “Insect pest control using Wolbachia and/or
radiation,” in Insect Symbiosis, eds K. Bourtzis, and T. A. Miller, (Boca Raton,
FL: CRC Press), 225–246.

Braig, H. R., Zhou, W., Dobson, S. L., and O’Neill, S. L. (1998). Cloning and
characterization of a gene encoding the major surface protein of the bacterial
endosymbiont Wolbachia pipientis. J. Bacteriol. 180, 2373–2378.

Brandon-Mong, G. J., Gan, H. M., Sing, K. W., Lee, P. S., Lim, P. E., and Wilson,
J. J. (2015). DNA metabarcoding of insects and allies: an evaluation of primers
and pipelines. Bull. Entomol. Res. 105, 717–727. doi: 10.1017/S000748531500
0681

Brelsfoard, C., Tsiamis, G., Falchetto, M., Gomulski, L. M., Telleria, E., Alam, U.,
et al. (2014). Presence of extensive Wolbachia symbiont insertions discovered
in the genome of its host Glossina morsitans morsitans. PLoS Negl. Trop. Dis.
8:e2728. doi: 10.1371/journal.pntd.0002728

Brinker, P., Fontaine, M. C., Beukeboom, L. W., and Falcao Salles, J.
(2019). Host, symbionts, and the microbiome: the missing tripartite
interaction. Trends Microbiol. 27, 480–488. doi: 10.1016/j.tim.2019.
02.002

Brownlie, J. C., Cass, B. N., Riegler, M., Witsenburg, J. J., Iturbe-Ormaetxe, I.,
McGraw, E. A., et al. (2009). Evidence for metabolic provisioning by a common
invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional
stress. PLoS Pathog. 5:e1000368. doi: 10.1371/journal.ppat.1000368

Bryant, K. N., and Newton, I. L. G. (2019). The intracellular symbiont Wolbachia
enhances recombination in a dose-dependent manner. bioRxiv [Preprint], doi:
10.1101/686444

Cáceres, C., McInnis, D., Shelly, T., Jang, E., Robinson, A., and Hendrichs, J. (2007).
Quality management systems for fruit fly (Diptera: Tephritidae) sterile insect
technique. Fla. Entomol. 90, 1–9.

Cáceres, C., Segura, D. F., Vera, M. T., Wornoayporn, V., Cladera, J. L.,
Teal, P., et al. (2009). Incipient speciation revealed in Anastrepha fraterculus
(Diptera; Tephritidae) by studies on mating compatibility, sex pheromones,
hybridization, and cytology. Biol. J. Linn. Soc. 97, 152–165.

Caputo, B., Moretti, R., Manica, M., Serini, P., Lampazzi, E., Bonanni, M., et al.
(2019). A bacterium against the tiger: preliminary evidence of fertility reduction
after release of Aedes albopictus males with manipulated Wolbachia infection in
an Italian urban area. Pest Manag. Sci. 76:5643. doi: 10.1002/ps.5643

Caspari, E., and Watson, G. (1959). On the evolutionary importance of cytoplasmic
sterility in mosquitoes. Evolution 13, 568–570.

Chafee, M. E., Funk, D. J., Harrison, R. G., and Bordenstein, S. R. (2010). Lateral
phage transfer in obligate intracellular bacteria (Wolbachia): verification from
natural populations. Mol. Biol. Evol. 27, 501–505. doi: 10.1093/molbev/msp275

Champion de Crespigny, F. E., Hurst, L. D., and Wedell, N. (2008). Do Wolbachia-
associated incompatibilities promote polyandry? Evolution 62, 107–122. doi:
10.1111/j.1558-5646.2007.00274.x

Champion de Crespigny, F. E., and Wedell, N. (2006). Wolbachia infection reduces
sperm competitive ability in an insect. Proc. R. Soc. Lond. B Biol. Sci. 273,
1455–1458. doi: 10.1098/rspb.2006.3478

Champion de Crespigny, F. E., and Wedell, N. (2007). Mate preferences in
Drosophila infected with Wolbachia? Behav. Ecol. Sociobiol. 61:1229.

Chen, H., Ronau, J. A., Beckmann, J. F., and Hochstrasser, M. (2019). A Wolbachia
nuclease and its binding partner provide a distinct mechanism for cytoplasmic
incompatibility. Proc. Natl. Acad. Sci. U.S.A. 2019, 14571. doi: 10.1073/pnas.
1914571116

Chen, W.-J., Tsai, K.-H., Cheng, S.-L., Huang, C.-G., and Wu, W.-J. (2005). Using
in situ hybridization to detect endosymbiont Wolbachia in dissected tissues of
mosquito host. J. Med. Entomol. 42, 120–124. doi: 10.1093/jmedent/42.2.120

Choo, A., Crisp, P., Saint, R., O’Keefe, L., and Baxter, S. (2017). CRISPR/Cas9-
mediated mutagenesis of the white gene in the tephritid pest Bactrocera tryoni.
J. Appl. Entomol. 142:12411. doi: 10.1111/jen.12411

Chrostek, E., Hurst, G. D., and McGraw, E. A. (2020). Infectious diseases: antiviral
Wolbachia limits dengue in malaysia. Curr. Biol. 30, R30–R32. doi: 10.1016/j.
cub.2019.11.046

Cladera, J. L., Vilardi, J. C., Juri, M., Paulin, L. E., Giardini, M. C., Cendra,
P. V. G., et al. (2014). Genetics and biology of Anastrepha fraterculus: research

Frontiers in Microbiology | www.frontiersin.org 16 June 2020 | Volume 11 | Article 1080

https://doi.org/10.1016/j.tig.2019.03.002
https://doi.org/10.1016/j.tig.2018.12.004
https://doi.org/10.1016/j.tig.2018.12.004
https://doi.org/10.1603/me12049
https://doi.org/10.1038/nmicrobiol.2017.7
https://doi.org/10.7554/eLife.50026
https://doi.org/10.7554/eLife.50026
https://doi.org/10.1016/s1471-4922(03)00144-2
https://doi.org/10.1016/s1471-4922(03)00144-2
https://doi.org/10.1111/1744-7917.12731
https://doi.org/10.1126/science.1236192
https://doi.org/10.1016/j.pt.2011.04.004
https://doi.org/10.1093/femsec/fix163
https://doi.org/10.1093/femsec/fix163
https://doi.org/10.3897/zookeys.540.6568
https://doi.org/10.3897/zookeys.540.6568
https://doi.org/10.1038/s41467-017-02749-w
https://doi.org/10.1038/s41467-017-02749-w
https://doi.org/10.1111/mec.15252
https://doi.org/10.1007/978-0-387-78225-6_9
https://doi.org/10.1007/978-0-387-78225-6_9
https://doi.org/10.1016/j.actatropica.2013.11.004
https://doi.org/10.1016/j.actatropica.2013.11.004
https://doi.org/10.1016/j.actatropica.2016.01.009
https://doi.org/10.1111/j.1365-2583.1994.tb00160.x
https://doi.org/10.1017/S0007485315000681
https://doi.org/10.1017/S0007485315000681
https://doi.org/10.1371/journal.pntd.0002728
https://doi.org/10.1016/j.tim.2019.02.002
https://doi.org/10.1016/j.tim.2019.02.002
https://doi.org/10.1371/journal.ppat.1000368
https://doi.org/10.1101/686444
https://doi.org/10.1101/686444
https://doi.org/10.1002/ps.5643
https://doi.org/10.1093/molbev/msp275
https://doi.org/10.1111/j.1558-5646.2007.00274.x
https://doi.org/10.1111/j.1558-5646.2007.00274.x
https://doi.org/10.1098/rspb.2006.3478
https://doi.org/10.1073/pnas.1914571116
https://doi.org/10.1073/pnas.1914571116
https://doi.org/10.1093/jmedent/42.2.120
https://doi.org/10.1111/jen.12411
https://doi.org/10.1016/j.cub.2019.11.046
https://doi.org/10.1016/j.cub.2019.11.046
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01080 June 1, 2020 Time: 18:4 # 17

Mateos et al. Wolbachia in Tephritid Flies

supporting the use of the sterile insect technique (SIT) to control this pest in
Argentina. BMC Genet. 15:S12. doi: 10.1186/1471-2156-15-S2-S12

Collins, S. R., Weldon, C. W., Banos, C., and Taylor, P. W. (2009). Optimizing
irradiation dose for sterility induction and quality of Bactrocera tryoni. J. Econ.
Entomol. 102, 1791–1800. doi: 10.1603/029.102.0509

Conte, C., Segura, D., Milla, F., Augustinos, A., Cladera, J., Bourtzis, K.,
et al. (2019). Wolbachia infection in argentinean populations of Anastrepha
fraterculus sp1: preliminary evidence of sex ratio distortion by one of two
strains. BMC Microbiol. 19:289. doi: 10.1186/s12866-019-1652-y

Cooper, B. S., Ginsberg, P. S., Turelli, M., and Matute, D. R. (2017). Wolbachia
in the Drosophila yakuba complex: pervasive frequency variation and weak
cytoplasmic incompatibility, but no apparent efect on reproductive isolation.
Genetics 205, 333–351. doi: 10.1534/genetics.116.196238

Corbin, C., Heyworth, E. R., Ferrari, J., and Hurst, G. D. (2017). Heritable
symbionts in a world of varying temperature. Heredity 118, 10–20. doi: 10.1038/
hdy.2016.71

Coscrato, V. E., Braz, A. S., Perondini, A. L. P., Selivon, D., and Marino,
C. L. (2009). Wolbachia in Anastrepha fruit flies (Diptera: Tephritidae). Curr.
Microbiol. 59, 295–301. doi: 10.1007/s00284-009-9433-9438

Craig, T. P., Horner, J. D., and Itami, J. K. (1997). Hybridization studies on the host
races of Eurosta solidaginis: implications for sympatric speciation. Evolution 51,
1552–1560. doi: 10.1111/j.1558-5646.1997.tb01478.x

Cruickshank, L., Jessup, A. J., and Cruickshank, D. J. (2001). Interspecific
crosses of Bactrocera tryoni (Froggatt) and Bactrocera jarvisi (Tryon)(Diptera:
Tephritidae) in the laboratory. Aust. Entomol. 40, 278–280.

da Silva Gonçalves, D., Cassimiro, A. P. A., de Oliveira, C. D., Rodrigues, N. B.,
and Moreira, L. A. (2014). Wolbachia detection in insects through LAMP:
loop mediated isothermal amplification. Parasit. Vect. 7:228. doi: 10.1186/1756-
3305-7-228

de Oliveira, C. D., Goncalves, D. S., Baton, L. A., Shimabukuro, P. H., Carvalho,
F. D., and Moreira, L. A. (2015). Broader prevalence of Wolbachia in insects
including potential human disease vectors. Bull. Entomol. Res. 105, 305–315.
doi: 10.1017/S0007485315000085

Dean, M. D. (2006). A Wolbachia-associated fitness benefit depends on genetic
background in Drosophila simulans. Proc. R. Soc. Lond. B Biol. Sci. 273, 1415–
1420. doi: 10.1098/rspb.2005.3453

Devescovi, F., Bachmann, G. E., Nussenbaum, A. L., Viscarret, M. M., Cladera,
J. L., and Segura, D. F. (2017). Effects of superparasitism on immature and adult
stages of Diachasmimorpha longicaudata Ashmead (Hymenoptera: Braconidae)
reared on Ceratitis capitata Wiedemann (Diptera: Tephritidae). Bull. Entomol.
Res. 107, 756–767. doi: 10.1017/S000748531700027X

Devescovi, F., Conte, C. A., Augustinos, A., Cancio Martinez, E. I., Segura,
D. F., Caceres, C., et al. (2019). Symbionts do not affect the mating
incompatibility between the Brazilian-1 and Peruvian morphotypes of the
Anastrepha fraterculus cryptic species complex. Sci. Rep. 9:18319. doi: 10.1038/
s41598-019-54704-y

Dias, N. P., Zotti, M. J., Montoya, P., Carvalho, I. R., and Nava, D. E. (2018).
Fruit fly management research: a systematic review of monitoring and control
tactics in the world. Crop Prot. 112, 187–200. doi: 10.1016/j.cropro.2018.
05.019

Dionysopoulou, N. K., Papanastasiou, S. A., Kyritsis, G. A., and Papadopoulos,
N. T. (2020). Effect of host fruit, temperature and Wolbachia infection on
survival and development of Ceratitis capitata immature stages. PLoS One
15:e0229727. doi: 10.1371/journal.pone.0229727

Dittmer, J., and Bouchon, D. (2018). Feminizing Wolbachia influence microbiota
composition in the terrestrial isopod Armadillidium vulgare. Sci. Rep. 8:6998.
doi: 10.1038/s41598-018-25450-4

Dobson, S. L., Bourtzis, K., Braig, H. R., Jones, B. F., Zhou, W., Rousset, F., et al.
(1999). Wolbachia infections are distributed throughout insect somatic and
germ line tissues. Insect Biochem. Mol. Biol. 29, 153–160. doi: 10.1016/s0965-
1748(98)00119-2

Dobson, S. L., Fox, C. W., and Jiggins, F. M. (2002). The effect of Wolbachia-
induced cytoplasmic incompatibility on host population size in natural and
manipulated systems. Proc. Natl. Acad. Sci. U.S.A. 269, 437–445. doi: 10.1098/
rspb.2001.1876

Dodson, B. L., Hughes, G. L., Paul, O., Matacchiero, A. C., Kramer, L. D., and
Rasgon, J. L. (2014). Wolbachia enhances West Nile virus (WNV) infection in

the mosquito Culex tarsalis. PLoS Negl. Trop. Dis. 8:e2965. doi: 10.1371/journal.
pntd.0002965

Doellman, M. M., Schuler, H., Jean Saint, G., Hood, G. R., Egan, S. P., Powell, T. H.,
et al. (2019). Geographic and ecological dimensions of host plant-associated
genetic differentiation and speciation in the Rhagoletis cingulata (Diptera:
Tephritidae) sibling species group. Insects 10:275. doi: 10.3390/insects10090275

Dos Santos, P., Uramoto, K., and Matioli, S. (2001). Experimental hybridization
among Anastrepha species (Diptera: Tephritidae): production and
morphological characterization of F1 hybrids. Ann. Entomol. Soc. Am. 94,
717–725.

Doudoumis, V., Blow, F., Saridaki, A., Augustinos, A., Dyer, N. A., Goodhead,
I., et al. (2017). Challenging the Wigglesworthia, Sodalis, Wolbachia symbiosis
dogma in tsetse flies: Spiroplasma is present in both laboratory and natural
populations. Sci. Rep. 7:4699. doi: 10.1038/s41598-017-04740-3

Doudoumis, V., Tsiamis, G., Wamwiri, F., Brelsfoard, C., Alam, U., Aksoy, E., et al.
(2012). Detection and characterization of Wolbachia infections in laboratory
and natural populations of different species of tsetse flies (genus Glossina). BMC
Microbiol. 12(Suppl. 1):S3. doi: 10.1186/1471-2180-12-S1-S3

Drew, R., and Lambert, D. (1986). On the specific status of Dacus (Bactrocera
aquilonis and D.(Bactrocera tryoni (Diptera: Tephritidae). Ann. Entomol. Soc.
Am. 79, 870–878.

Drew, R. A., and Romig, M. C. (2013). Tropical Fruit Flies Of South-East Asia.
Wallingfor: CABI.

Drosopoulou, E., Augustinos, A., Nakou, I., Koeppler, K., Kounatidis, I., Vogt,
H., et al. (2011). Genetic and cytogenetic analysis of the American cherry
fruit fly, Rhagoletis cingulata (Diptera: Tephritidae). Genetica 139, 1449–1464.
doi: 10.1007/s10709-012-9644-y

Drosopoulou, E., Koeppler, K., Kounatidis, I., Nakou, I., Papadopoulos, N.,
Bourtzis, K., et al. (2010). Genetic and cytogenetic analysis of the walnut-husk
fly (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 103, 1003–1011.

Du, Y., Ji, Q., Pan, J., and Lai, Z. (2016). Suitability of the pumpkin fruit fly,
Bactrocera tau (Walker)(Diptera: Tephritidae) for a sterile insect technique
program. Egypt. J. Biol. Pest Control 26, 665–669.

Dunning Hotopp, J. C., Clark, M. E., Oliveira, D., Foster, J. M., Fischer, P.,
Torres, M. C., et al. (2007). Widespread lateral gene transfer from intracellular
bacteria to multicellular eukaryotes. Science 317, 1753–1756. doi: 10.1126/
science.1142490

Duron, O., Bouchon, D., Boutin, S., Bellamy, L., Zhou, L., Engelstadter, J., et al.
(2008). The diversity of reproductive parasites among arthropods: Wolbachia
do not walk alone. BMC Biol. 6:27. doi: 10.1186/1741-7007-6-27

Duron, O., and Hurst, G. D. (2013). Arthropods and inherited bacteria: from
counting the symbionts to understanding how symbionts count. BMC Biol.
11:45. doi: 10.1186/1741-7007-11-45

Dyck, V. A., Hendrichs, J., and Robinson, A. S. (eds) (2005). Sterile Insect
Technique: Principles and Practice in Area-Wide Integrated Pest Management.
Berlin: Springer.

Ebina, T., and Ohto, K. (2006). Morphological characters and PCR-RFLP markers
in the interspecific hybrids between Bactrocera carambolae and B. papayae of
the B. dorsalis species complex (Diptera: Tephritidae). Res. Bull. Prot. Jpn. 42,
23–34.

Enkerlin, W. R. (2005). “Impact of fruit fly control programmes using the Sterile
Insect Technique,” in Sterile Insect Technique: Principles and Practice In Area-
Wide Integrated Pest Management, eds V. A. Dyck, J. Hendrichs, and A. S.
Robinson, (Berlin: Springer), 651–676.

Erbout, N., De Meyer, M., and Lens, L. (2008). Hybridization between two
polyphagous fruit-fly species (Diptera: Tephritidae) causes sex-biased reduction
in developmental stability. Biol. J. Linn. Soc. 93, 579–588.

Faria, V. G., Paulo, T. F., and Sucena, E. (2016). Testing cannibalism as a
mechanism for horizontal transmission of Wolbachia in Drosophila. Symbiosis
1, 79–85.

Fast, E. M., Toomey, M. E., Panaram, K., Desjardins, D., Kolaczyk, E. D., and
Frydman, H. M. (2011). Wolbachia enhance Drosophila stem cell proliferation
and target the germline stem cell niche. Science 334, 990–992. doi: 10.1126/
science.1209609

Fenn, K., Conlon, C., Jones, M., Quail, M. A., Holroyd, N. E., Parkhill, J.,
et al. (2006). Phylogenetic relationships of the Wolbachia of nematodes and
arthropods. PLoS Pathog. 2:e94. doi: 10.1371/journal.ppat.0020094

Frontiers in Microbiology | www.frontiersin.org 17 June 2020 | Volume 11 | Article 1080

https://doi.org/10.1186/1471-2156-15-S2-S12
https://doi.org/10.1603/029.102.0509
https://doi.org/10.1186/s12866-019-1652-y
https://doi.org/10.1534/genetics.116.196238
https://doi.org/10.1038/hdy.2016.71
https://doi.org/10.1038/hdy.2016.71
https://doi.org/10.1007/s00284-009-9433-9438
https://doi.org/10.1111/j.1558-5646.1997.tb01478.x
https://doi.org/10.1186/1756-3305-7-228
https://doi.org/10.1186/1756-3305-7-228
https://doi.org/10.1017/S0007485315000085
https://doi.org/10.1098/rspb.2005.3453
https://doi.org/10.1017/S000748531700027X
https://doi.org/10.1038/s41598-019-54704-y
https://doi.org/10.1038/s41598-019-54704-y
https://doi.org/10.1016/j.cropro.2018.05.019
https://doi.org/10.1016/j.cropro.2018.05.019
https://doi.org/10.1371/journal.pone.0229727
https://doi.org/10.1038/s41598-018-25450-4
https://doi.org/10.1016/s0965-1748(98)00119-2
https://doi.org/10.1016/s0965-1748(98)00119-2
https://doi.org/10.1098/rspb.2001.1876
https://doi.org/10.1098/rspb.2001.1876
https://doi.org/10.1371/journal.pntd.0002965
https://doi.org/10.1371/journal.pntd.0002965
https://doi.org/10.3390/insects10090275
https://doi.org/10.1038/s41598-017-04740-3
https://doi.org/10.1186/1471-2180-12-S1-S3
https://doi.org/10.1007/s10709-012-9644-y
https://doi.org/10.1126/science.1142490
https://doi.org/10.1126/science.1142490
https://doi.org/10.1186/1741-7007-6-27
https://doi.org/10.1186/1741-7007-11-45
https://doi.org/10.1126/science.1209609
https://doi.org/10.1126/science.1209609
https://doi.org/10.1371/journal.ppat.0020094
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01080 June 1, 2020 Time: 18:4 # 18

Mateos et al. Wolbachia in Tephritid Flies

Franz, G. (2005). “Genetic sexing strains in Mediterranean fruit fly, an example for
other species amenable to large-scale rearing for the sterile insect technique,”
in Sterile Insect Technique, eds V. A. Dyck, J. Hendrichs, and A. Robinson,
(Dordrecht: Springer), 427–451.

Fromont, C., Adair, K. L., and Douglas, A. E. (2019). Correlation and causation
between the microbiome, Wolbachia and host functional traits in natural
populations of Drosophilid flies. Mol. Ecol. 28, 1826–1841. doi: 10.1111/mec.
15041

Frydman, H. M., Li, J. M., Robson, D. N., and Wieschaus, E. (2006). Somatic
stem cell niche tropism in Wolbachia. Nature 441, 509–512. doi: 10.1038/
nature04756

Fytrou, A., Schofield, P. G., Kraaijeveld, A. R., and Hubbard, S. F. (2006). Wolbachia
infection suppresses both host defence and parasitoid counter-defence. Proc. R.
Soc. Lond. B Biol. Sci. 273, 791–796. doi: 10.1098/rspb.2005.3383

Geniez, S., Foster, J. M., Kumar, S., Moumen, B., LeProust, E., Hardy, O., et al.
(2012). Targeted genome enrichment for efficient purification of endosymbiont
DNA from host DNA. Symbiosis 58, 201–207. doi: 10.1007/s13199-012-
0215-x

Gerth, M., and Bleidorn, C. (2016). Comparative genomics provides a timeframe
for Wolbachia evolution and exposes a recent biotin synthesis operon transfer.
Nat. Microbiol. 2:16241. doi: 10.1038/nmicrobiol.2016.241

Gibson, J., Shokralla, S., Porter, T. M., King, I., van Konynenburg, S., Janzen, D. H.,
et al. (2014). Simultaneous assessment of the macrobiome and microbiome in a
bulk sample of tropical arthropods through DNA metasystematics. Proc. Natl.
Acad. Sci. U.S.A. 111, 8007–8012. doi: 10.1073/pnas.1406468111

Gichuhi, J., Khamis, F. M., Van den Berg, J., Ekesi, S., and Herren, J. K. (2019).
Unexpected diversity of Wolbachia associated with Bactrocera dorsalis (Diptera:
Tephritidae) in Africa. Insects 10:155. doi: 10.3390/insects10060155

Gilchrist, A., Cameron, E., Sved, J., and Meats, A. (2012). Genetic consequences
of domestication and mass rearing of pest fruit fly Bactrocera tryoni (Diptera:
Tephritidae). J. Econ. Entomol. 105, 1051–1056. doi: 10.1603/ec11421

Gilchrist, A. S., Shearman, D. C., Frommer, M., Raphael, K. A., Deshpande, N. P.,
Wilkins, M. R., et al. (2014). The draft genome of the pest tephritid fruit fly
Bactrocera tryoni: resources for the genomic analysis of hybridising species.
BMC Genomics 15:1153. doi: 10.1186/1471-2164-15-1153

Gilles, J. R., Schetelig, M. F., Scolari, F., Marec, F., Capurro, M. L., Franz, G.,
et al. (2014). Towards mosquito sterile insect technique programmes: exploring
genetic, molecular, mechanical and behavioural methods of sex separation
in mosquitoes. Acta Trop. 132(Suppl.), S178–S187. doi: 10.1016/j.actatropica.
2013.08.015

Glowska, E., Dragun-Damian, A., Dabert, M., and Gerth, M. (2015). New
Wolbachia supergroups detected in quill mites (Acari: Syringophilidae). Infect.
Genet. Evol. 30, 140–146. doi: 10.1016/j.meegid.2014.12.019

Goodwin, S., McPherson, J. D., and McCombie, W. R. (2016). Coming of age: ten
years of next-generation sequencing technologies. Nat. Rev. Genet. 17, 333–351.
doi: 10.1038/nrg.2016.49

Handler, A. M. (2016). Enhancing the stability and ecological safety of mass-reared
transgenic strains for field release by redundant conditional lethality systems.
Insect Sci. 23, 225–234. doi: 10.1111/1744-7917.12245

Harris, H. L., Brennan, L. J., Keddie, B. A., and Braig, H. R. (2010). Bacterial
symbionts in insects: balancing life and death. Symbiosis 51, 37–53.

Hedges, L. M., Brownlie, J. C., O’Neill, S. L., and Johnson, K. N. (2008). Wolbachia
and virus protection in insects. Science 322:702. doi: 10.1126/science.1162418

Hendrichs, J., Franz, G., and Rendon, P. (1995). Increased effectiveness and
applicability of the sterile insect technique through male-only releases for
control of Mediterranean fruit flies during fruiting seasons. J. Appl. Entomol.
119, 371–377.

Hendrichs, J., and Robinson, A. (2009). “Chapter 243 - Sterile insect technique,” in
Encyclopedia of Insects (Second Edition), eds V. H. Resh, and R. T. Cardé, (San
Diego: Academic Press), 953–957.

Hendrichs, J., Vreysen, M., Enkerlin, W., and Cayol, J. (2005). “Strategic options in
using sterile insects for area-wide integrated pest management,” in Sterile Insect
Technique, eds V. A. Dyck, J. Hendrichs, A. Robinson, (Dordrecht: Springer),
563–600.

Hernández-Ortiz, V., Canal, N. A., Salas, J. O. T., Ruíz-Hurtado, F. M., and Dzul-
Cauich, J. F. (2015). Taxonomy and phenotypic relationships of the Anastrepha
fraterculus complex in the mesoamerican and Pacific neotropical dominions
(Diptera, Tephritidae). Zookeys 2015:95. doi: 10.3897/zookeys.540.6027

Hibino, Y., and Iwahashi, O. (1991). Appearance of wild females unreceptive to
sterilized males on Okinawa Is. in the eradication program of the melon fly,
Dacus cucurbitae Coquillett (Diptera: Tephritidae). Appl. Entomol. Zool. 26,
265–270.

Hilgenboecker, K., Hammerstein, P., Schlattmann, P., Telschow, A., and Werren,
J. H. (2008). How many species are infected with Wolbachia?–A statistical
analysis of current data. FEMS Microbiol. Lett. 281, 215–220. doi: 10.1111/j.
1574-6968.2008.01110.x

Hoffmann, A. A., and Turelli, M. (1988). Unidirectional incompatibility in
Drosophila simulans: inheritance, geographic variation and fitness effects.
Genetics 119, 435–444.

Hoffmann, A. A., Turelli, M., and Harshman, L. G. (1990). Factors affecting the
distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics
126, 933–948.

Hughes, G. L., Dodson, B. L., Johnson, R. M., Murdock, C. C., Tsujimoto, H.,
Suzuki, Y., et al. (2014). Native microbiome impedes vertical transmission
of Wolbachia in Anopheles mosquitoes. Proc. Natl. Acad. Sci. U.S.A. 111,
12498–12503. doi: 10.1073/pnas.1408888111

Hughes, G. L., Pike, A. D., Xue, P., and Rasgon, J. L. (2012a). Invasion of Wolbachia
into Anopheles and other insect germlines in an ex vivo organ culture system.
PLoS One 7:e36277. doi: 10.1371/journal.pone.0036277

Hughes, G. L., and Rasgon, J. L. (2014). Transinfection: a method to investigate
Wolbachia-host interactions and control arthropod-borne disease. Insect Mol.
Biol. 23, 141–151. doi: 10.1111/imb.12066

Hughes, G. L., Vega-Rodriguez, J., Xue, P., and Rasgon, J. L. (2012b). Wolbachia
strain wAlbB enhances infection by the rodent malaria parasite Plasmodium
berghei in Anopheles gambiae mosquitoes. Appl. Environ. Microbiol. 78, 1491–
1495. doi: 10.1128/AEM.06751-11

Huigens, M. E., de Almeida, R. P., Boons, P. A., Luck, R. F., and Stouthamer,
R. (2004). Natural interspecific and intraspecific horizontal transfer of
parthenogenesis-inducing Wolbachia in Trichogramma wasps. Proc. R. Soc.
Lond. B Biol. Sci. 271, 509–515. doi: 10.1098/rspb.2003.2640

Hurst, G. D., and Frost, C. L. (2015). Reproductive parasitism: maternally inherited
symbionts in a biparental world. Cold Spring Harb. Perspect. Biol. 7:a017699.
doi: 10.1101/cshperspect.a017699

Hurst, L. D. (1991). The evolution of cytoplasmic incompatibility or when spite can
be successful. J. Theor. Biol. 148, 269–277. doi: 10.1016/s0022-5193(05)80344-3

Ikeya, T., Broughton, S., Alic, N., Grandison, R., and Partridge, L. (2009). The
endosymbiont Wolbachia increases insulin/IGF-like signalling in Drosophila.
Proc. R. Soc. Lond. B Biol. Sci. 276, 3799–3807. doi: 10.1098/rspb.2009.0778

International Glossina Genome Initiative, I. (2014). Genome sequence of the
tsetse fly (Glossina morsitans): vector of African Trypanosomiasis. Science 344,
380–386. doi: 10.1126/science.1249656

Isasawin, S., Aketarawong, N., Lertsiri, S., and Thanaphum, S. (2014).
Development of a genetic sexing strain in Bactrocera carambolae (Diptera:
Tephritidae) by introgression of sex sorting components from B. dorsalis
Salaya1 strain. BMC Genet. 15:S2. doi: 10.1186/1471-2156-15-S2-S2

Isasawin, S., Aketarawong, N., and Thanaphum, S. (2012). Characterization and
evaluation of microsatellite markers in a strain of the oriental fruit fly,
Bactrocera dorsalis (Diptera: Tephritidae), with a genetic sexing character used
in sterile insect population control. Eur. J. Entomol. 109, 331–338.

Jaenike, J. (2007). Spontaneous emergence of a new Wolbachia phenotype.
Evolution 61, 2244–2252.

Jamnongluk, W., Kittayapong, P., Baimai, V., and O’Neill, S. L. (2002). Wolbachia
infections of tephritid fruit flies: molecular evidence for five distinct strains in
a single host species. Curr. Microbiol. 45, 255–260. doi: 10.1007/s00284-002-
3746-1

Jeyaprakash, A., and Hoy, M. A. (2000). Long PCR improves Wolbachia
DNA amplification: wsp sequences found in 76% of sixty-three arthropod
species. Insect Mol. Biol. 9, 393–405. doi: 10.1046/j.1365-2583.2000.
00203.x

Johannesen, J. (2017). Tracing the history and ecological context of Wolbachia
double infection in a specialist host (Urophora cardui)—parasitoid (Eurytoma
serratulae) system. Ecol. Evol. 7, 986–996. doi: 10.1002/ece3.2713

Johannesen, J., Keyghobadi, N., Schuler, H., Stauffer, C., and Vogt, H. (2013).
Invasion genetics of American cherry fruit fly in Europe and signals of
hybridization with the European cherry fruit fly. Entomol. Exp. Appl. 147,
61–72.

Frontiers in Microbiology | www.frontiersin.org 18 June 2020 | Volume 11 | Article 1080

https://doi.org/10.1111/mec.15041
https://doi.org/10.1111/mec.15041
https://doi.org/10.1038/nature04756
https://doi.org/10.1038/nature04756
https://doi.org/10.1098/rspb.2005.3383
https://doi.org/10.1007/s13199-012-0215-x
https://doi.org/10.1007/s13199-012-0215-x
https://doi.org/10.1038/nmicrobiol.2016.241
https://doi.org/10.1073/pnas.1406468111
https://doi.org/10.3390/insects10060155
https://doi.org/10.1603/ec11421
https://doi.org/10.1186/1471-2164-15-1153
https://doi.org/10.1016/j.actatropica.2013.08.015
https://doi.org/10.1016/j.actatropica.2013.08.015
https://doi.org/10.1016/j.meegid.2014.12.019
https://doi.org/10.1038/nrg.2016.49
https://doi.org/10.1111/1744-7917.12245
https://doi.org/10.1126/science.1162418
https://doi.org/10.3897/zookeys.540.6027
https://doi.org/10.1111/j.1574-6968.2008.01110.x
https://doi.org/10.1111/j.1574-6968.2008.01110.x
https://doi.org/10.1073/pnas.1408888111
https://doi.org/10.1371/journal.pone.0036277
https://doi.org/10.1111/imb.12066
https://doi.org/10.1128/AEM.06751-11
https://doi.org/10.1098/rspb.2003.2640
https://doi.org/10.1101/cshperspect.a017699
https://doi.org/10.1016/s0022-5193(05)80344-3
https://doi.org/10.1098/rspb.2009.0778
https://doi.org/10.1126/science.1249656
https://doi.org/10.1186/1471-2156-15-S2-S2
https://doi.org/10.1007/s00284-002-3746-1
https://doi.org/10.1007/s00284-002-3746-1
https://doi.org/10.1046/j.1365-2583.2000.00203.x
https://doi.org/10.1046/j.1365-2583.2000.00203.x
https://doi.org/10.1002/ece3.2713
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01080 June 1, 2020 Time: 18:4 # 19

Mateos et al. Wolbachia in Tephritid Flies

Joubert, D. A., Walker, T., Carrington, L. B., De Bruyne, J. T., Kien, D. H., Hoang
Nle, T., et al. (2016). Establishment of a Wolbachia superinfection in Aedes
aegypti mosquitoes as a potential approach for future resistance management.
PLoS Pathog. 12:e1005434. doi: 10.1371/journal.ppat.1005434

Karimi, J., and Darsouei, R. (2014). Presence of the endosymbiont Wolbachia
among some fruit flies (Diptera: Tephritidae) from Iran: a multilocus sequence
typing approach. J. Asia Pac. Entomol. 17, 105–112.

Karr, T. L., Yang, W., and Feder, M. E. (1998). Overcoming cytoplasmic
incompatibility in Drosophila. Proc. R. Soc. Lond. B Biol. Sci. 265, 391–395.
doi: 10.1098/rspb.1998.0307

Kent, B. N., Salichos, L., Gibbons, J. G., Rokas, A., Newton, I. L., Clark, M. E.,
et al. (2011). Complete bacteriophage transfer in a bacterial endosymbiont
(Wolbachia) determined by targeted genome capture. Genome Biol. Evol. 3,
209–218. doi: 10.1093/gbe/evr007

Kerremans, P., and Franz, G. (1995). Use of a temperature-sensitive lethal mutation
strain of medfly (Ceratitis capitata) for the suppression of pest populations.
Theor. Appl. Genet. 90, 511–518. doi: 10.1007/BF00221997

Kittayapong, P., Milne, J. R., Tigvattananont, S., and Baimai, V. (2000).
Distribution of the reproduction-modifying bacteria, Wolbachia, in natural
populations of tephritid fruit flies in Thailand. Sci. Asia 26, 93–103.

Klassen, W., and Curtis, C. F. (2005). “History of the sterile insect technique,”
in Sterile Insect Technique: Principles And Practice In Area-Wide Integrated
Pest Management, eds V. A. Dyck, J. Hendrichs, and A. S. Robinson, (Berlin:
Springer), 3–36.

Klasson, L., Westberg, J., Sapountzis, P., Nasiund, K., Lutnaes, Y., Darby, A. C.,
et al. (2009). The mosaic genome structure of the Wolbachia wRi strain infecting
Drosophila simulans. Proc. Natl. Acad. Sci. U.S.A. 106, 5725–5730. doi: 10.1073/
pnas.0810753106

Knipling, E. (1955). Possibilities of insect control or eradication through the use of
sexually sterile males. J. Econ. Entomol. 48, 459–462.

Koukou, K., Pavlikaki, H., Kilias, G., Werren, J. H., Bourtzis, K., and Alahiotis,
S. N. (2006). Influence of antibiotic treatment and Wolbachia curing on
sexual isolation among Drosophila melanogaster cage populations. Evolution 60,
87–96.

Kremer, N., Voronin, D., Charif, D., Mavingui, P., Mollereau, B., and Vavre, F.
(2009). Wolbachia interferes with ferritin expression and iron metabolism in
insects. PLoS Pathog. 5:e1000630. doi: 10.1371/journal.ppat.1000630

Kriesner, P., Conner, W. R., Weeks, A. R., Turelli, M., and Hoffmann, A. A. (2016).
Persistence of a Wolbachia infection frequency cline in Drosophila melanogaster
and the possible role of reproductive dormancy. Evolution 70, 979–997. doi:
10.1111/evo.12923

Kyritsis, G. A. (2016). Effect of Symbiotic Bacteria On The Biological And Behavioral
Traits Of The Mediterranean Fruit Flies (Ceratitis capitata: Diptera, Tephritidae).
Ph. D. Dissertation, University of Thessaly, Volos.

Kyritsis, G. A., Augustinos, A. A., Livadaras, I., Cáceres, C., Bourtzis, K., and
Papadopoulos, N. T. (2019). Medfly-Wolbachia symbiosis: genotype x genotype
interactions determine host’s life history traits under mass rearing conditions.
BMC Microbiol. 19:96. doi: 10.1186/s12896-019-0586-7

Laven, H. (1967). Eradication of Culex pipiens fatigans through cytoplasmic
incompatibility. Nature 216, 383–384. doi: 10.1038/216383a0

Layton, E. M., On, J., Perlmutter, J. I., Bordenstein, S. R., and Shropshire, J. D.
(2019). Paternal grandmother age affects the strength of Wolbachia-Induced
cytoplasmic incompatibility in Drosophila melanogaster. MBio 10:1879. doi:
10.1128/mBio.01879-19

Lees, R. S., Gilles, J. R., Hendrichs, J., Vreysen, M. J., and Bourtzis, K. (2015). Back
to the future: the sterile insect technique against mosquito disease vectors. Curr.
Opin. Insect Sci. 10, 156–162. doi: 10.1016/j.cois.2015.05.011

Leftwich, P. T., Clarke, N. V. E., Hutchings, M. I., and Chapman, T. (2017). Gut
microbiomes and reproductive isolation in Drosophila. Proc. Natl. Acad. Sci.
U.S.A. 114, 12767–12772. doi: 10.1073/pnas.1708345114

Leftwich, P. T., Hutchings, M. I., and Chapman, T. (2018). Diet, gut microbes
and host mate choice: understanding the significance of microbiome effects
on host mate choice requires a case by case evaluation. Bioessays 40:e1800053.
doi: 10.1002/bies.201800053

Leftwich, P. T., Koukidou, M., Rempoulakis, P., Gong, H. F., Zacharopoulou,
A., Fu, G., et al. (2014). Genetic elimination of field-cage populations of
Mediterranean fruit flies. Proc. R. Soc. Lond. B Biol. Sci. 281, 1372. doi: 10.1098/
rspb.2014.1372

Lemmon, E. M., and Lemmon, A. R. (2013). High-throughput genomic data in
systematics and phylogenetics. Annu. Rev. Ecol. Evol. Syst. 44, 99–121.

LePage, D. P., Metcalf, J. A., Bordenstein, S. R., On, J., Perlmutter, J. I., Shropshire,
J. D., et al. (2017). Prophage WO genes recapitulate and enhance Wolbachia-
induced cytoplasmic incompatibility. Nature 543, 243–247. doi: 10.1038/
nature21391

Li, Y.-Y., Floate, K., Fields, P., and Pang, B.-P. (2014). Review of treatment methods
to remove Wolbachia bacteria from arthropods. Symbiosis 62, 1–15.

Lindsey, A. R. I., Rice, D. W., Bordenstein, S. R., Brooks, A. W., Bordenstein,
S. R., and Newton, I. L. G. (2018). Evolutionary genetics of cytoplasmic
incompatibility genes cifA and cifB in prophage WO of Wolbachia. Genome
Biol. Evol. 10, 434–451. doi: 10.1093/gbe/evy012

Lutrat, C., Giesbrecht, D., Marois, E., Whyard, S., Baldet, T., and Bouyer, J. (2019).
Sex sorting for pest control: it’s raining men! Trends Parasitol. 35, 649–662.
doi: 10.1016/j.pt.2019.06.001

Marcon, H. S., Coscrato, V. E., Selivon, D., Perondini, A. L. P., and Marino,
C. L. (2011). Variations in the sensitivity of different primers for detecting
Wolbachia in Anastrepha (Diptera: Tephritidae). Braz. J. Microbiol. 42, 778–785.
doi: 10.1590/S1517-838220110002000046

Markow, T. A., and O’Grady, P. M. (2005). Drosophila: A Guide To Species
Identification And Use. London: Academic Press.

Marshall, J. L. (2007). Rapid evolution of spermathecal duct length in the
Allonemobius socius complex of crickets: species, population and Wolbachia
effects. PLoS One 2:e720. doi: 10.1371/journal.pone.0000720

Martinez, H., Morán-Aceves, B. M., Toledo, J., Liedo, P., Guillén, K., Palomeque,
M. A., et al. (2016). Attempts to Transfer Wolbachia from Anastrepha striata
to Anastrepha ludens, in IAEA-D41024-CR-3 Report of the Third Research
Coordination Meeting of an FAO/IAEA Coordinated Research Project “Use of
Symbiotic Bacteria to Reduce Mass-Rearing Costs and Increase Mating Success in
Selected Fruit Pests in Support of SIT Application”, Antigua, Guatemala, 26–30
October 2015. (Austria, Vienna: IAEA), 144. Available: http://www-naweb.iaea.
org/nafa/ipc/crp/RCM3-Use-Symbiotic-Bacteria-Report.pdf (accessed March
13, 2020).

Martínez, H., Toledo, J., Liedo, P., and Mateos, M. (2012). Survey of heritable
endosymbionts in southern Mexico populations of the fruit fly species
Anastrepha striata and A. ludens. Curr. Microbiol. 65, 711–718. doi: 10.1007/
s00284-012-0223-3

Martinez, J., Longdon, B., Bauer, S., Chan, Y. S., Miller, W. J., Bourtzis, K., et al.
(2014). Symbionts commonly provide broad spectrum resistance to viruses in
insects: a comparative analysis of Wolbachia strains. PLoS Pathog. 10:e1004369.
doi: 10.1371/journal.ppat.1004369

Mascarenhas, R. O., Prezotto, L. F., Perondini, A. L. P., Marino, C. L., and Selivon,
D. (2016). Wolbachia in guilds of Anastrepha fruit flies (Tephritidae) and
parasitoid wasps (Braconidae). Genet. Mol. Biol. 39, 600–610. doi: 10.1590/
1678-4685-GMB-2016-0075

Mateos, M., Castrezana, S., Nankivell, B., Estes, A., Markow, T. A., and Moran,
N. A. (2006). Heritable endosymbionts of Drosophila. Genetics 174, 363–376.

McInnis, D., Lance, D., and Jackson, C. (1996). Behavioral resistance to the sterile
insect technique by Mediterranean fruit fly (Diptera: Tephritidae) in Hawaii.
Ann. Entomol. Soc. Am. 89, 739–744.

McInnis, D., Tam, S., Lim, R., Komatsu, J., Kurashima, R., and Albrecht, C. (2004).
Development of a pupal color-based genetic sexing strain of the melon fly,
Bactrocera cucurbitae (Coquillett)(Diptera: Tephritidae). Ann. Entomol. Soc.
Am. 97, 1026–1033.

McInnis, D. O., Shelly, T. E., and Komatsu, J. (2002). Improving male mating
competitiveness and survival in the field for medfly, Ceratitis capitata
(Diptera: Tephritidae) SIT programs. Genetica 116, 117–124. doi: 10.1023/a:
1020919927542

McLean, A. H. C., Parker, B. J., Hrcek, J., Kavanagh, J. C., Wellham, P. A. D., and
Godfray, H. C. J. (2018). Consequences of symbiont co-infections for insect host
phenotypes. J. Anim. Ecol. 87, 478–488. doi: 10.1111/1365-2656.12705

Meats, A., Pike, N., An, X., Raphael, K., and Wang, W. (2003). The effects of
selection for early (day) and late (dusk) mating lines of hybrids of Bactrocera
tryoni and Bactrocera neohumeralis. Genetica 119, 283–293. doi: 10.1023/b:
gene.0000003683.42395.51

Mee, P. T., Weeks, A. R., Walker, P. J., Hoffmann, A. A., and Duchemin, J. B. (2015).
Detection of low-level Cardinium and Wolbachia infections in Culicoides. Appl.
Environ. Microbiol. 81, 6177–6188. doi: 10.1128/AEM.01239-15

Frontiers in Microbiology | www.frontiersin.org 19 June 2020 | Volume 11 | Article 1080

https://doi.org/10.1371/journal.ppat.1005434
https://doi.org/10.1098/rspb.1998.0307
https://doi.org/10.1093/gbe/evr007
https://doi.org/10.1007/BF00221997
https://doi.org/10.1073/pnas.0810753106
https://doi.org/10.1073/pnas.0810753106
https://doi.org/10.1371/journal.ppat.1000630
https://doi.org/10.1111/evo.12923
https://doi.org/10.1111/evo.12923
https://doi.org/10.1186/s12896-019-0586-7
https://doi.org/10.1038/216383a0
https://doi.org/10.1128/mBio.01879-19
https://doi.org/10.1128/mBio.01879-19
https://doi.org/10.1016/j.cois.2015.05.011
https://doi.org/10.1073/pnas.1708345114
https://doi.org/10.1002/bies.201800053
https://doi.org/10.1098/rspb.2014.1372
https://doi.org/10.1098/rspb.2014.1372
https://doi.org/10.1038/nature21391
https://doi.org/10.1038/nature21391
https://doi.org/10.1093/gbe/evy012
https://doi.org/10.1016/j.pt.2019.06.001
https://doi.org/10.1590/S1517-838220110002000046
https://doi.org/10.1371/journal.pone.0000720
http://www-naweb.iaea.org/nafa/ipc/crp/RCM3-Use-Symbiotic-Bacteria-Report.pdf
http://www-naweb.iaea.org/nafa/ipc/crp/RCM3-Use-Symbiotic-Bacteria-Report.pdf
https://doi.org/10.1007/s00284-012-0223-3
https://doi.org/10.1007/s00284-012-0223-3
https://doi.org/10.1371/journal.ppat.1004369
https://doi.org/10.1590/1678-4685-GMB-2016-0075
https://doi.org/10.1590/1678-4685-GMB-2016-0075
https://doi.org/10.1023/a:1020919927542
https://doi.org/10.1023/a:1020919927542
https://doi.org/10.1111/1365-2656.12705
https://doi.org/10.1023/b:gene.0000003683.42395.51
https://doi.org/10.1023/b:gene.0000003683.42395.51
https://doi.org/10.1128/AEM.01239-15
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01080 June 1, 2020 Time: 18:4 # 20

Mateos et al. Wolbachia in Tephritid Flies

Mengual, X., Kerr, P., Norrbom, A. L., Barr, N. B., Lewis, M. L., Stapelfeldt, A. M.,
et al. (2017). Phylogenetic relationships of the tribe Toxotrypanini (Diptera:
Tephritidae) based on molecular characters. Mol. Phylogenet. Evol. 113, 84–112.
doi: 10.1016/j.ympev.2017.05.011

Menon, A., Varma, V., and Sharma, V. K. (2014). Rhythmic egg-laying behaviour
in virgin females of fruit flies Drosophila melanogaster. Chronobiol. Int. 31,
433–441. doi: 10.3109/07420528.2013.866131

Miller, G. T., and Pitnick, S. (2002). Sperm female coevolution in Drosophila.
Science 298, 1230–1233.

Miller, W. J., Ehrman, L., and Schneider, D. (2010). Infectious speciation revisited:
impact of symbiont-depletion on female fitness and mating behavior of
Drosophila paulistorum. PLoS Pathog. 6:e1001214. doi: 10.1371/journal.ppat.
1001214

Min, K.-T., and Benzer, S. (1997). Wolbachia, normally a symbiont of Drosophila,
can be virulent, causing degeneration and early death. Proc. Natl. Acad. Sci.
U.S.A. 94, 10792–10796. doi: 10.1073/pnas.94.20.10792

Moran, N. A., and Dunbar, H. E. (2006). Sexual acquisition of beneficial symbionts
in aphids. Proc. Natl. Acad. Sci. U.S.A. 103, 12803–12806. doi: 10.1073/pnas.
0605772103

Morán-Aceves, B. M. (2016). Prevalencia de Wolbachia en Anastrepha serpentina
(Diptera: Tephritidae) De México. BsC thesis, Universidad Autónoma de
Chiapas, Tapachula.

Moreira, L. A., Saig, E., Turley, A. P., Ribeiro, J. M., O’Neill, S. L., and McGraw,
E. A. (2009). Human probing behavior of Aedes aegypti when infected with a
life-shortening strain of Wolbachia. PLoS Negl. Trop. Dis. 3:e568. doi: 10.1371/
journal.pntd.0000568

Moretti, R., Marzo, G. A., Lampazzi, E., and Calvitti, M. (2018a). Cytoplasmic
incompatibility management to support Incompatible Insect Technique against
Aedes albopictus. Parasit. Vectors 11:649. doi: 10.1186/s13071-018-3208-7

Moretti, R., Yen, P.-S., Houé, V., Lampazzi, E., Desiderio, A., Failloux, A.-B.,
et al. (2018b). Combining Wolbachia-induced sterility and virus protection
to fight Aedes albopictus-borne viruses. PLoS Negl. Trop. Dis. 12:e0006626.
doi: 10.1371/journal.pntd.0006626

Morrow, J., Scott, L., Congdon, B., Yeates, D., Frommer, M., and Sved, J. (2000).
Close genetic similarity between two sympatric species of tephritid fruit fly
reproductively isolated by mating time. Evolution 54, 899–910. doi: 10.1111/j.
0014-3820.2000.tb00090.x

Morrow, J. L., Frommer, M., Royer, J. E., Shearman, D. C., and Riegler, M.
(2015). Wolbachia pseudogenes and low prevalence infections in tropical but not
temperate Australian tephritid fruit flies: manifestations of lateral gene transfer
and endosymbiont spillover? BMC Evol. Biol. 15:202. doi: 10.1186/s12862-015-
0474-2

Morrow, J. L., Frommer, M., Shearman, D., and Riegler, M. (2014). Tropical
tephritid fruit fly community with high incidence of shared Wolbachia strains
as platform for horizontal transmission of endosymbionts. Environ. Microbiol.
16, 3622–3637. doi: 10.1111/1462-2920.12382

Morrow, J. L., Schneider, D. I., Klasson, L., Janitz, C., Miller, W. J., and Riegler,
M. (2020). Parallel sequencing of Wolbachia wCer2 from donor and novel
hosts reveals multiple incompatibility factors and genome stability after host
transfers. Genome Biol. Evol. 2020:evaa050. doi: 10.1093/gbe/evaa050

Murdock, C. C., Blanford, S., Hughes, G. L., Rasgon, J. L., and Thomas, M. B.
(2014). Temperature alters Plasmodium blocking by Wolbachia. Sci. Rep.
4:3932. doi: 10.1038/srep03932

Murillo, F. D., Liedo, P., Nieto-Lopez, M. G., Cabrera-Mireles, H., Barrera,
J. F., and Montoya, P. (2016). First instar larvae morphology of Opiinae
(Hymenoptera: Braconidae) parasitoids of Anastrepha (Diptera: Tephritidae)
fruit flies. Implications for interspecific competition. Arthropod. Struct. Dev. 45,
294–300. doi: 10.1016/j.asd.2016.01.003

Newton, I. L., Savytskyy, O., and Sheehan, K. B. (2015). Wolbachia utilize host actin
for efficient maternal transmission in Drosophila melanogaster. PLoS Pathog.
11:e1004798. doi: 10.1371/journal.ppat.1004798

Newton, I. L. G., and Rice, D. W. (2020). The Jekyll and Hyde symbiont: could
Wolbachia be a nutritional mutualist? J. Bacteriol. 202:e00589-19. doi: 10.1128/
JB.00589-19

Nikoh, N., Tanaka, K., Shibata, F., Kondo, N., Hizume, M., Shimada, M., et al.
(2008). Wolbachia genome integrated in an insect chromosome: evolution and
fate of laterally transferred endosymbiont genes. Genome Res. 18, 272–280.
doi: 10.1101/gr.7144908

Nikolouli, K., Sassù, F., Mouton, L., Stauffer, C., and Bourtzis, K. (2020).
Combining sterile and incompatible insect techniques for the population
suppression of Drosophila suzukii. J. Pest Sci. 93, 647–661. doi: 10.1007/s10340-
020-01199-6

Noman, M. S., Liu, L., Bai, Z., and Li, Z. (2019). Tephritidae bacterial symbionts:
potentials for pest management. Bull. Entomol. Res. 110, 1–14. doi: 10.1017/
S0007485319000403

Norrbom, A. L. (2004a). Fruit Fly (Diptera: Tephritidae) Phylogeny. Maryland:
Agricultural Research Service.

Norrbom, A. L. (2004b). Updates to Biosystematic Database of World Diptera for
Tephritidae through 1999". Diptera Data Dissemination Disk (CD-ROM) 2).
Washington, DC: USDA.

Norrbom, A. L. (2010). Tephritidae (fruit flies, moscas de frutas). Man. Central Am.
Diptera 2, 909–954.

Ogaugwu, C. E., and Durvasula, R. V. (2017). “Developing the arsenal against pest
and vector dipterans: inputs of transgenic and paratransgenic biotechnologies,”
in Biological Control of Pest and Vector Insects, ed. V. D. C. Shields, (Rijeka:
InTech), 325–347.

O’Neill, S. L., Giordano, R., Colbert, A. M., Karr, T. L., and Robertson, H. M. (1992).
16S rRNA phylogenetic analysis of the bacterial endosymbionts associated
with cytoplasmic incompatibility in insects. Proc. Natl. Acad. Sci. U.S.A. 89,
2699–2702. doi: 10.1073/pnas.89.7.2699

Pane, A., Salvemini, M., Delli Bovi, P., Polito, C., and Saccone, G. (2002). The
transformer gene in Ceratitis capitata provides a genetic basis for selecting and
remembering the sexual fate. Development 129, 3715–3725.

Paraskevopoulos, C., Bordenstein, S. R., Wernegreen, J. J., Werren, J. H., and
Bourtzis, K. (2006). Toward a Wolbachia multilocus sequence typing system:
discrimination of Wolbachia strains present in Drosophila species. Curr.
Microbiol. 53, 388–395. doi: 10.1007/s00284-006-0054-1

Pike, N., Wang, W., and Meats, A. (2003). The likely fate of hybrids of Bactrocera
tryoni and Bactrocera neohumeralis. Heredity 90, 365–370. doi: 10.1038/sj.hdy.
6800253

Presgraves, D. C. (2000). A genetic test of the mechanism of Wolbachia-induced
cytoplasmic incompatibility in Drosophila. Genetics 154, 771–776.

Prezotto, L. F., Perondini, A. L. P., Hernandez-Ortiz, V., Marino, C. L., and
Selivon, D. (2017). Wolbachia strains in cryptic species of the Anastrepha
fraterculus complex (Diptera, Tephritidae) along the neotropical region. Syst.
Appl. Microbiol. 40, 59–67. doi: 10.1016/j.syapm.2016.11.002

Quilici, S., and Rousse, P. (2012). Location of host and host habitat by fruit fly
parasitoids. Insects 3, 1220–1235. doi: 10.3390/insects3041220

Quintero-Fong, L., Toledo, J., Ruiz, L., Rendón, P., Orozco-Dávila, D., Cruz, L.,
et al. (2016). Selection by mating competitiveness improves the performance
of Anastrepha ludens males of the genetic sexing strain Tapachula-7. Bull.
Entomol. Res. 106, 624–632. doi: 10.1017/S0007485316000316

Rasgon, J. L. (2008). Using predictive models to optimize Wolbachia-based
strategies for vector-borne disease control. Adv. Exp. Med. Biol. 627, 114–125.
doi: 10.1007/978-0-387-78225-6_10

Rasgon, J. L., Gamston, C. E., and Ren, X. (2006). Survival of Wolbachia pipientis in
cell-free medium. Appl. Environ. Microbiol. 72, 6934–6937. doi: 10.1128/AEM.
01673-06

Raza, M. F., Yao, Z., Bai, S., Cai, Z., and Zhang, H. (2020). Tephritidae
fruit fly gut microbiome diversity, function and potential for
applications. Bull. Entomol. Res. 5, 1–15. doi: 10.1017/S00074853190
00853

Reid, W., and O’Brochta, D. A. (2016). Applications of genome editing in insects.
Curr. Opin. Insect Sci. 13, 43–54. doi: 10.1016/j.cois.2015.11.001

Rempoulakis, P., Castro, R., Nemny-Lavy, E., and Nestel, D. (2015). Effects of
radiation on the fertility of the Ethiopian fruit fly, Dacus ciliatus. Entomol. Exp.
Appl. 155, 117–122.

Rendón, P., McInnis, D., Lance, D., and Stewart, J. (2004). Medfly (Diptera:
Tephritidae) genetic sexing: large-scale field comparison of males-only and
bisexual sterile fly releases in Guatemala. J. Econ. Entomol. 97, 1547–1553.
doi: 10.1603/0022-0493-97.5.1547

Reyes, J., Santiago, G., and Hernández, P. (2000). “The Mexican fruit fly eradication
programme,” in Area-Wide Control of Fruit Flies and Other Insect Pests, ed. K. H.
Tan, (Penang, MA: Penerbit Universiti Sains Malaysia), 377–380.

Reynolds, K. T., and Hoffmann, A. A. (2002). Male age, host effects and the weak
expression or non-expression of cytoplasmic incompatibility in Drosophila

Frontiers in Microbiology | www.frontiersin.org 20 June 2020 | Volume 11 | Article 1080

https://doi.org/10.1016/j.ympev.2017.05.011
https://doi.org/10.3109/07420528.2013.866131
https://doi.org/10.1371/journal.ppat.1001214
https://doi.org/10.1371/journal.ppat.1001214
https://doi.org/10.1073/pnas.94.20.10792
https://doi.org/10.1073/pnas.0605772103
https://doi.org/10.1073/pnas.0605772103
https://doi.org/10.1371/journal.pntd.0000568
https://doi.org/10.1371/journal.pntd.0000568
https://doi.org/10.1186/s13071-018-3208-7
https://doi.org/10.1371/journal.pntd.0006626
https://doi.org/10.1111/j.0014-3820.2000.tb00090.x
https://doi.org/10.1111/j.0014-3820.2000.tb00090.x
https://doi.org/10.1186/s12862-015-0474-2
https://doi.org/10.1186/s12862-015-0474-2
https://doi.org/10.1111/1462-2920.12382
https://doi.org/10.1093/gbe/evaa050
https://doi.org/10.1038/srep03932
https://doi.org/10.1016/j.asd.2016.01.003
https://doi.org/10.1371/journal.ppat.1004798
https://doi.org/10.1128/JB.00589-19
https://doi.org/10.1128/JB.00589-19
https://doi.org/10.1101/gr.7144908
https://doi.org/10.1007/s10340-020-01199-6
https://doi.org/10.1007/s10340-020-01199-6
https://doi.org/10.1017/S0007485319000403
https://doi.org/10.1017/S0007485319000403
https://doi.org/10.1073/pnas.89.7.2699
https://doi.org/10.1007/s00284-006-0054-1
https://doi.org/10.1038/sj.hdy.6800253
https://doi.org/10.1038/sj.hdy.6800253
https://doi.org/10.1016/j.syapm.2016.11.002
https://doi.org/10.3390/insects3041220
https://doi.org/10.1017/S0007485316000316
https://doi.org/10.1007/978-0-387-78225-6_10
https://doi.org/10.1128/AEM.01673-06
https://doi.org/10.1128/AEM.01673-06
https://doi.org/10.1017/S0007485319000853
https://doi.org/10.1017/S0007485319000853
https://doi.org/10.1016/j.cois.2015.11.001
https://doi.org/10.1603/0022-0493-97.5.1547
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01080 June 1, 2020 Time: 18:4 # 21

Mateos et al. Wolbachia in Tephritid Flies

strains infected by maternally transmitted Wolbachia. Genet. Res. 80, 79–87.
doi: 10.1017/s0016672302005827

Ribeiro, R. M. (2009). Wolbachia e Incompatibilidade Citoplasmática em
Anastrepha sp. 1 aff. fraterculus e bliqua (Diptera: Tephritidae). Ph. D. thesis,
Universidade de São Paulo, Brazil.

Riegler, M., Charlat, S., Stauffer, C., and Mercot, H. (2004). Wolbachia transfer from
Rhagoletis cerasi to Drosophila simulans: investigating the outcomes of host-
symbiont coevolution. Appl. Environ. Microbiol. 70, 273–279. doi: 10.1128/aem.
70.1.273-279.2004

Riegler, M., Iturbe-Ormaetxe, I., Woolfit, M., Miller, W. J., and O’Neill, S. L.
(2012). Tandem repeat markers as novel diagnostic tools for high resolution
fingerprinting of Wolbachia. BMC Microbiol. 12(Suppl. 1):S12. doi: 10.1186/
1471-2180-12-S1-S12

Riegler, M., and Stauffer, C. (2002). Wolbachia infections and superinfections
in cytoplasmically incompatible populations of the European cherry fruit fly
Rhagoletis cerasi (Diptera:Tephritidae). Mol. Ecol. 11, 2425–2434. doi: 10.1046/
j.1365-294x.2002.01614.x

Ringo, J., Sharon, G., and Segal, D. (2011). Bacteria-induced sexual
isolation in Drosophila. Fly (Austin) 5, 310–315. doi: 10.4161/fly.5.4.
15835

Robinson, A., and Hendrichs, J. (2005). “Prospects for the future development
and application of the sterile insect technique,” in Sterile Insect Technique:
Principles and Practice in Area-Wide Integrated Pest Management, eds V. A.
Dyck, J. Hendrichs, and A. S. Robinson, (Berlin: Springer), 727–760. doi: 10.
1017/s1431927603030344

Robinson, A. S. (2002a). Genetic sexing strains in medfly, Ceratitis capitata,
sterile insect technique programmes. Genetica 116, 5–13. doi: 10.1023/a:
1020951407069

Robinson, A. S. (2002b). Mutations and their use in insect control. Mutation Res.
511, 113–132. doi: 0.1016/S1383-5742(02)00006-6

Rocha, L. S., Mascarenhas, R. O., Perondini, A. L. P., and Selivon, D.
(2005). Occurrence of Wolbachia in Brazilian samples of Ceratitis capitata
(Wiedemann) (Diptera: Tephritidae). Neotrop. Entomol. 34, 1013–1015.

Roriz, A. K. P., Japyassú, H. F., and Joachim-Bravo, I. S. (2017). Incipient
speciation in the Anastrepha fraterculus cryptic species complex: reproductive
compatibility between A. sp. 1 aff. fraterculus and A. sp. 3 aff. fraterculus.
Entomol. Exp. Appl. 162, 346–357.

Ros, V. I., Fleming, V. M., Feil, E. J., and Breeuwer, J. A. (2009). How diverse
is the genus Wolbachia? Multiple-gene sequencing reveals a putatively new
Wolbachia supergroup recovered from spider mites (Acari: Tetranychidae).
Appl. Environ. Microbiol. 75, 1036–1043. doi: 10.1128/AEM.01109-08

Ros, V. I., Fleming, V. M., Feil, E. J., and Breeuwer, J. A. (2012). Diversity and
recombination in Wolbachia and Cardinium from Bryobia spider mites. BMC
Microbiol. 12(Suppl. 1):S13. doi: 10.1186/1471-2180-12-S1-S13

Ross, P. A., Ritchie, S. A., Axford, J. K., and Hoffmann, A. A. (2019a). Loss
of cytoplasmic incompatibility in Wolbachia-infected Aedes aegypti under
field conditions. PLoS Negl. Trop. Dis. 13:e0007357. doi: 10.1371/journal.pntd.
0007357

Ross, P. A., Turelli, M., and Hoffmann, A. A. (2019b). Evolutionary ecology of
Wolbachia releases for disease control. Annu. Rev. Genet. 53:609. doi: 10.1146/
annurev-genet-112618-043609

Rousset, F., Raymond, M., and Kjellberg, F. (1991). Cytoplasmic incompatibilities
in the mosquito Culex pipiens: how to explain a cytotype polymorphism? J. Evol.
Biol. 4, 69–81.

Rull, J., Aluja, M., and Feder, J. L. (2010). Evolution of intrinsic reproductive
isolation among four North American populations of Rhagoletis pomonella
(Diptera: Tephritidae). Biol. J. Linn. Soc. 100, 213–223.

Rull, J., Diaz-Fleischer, F., and Arredondo, J. (2007). Irradiation of Anastrepha
ludens (Diptera: Tephritidae) revisited: optimizing sterility induction. J. Econ.
Entomol. 100, 1153–1159. doi: 10.1603/0022-0493(2007)100[1153:ioaldt]2.0.
co;2

Rull, J., Tadeo, E., Aluja, M., Guillen, L., Egan, S. P., and Feder, J. L. (2012).
Hybridization and sequential components of reproductive isolation between
parapatric walnut-infesting sister species Rhagoletis completa and Rhagoletis
zoqui. Biol. J. Linn. Soc. 107, 886–898.

Rull, J., Tadeo, E., Lasa, R., Rodríguez, C. L., Altuzar-Molina, A., and Aluja, M.
(2018). Experimental hybridization and reproductive isolation between two

sympatric species of tephritid fruit flies in the Anastrepha fraterculus species
group. Insect Sci. 6, 1045–1055. doi: 10.1111/1744-7917.12489

Sacchi, L., Genchi, M., Clementi, E., Negri, I., Alma, A., Ohler, S., et al.
(2010). Bacteriocyte-like cells harbour Wolbachia in the ovary of Drosophila
melanogaster (Insecta, Diptera) and Zyginidia pullula (Insecta, Hemiptera).
Tissue Cell 42, 328–333. doi: 10.1016/j.tice.2010.07.009

Sánchez-Rosario, M., Pérez-Staples, D., Toledo, J., Valle-Mora, J., and Liedo, P.
(2017). Artificial selection on mating competitiveness of Anastrepha ludens for
sterile insect technique application. Entomol. Exp. Appl. 162, 133–147.

Sarakatsanou, A., Diamantidis, A. D., Papanastasiou, S. A., Bourtzis, K.,
and Papadopoulos, N. T. (2011). Effects of Wolbachia on fitness of the
Mediterranean fruit fly (Diptera: Tephritidae). J. Appl. Entomol. 135, 554–563.

Saridaki, A., and Bourtzis, K. (2010). Wolbachia: more than just a bug in insects
genitals. Curr. Opin. Microbiol. 13, 67–72. doi: 10.1016/j.mib.2009.11.005

Schebeck, M., Feldkirchner, L., Stauffer, C., and Schuler, H. (2019). Dynamics of
an ongoing Wolbachia spread in the European cherry fruit fly, Rhagoletis cerasi
(Diptera: Tephritidae). Insects 10:172. doi: 10.3390/insects10060172

Schneider, D., Miller, W. J., and Riegler, M. (2011). “Arthropods shopping for
Wolbachia,” in Manipulative Tenants Bacteria Associated with Arthropods, eds
E. Zchori-Fein, and K. Bourtzis, (Boca Raton, Fl: CRC Press), 149–173.

Schneider, D. I., Ehrman, L., Engl, T., Kaltenpoth, M., Hua-Van, A., Le Rouzic,
A., et al. (2019). Symbiont-driven male mating success in the neotropical
Drosophila paulistorum superspecies. Behav. Genet. 49, 83–98. doi: 10.1007/
s10519-018-9937-8

Schneider, D. I., Klasson, L., Lind, A. E., and Miller, W. J. (2014). More than fishing
in the dark: PCR of a dispersed sequence produces simple but ultrasensitive
Wolbachia detection. BMC Microbiol. 14:121. doi: 10.1186/1471-2180-
14-121

Schuler, H., Arthofer, W., Krumböck, S., Bertheau, C., and Stauffer, C. (2012).
Wolbachia infection in the Walnut-husk fly Rhagoletis completa Cresson 1929
(Diptera: Tephritidae). Mitt. Dtsch. Ges. Allg. Angew. Entomol. 18, 243–245.

Schuler, H., Arthofer, W., Riegler, M., Bertheau, C., Krumbock, S., Koppler, K., et al.
(2011). Multiple Wolbachia infections in Rhagoletis pomonella. Entomol. Exp.
Appl. 139, 138–144. doi: 10.1111/j.1570-7458.2011.01115.x

Schuler, H., Bertheau, C., Egan, S. P., Feder, J. L., Riegler, M., Schlick-Steiner, B. C.,
et al. (2013). Evidence for a recent horizontal transmission and spatial spread
of Wolbachia from endemic Rhagoletis cerasi (Diptera: Tephritidae) to invasive
Rhagoletis cingulata in Europe. Mol. Ecol. 22, 4101–4111. doi: 10.1111/mec.
12362

Schuler, H., Kern, P., Arthofer, W., Vogt, H., Fischer, M., Stauffer, C., et al. (2016a).
Wolbachia in parasitoids attacking native European and introduced eastern
cherry fruit flies in Europe. Environ. Entomol. 45, 1424–1431. doi: 10.1093/ee/
nvw137

Schuler, H., Koppler, K., Daxbock-Horvath, S., Rasool, B., Krumbock, S.,
Schwarz, D., et al. (2016b). The hitchhiker’s guide to Europe: the infection
dynamics of an ongoing Wolbachia invasion and mitochondrial selective
sweep in Rhagoletis cerasi. Mol. Ecol. 25, 1595–1609. doi: 10.1111/mec.
13571

Schutze, M., Jessup, A., Ul-Haq, I., Vreysen, M., Wornoayporn, V., Vera, M. T.,
et al. (2013). Mating compatibility among four pest members of the Bactrocera
dorsalis fruit fly species complex (Diptera: Tephritidae). J. Econ. Entomol. 106,
695–707. doi: 10.1603/ec12409

Schutze, M. K., Aketarawong, N., Amornsak, W., Armstrong, K. F., Augustinos,
A. A., Barr, N., et al. (2015). Synonymization of key pest species within
the Bactrocera dorsalis species complex (Diptera: Tephritidae): taxonomic
changes based on a review of 20 years of integrative morphological, molecular,
cytogenetic, behavioural and chemoecological data. Syst. Entomol. 40, 456–471.

Schwarz, D., and McPheron, B. A. (2007). When ecological isolation breaks down:
sexual isolation is an incomplete barrier to hybridization between Rhagoletis
species. Evol. Ecol. Res. 9, 829–841.

Segura, D. F., Vera, M. T., Rull, J., Wornoayporn, V., Islam, A., and Robinson,
A. S. (2011). Assortative mating among Anastrepha fraterculus (Diptera:
Tephritidae) hybrids as a possible route to radiation of the fraterculus cryptic
species complex. Biol. J. Linn. Soc. 102, 346–354.

Selivon, D., Perondini, A., and Morgante, J. (2005). A genetic–morphological
characterization of two cryptic species of the Anastrepha fraterculus complex
(Diptera: Tephritidae). Ann. Entomol. Soc. Am. 98, 367–381.

Frontiers in Microbiology | www.frontiersin.org 21 June 2020 | Volume 11 | Article 1080

https://doi.org/10.1017/s0016672302005827
https://doi.org/10.1128/aem.70.1.273-279.2004
https://doi.org/10.1128/aem.70.1.273-279.2004
https://doi.org/10.1186/1471-2180-12-S1-S12
https://doi.org/10.1186/1471-2180-12-S1-S12
https://doi.org/10.1046/j.1365-294x.2002.01614.x
https://doi.org/10.1046/j.1365-294x.2002.01614.x
https://doi.org/10.4161/fly.5.4.15835
https://doi.org/10.4161/fly.5.4.15835
https://doi.org/10.1017/s1431927603030344
https://doi.org/10.1017/s1431927603030344
https://doi.org/10.1023/a:1020951407069
https://doi.org/10.1023/a:1020951407069
https://doi.org/0.1016/S1383-5742(02)00006-6
https://doi.org/10.1128/AEM.01109-08
https://doi.org/10.1186/1471-2180-12-S1-S13
https://doi.org/10.1371/journal.pntd.0007357
https://doi.org/10.1371/journal.pntd.0007357
https://doi.org/10.1146/annurev-genet-112618-043609
https://doi.org/10.1146/annurev-genet-112618-043609
https://doi.org/10.1603/0022-0493(2007)100[1153:ioaldt]2.0.co;2
https://doi.org/10.1603/0022-0493(2007)100[1153:ioaldt]2.0.co;2
https://doi.org/10.1111/1744-7917.12489
https://doi.org/10.1016/j.tice.2010.07.009
https://doi.org/10.1016/j.mib.2009.11.005
https://doi.org/10.3390/insects10060172
https://doi.org/10.1007/s10519-018-9937-8
https://doi.org/10.1007/s10519-018-9937-8
https://doi.org/10.1186/1471-2180-14-121
https://doi.org/10.1186/1471-2180-14-121
https://doi.org/10.1111/j.1570-7458.2011.01115.x
https://doi.org/10.1111/mec.12362
https://doi.org/10.1111/mec.12362
https://doi.org/10.1093/ee/nvw137
https://doi.org/10.1093/ee/nvw137
https://doi.org/10.1111/mec.13571
https://doi.org/10.1111/mec.13571
https://doi.org/10.1603/ec12409
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01080 June 1, 2020 Time: 18:4 # 22

Mateos et al. Wolbachia in Tephritid Flies

Selivon, D., Perondini, A. L., and Morgante, J. S. (1999). Haldane’s rule and
other aspects of reproductive isolation observed in the Anastrepha fraterculus
complex (Diptera: Tephritidae). Genet. Mol. Biol. 22, 507–510.

Selivon, D., Perondini, A. L. P., Ribeiro, A. F., Marino, C. L., Lima, M. M. A.,
and Coscrato, V. E. (2002). Wolbachia endosymbiont in a species of the
Anastrepha fraterculus complex (Diptera : Tephritidae). Invertebr. Reprod. Dev.
42, 121–127.

Serbus, L. R., White, P. M., Silva, J. P., Rabe, A., Teixeira, L., Albertson, R., et al.
(2015). The impact of host diet on Wolbachia titer in Drosophila. PLoS Pathog.
11:e1004777. doi: 10.1371/journal.ppat.1004777

Sharon, G., Segal, D., Ringo, J. M., Hefetz, A., Zilber-Rosenberg, I., and Rosenberg,
E. (2010). Commensal bacteria play a role in mating preference of Drosophila
melanogaster. Proc. Natl. Acad. Sci. U.S.A. 107, 20051–20056. doi: 10.1073/pnas.
1009906107

Shaw, W. R., Marcenac, P., Childs, L. M., Buckee, C. O., Baldini, F., Sawadogo, S. P.,
et al. (2016). Wolbachia infections in natural Anopheles populations affect egg
laying and negatively correlate with Plasmodium development. Nat. Commun.
7:11772. doi: 10.1038/ncomms11772

Shearman, D., Frommer, M., Morrow, J., Raphael, K., and Gilchrist, A. (2010).
Interspecific hybridization as a source of novel genetic markers for the sterile
insect technique in Bactrocera tryoni (Diptera: Tephritidae). J. Econ. Entomol.
103, 1071–1079. doi: 10.1603/ec09241

Shropshire, J. D., and Bordenstein, S. R. (2019). Two-By-One model of cytoplasmic
incompatibility: Synthetic recapitulation by transgenic expression of cifA and
cifB in Drosophila. PLoS Genet. 15:e1008221. doi: 10.1371/journal.pgen.1008221

Shropshire, J. D., Leigh, B., Bordenstein, S. R., Duplouy, A., Riegler, M., Brownlie,
J. C., et al. (2019). Models and nomenclature for cytoplasmic incompatibility:
caution over premature conclusions - a response to Beckmann et al. Trends
Genet. 35, 397–399. doi: 10.1016/j.tig.2019.03.004

Shropshire, J. D., On, J., Layton, E. M., Zhou, H., and Bordenstein, S. R. (2018).
One prophage WO gene rescues cytoplasmic incompatibility in Drosophila
melanogaster. Proc. Natl. Acad. Sci. U.S.A. 115, 4987–4991. doi: 10.1073/pnas.
1800650115

Sicard, M., Bonneau, M., and Weill, M. (2019). Wolbachia prevalence, diversity,
and ability to induce cytoplasmic incompatibility in mosquitoes. Curr. Opin.
Insect Sci. 34, 12–20. doi: 10.1016/j.cois.2019.02.005

Sikulu-Lord, M. T., Maia, M. F., Milali, M. P., Henry, M., Mkandawile, G., Kho,
E. A., et al. (2016). Rapid and non-destructive detection and identification of
two strains of Wolbachia in Aedes aegypti by near-infrared spectroscopy. PLoS
Negl. Trop. Dis. 10:e0004759. doi: 10.1371/journal.pntd.0004759

Simhadri, R. K., Fast, E. M., Guo, R., Schultz, M. J., Vaisman, N., Ortiz, L., et al.
(2017). The gut commensal microbiome of Drosophila melanogaster is modified
by the endosymbiont Wolbachia. mSphere 2:e00287. doi: 10.1128/mSphere.
00287-17

Simoes, P. M., Mialdea, G., Reiss, D., Sagot, M. F., and Charlat, S. (2011). Wolbachia
detection: an assessment of standard PCR protocols. Mol. Ecol. Resour. 11,
567–572. doi: 10.1111/j.1755-0998.2010.02955.x

Singh, N. D. (2019). Wolbachia infection associated with increased recombination
in Drosophila. G3 9, 229–237. doi: 10.1534/g3.118.200827

Smith, P. H. (1979). Genetic manipulation of the circadian clock’s timing of sexual
behaviour in the Queensland fruit flies, Dacus tryoni and Dacus neohumeralis.
Physiol. Entomol. 4, 71–78.

Snook, R. R., Cleland, S. Y., Wolfner, M. F., and Karr, T. L. (2000). Offsetting effects
of Wolbachia infection and heat shock on sperm production in Drosophila
simulans: analyses of fecundity, fertility and accessory gland proteins. Genetics
155, 167–178.

Suckling, D. M., Kean, J. M., Stringer, L. D., Caceres-Barrios, C., Hendrichs, J.,
Reyes-Flores, J., et al. (2016). Eradication of tephritid fruit fly pest populations:
outcomes and prospects. Pest Manag. Sci. 72, 456–465. doi: 10.1002/ps.3905

Suh, E., Mercer, D. R., and Dobson, S. L. (2017). Life-shortening Wolbachia
infection reduces population growth of Aedes aegypti. Acta Trop. 172, 232–239.
doi: 10.1016/j.actatropica.2017.05.015

Sullivan, W., and O’Neill, S. L. (2017). Microbiology: manipulation of the
manipulators. Nature 543, 182–183. doi: 10.1038/nature21509

Sumida, Y., Katsuki, M., Okada, K., Okayama, K., and Lewis, Z. (2017). Wolbachia
induces costs to life-history and reproductive traits in the moth, Ephestia
kuehniella. J. Stored Prod. Res. 71, 93–98.

Tadeo, E., Feder, J. L., Egan, S. P., Schuler, H., Aluja, M., and Rull, J. (2015).
Divergence and evolution of reproductive barriers among three allopatric
populations of Rhagoletis cingulata across eastern North America and Mexico.
Entomol. Exp. Appl. 156, 301–311.

Teixeira, L., Ferreira, A., and Ashburner, M. (2008). The bacterial symbiont
Wolbachia induces resistance to RNA viral infections in Drosophila
melanogaster. PLoS Biol. 6:2753–2763. doi: 10.1371/journal.pbio.1000002

Toledo, J., Rull, J., Oropeza, A., Hernandez, E., and Liedo, P. (2004). Irradiation
of Anastrepha obliqua (Diptera: Tephritidae) revisited: optimizing sterility
induction. J. Econ. Entomol. 97, 383–389. doi: 10.1093/jee/97.2.383

Tormos, J., Asis, J., Sabater-Muñoz, B., Baños, L., Gayubo, S., and Beitia, F. (2012).
Superparasitism in laboratory rearing of Spalangia cameroni (Hymenoptera:
Pteromalidae), a parasitoid of medfly (Diptera: Tephritidae). Bull. Entomol. Res.
102, 51–61. doi: 10.1017/S0007485311000393

Turelli, M., and Hoffmann, A. (1999). Microbe-induced cytoplasmic
incompatibility as a mechanism for introducing transgenes into arthropod
populations. Insect Mol. Biol. 8, 243–255. doi: 10.1046/j.1365-2583.1999.
820243.x

Turelli, M., and Hoffmann, A. A. (1991). Rapid spread of an inherited
incompatibility factor in California Drosophila. Nature 353, 440–442. doi: 10.
1038/353440a0

Turelli, M., and Hoffmann, A. A. (1995). Cytoplasmic incompatibility in
Drosophila simulans: dynamics and parameter estimates from natural
populations. Genetics 140, 1319–1338.

Uribe-Alvarez, C., Chiquete-Felix, N., Morales-Garcia, L., Bohorquez-Hernandez,
A., Delgado-Buenrostro, N. L., Vaca, L., et al. (2018). Wolbachia pipientis grows
in Saccharomyces cerevisiae evoking early death of the host and deregulation of
mitochondrial metabolism. Microbiol. Open 7:e00675. doi: 10.1002/mbo3.675

Vasquez, C. J., Stouthamer, R., Jeong, G., and Morse, J. G. (2011). Discovery of a
CI-inducing Wolbachia and its associated fitness costs in the biological control
agent Aphytis melinus DeBach (Hymenoptera: Aphelinidae). Biol. Control 58,
192–198.

Veneti, Z., Clark, M. E., Zabalou, S., Karr, T. L., Savakis, C., and Bourtzis, K.
(2003). Cytoplasmic incompatibility and sperm cyst Infection in different
Drosophila-Wolbachia associations. Genetics 164, 545–552.

Virgilio, M., Delatte, H., Quilici, S., Backeljau, T., and De Meyer, M. (2013). Cryptic
diversity and gene flow among three African agricultural pests: Ceratitis rosa,
Ceratitis fasciventris and Ceratitis anonae (Diptera, Tephritidae). Mol. Ecol. 22,
2526–2539. doi: 10.1111/mec.12278

Wang, M., Beck, C. R., English, A. C., Meng, Q., Buhay, C., Han, Y., et al. (2015).
PacBio-LITS: a large-insert targeted sequencing method for characterization of
human disease-associated chromosomal structural variations. BMC Genomics
16:214. doi: 10.1186/s12864-015-1370-2

Wang, X., Li, Z., Zhang, R., He, J., Zhao, Z., Wei, S., et al. (2019). Wolbachia
infection of Neoceratitis asiatica (Diptera: Tephritidae). Fla. Entomol. 102,
125–129.

Wedell, N. (2013). The dynamic relationship between polyandry and selfish genetic
elements. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368:20120049. doi: 10.1098/
rstb.2012.0049

Wedell, N. (2019). “The effect of non-self genes on the behaviour of hosts,” in
Genes and Behaviour: Beyond Nature-Nurture, eds D. J. Hosken, J. Hunt, and
N. Wedell (Chichester: John Wiley & Sons). 157–180.

Wee, S.-L., and Tan, K.-H. (2005). Evidence of natural hybridization between two
sympatric sibling species of Bactrocera dorsalis complex based on pheromone
analysis. J. Chem. Ecol. 31, 845–858. doi: 10.1007/s10886-005-3548-6

Weeks, A. R., Turelli, M., Harcombe, W. R., Reynolds, K. T., and Hoffmann, A. A.
(2007). From parasite to mutualist: rapid evolution of Wolbachia in natural
populations of Drosophila. PLoS Biol. 5:e114. doi: 10.1371/journal.pbio.0050114

Weinert, L. A., Araujo-Jnr, E. V., Ahmed, M. Z., and Welch, J. J. (2015).
The incidence of bacterial endosymbionts in terrestrial arthropods.
Proc. R. Soc. Lond. B Biol. Sci. 282, 20150249. doi: 10.1098/rspb.2015.
0249

Werren, J. H. (1997). Biology of Wolbachia. Annu. Rev. Entomol. 42, 587–609.
doi: 10.1146/annurev.ento.42.1.587

Werren, J. H., Baldo, L., and Clark, M. E. (2008). Wolbachia: master manipulators
of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751. doi: 10.1038/
nrmicro1969

Frontiers in Microbiology | www.frontiersin.org 22 June 2020 | Volume 11 | Article 1080

https://doi.org/10.1371/journal.ppat.1004777
https://doi.org/10.1073/pnas.1009906107
https://doi.org/10.1073/pnas.1009906107
https://doi.org/10.1038/ncomms11772
https://doi.org/10.1603/ec09241
https://doi.org/10.1371/journal.pgen.1008221
https://doi.org/10.1016/j.tig.2019.03.004
https://doi.org/10.1073/pnas.1800650115
https://doi.org/10.1073/pnas.1800650115
https://doi.org/10.1016/j.cois.2019.02.005
https://doi.org/10.1371/journal.pntd.0004759
https://doi.org/10.1128/mSphere.00287-17
https://doi.org/10.1128/mSphere.00287-17
https://doi.org/10.1111/j.1755-0998.2010.02955.x
https://doi.org/10.1534/g3.118.200827
https://doi.org/10.1002/ps.3905
https://doi.org/10.1016/j.actatropica.2017.05.015
https://doi.org/10.1038/nature21509
https://doi.org/10.1371/journal.pbio.1000002
https://doi.org/10.1093/jee/97.2.383
https://doi.org/10.1017/S0007485311000393
https://doi.org/10.1046/j.1365-2583.1999.820243.x
https://doi.org/10.1046/j.1365-2583.1999.820243.x
https://doi.org/10.1038/353440a0
https://doi.org/10.1038/353440a0
https://doi.org/10.1002/mbo3.675
https://doi.org/10.1111/mec.12278
https://doi.org/10.1186/s12864-015-1370-2
https://doi.org/10.1098/rstb.2012.0049
https://doi.org/10.1098/rstb.2012.0049
https://doi.org/10.1007/s10886-005-3548-6
https://doi.org/10.1371/journal.pbio.0050114
https://doi.org/10.1098/rspb.2015.0249
https://doi.org/10.1098/rspb.2015.0249
https://doi.org/10.1146/annurev.ento.42.1.587
https://doi.org/10.1038/nrmicro1969
https://doi.org/10.1038/nrmicro1969
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01080 June 1, 2020 Time: 18:4 # 23

Mateos et al. Wolbachia in Tephritid Flies

Werren, J. H., and Bartos, J. D. (2001). Recombination in Wolbachia. Curr. Biol.
11, 431–435.

Werren, J. H., Zhang, W., and Guo, L. R. (1995). Evolution and phylogeny of
Wolbachia: reproductive parasites of arthropods. Proc. R. Soc. Lond. B Biol. Sci.
261, 55–63. doi: 10.1098/rspb.1995.0117

White, I. M., and Elson-Harris, M. M. (1992). Fruit Flies of Economic Significance:
Their Identification and Bionomics. Wallingford: CAB International.

Ye, Y. H., Seleznev, A., Flores, H. A., Woolfit, M., and McGraw, E. A. (2017). Gut
microbiota in Drosophila melanogaster interacts with Wolbachia but does not
contribute to Wolbachia-mediated antiviral protection. J. Invertebr. Pathol. 143,
18–25. doi: 10.1016/j.jip.2016.11.011

Ye, Y. H., Woolfit, M., Rances, E., O’Neill, S. L., and McGraw, E. A. (2013).
Wolbachia-associated bacterial protection in the mosquito Aedes aegypti. PLoS
Negl. Trop. Dis. 7:e2362. doi: 10.1371/journal.pntd.0002362

Yen, J. H., and Barr, A. R. (1971). New hypothesis of the cause of cytoplasmic
incompatibility in Culex pipiens L. Nature 232, 657–658. doi: 10.1038/232657a0

Yong, H. S., Song, S. L., Chua, K. O., and Lim, P. E. (2017). Predominance of
Wolbachia endosymbiont in the microbiota across life stages of Bactrocera
latifrons (Insecta: Tephritidae). Meta Gene 14, 6–17.

Zabalou, S., Apostolaki, A., Livadaras, I., Franz, G., Robinson, A. S., Savakis, C.,
et al. (2009). Incompatible insect technique: incompatible males from a Ceratitis
capitata genetic sexing strain. Entomol. Exp. Appl. 132, 232–240.

Zabalou, S., Charlat, S., Nirgianaki, A., Lachaise, D., Mercot, H., and Bourtzis,
K. (2004a). Natural Wolbachia infections in the Drosophila yakuba species
complex do not induce cytoplasmic incompatibility but fully rescue the wRi
modification. Cell 167, 827–834. doi: 10.1534/genetics.103.015990

Zabalou, S., Riegler, M., Theodorakopoulou, M., Stauffer, C., Savakis, C., and
Bourtzis, K. (2004b). Wolbachia-induced cytoplasmic incompatibility as a
means for insect pest population control. Proc. Natl. Acad. Sci. U.S.A. 101,
15042–15045. doi: 10.1073/pnas.0403853101

Zchori-Fein, E., and Bourtzis, K. (eds) (2011). Manipulative Tenants: Bacteria
Associated with Arthropods (A Volume in the Frontiers in Microbiology Series).
Florida: CRC Press.

Zeh, J. A., and Zeh, D. W. (1996). The evolution of polyandry I: intragenomic
conflict and genetic incompatibility. Proc. R. Soc. Lond. B Biol. Sci. 263, 1711–
1717.

Zepeda-Cisneros, C. S., Meza Hernandez, J. S., Garcia-Martinez, V., Ibanez-
Palacios, J., Zacharopoulou, A., and Franz, G. (2014). Development, genetic
and cytogenetic analyses of genetic sexing strains of the Mexican fruit fly.
Anastrepha ludens Loew (Diptera: Tephritidae). BMC Genet. 15(Suppl. 2):S1.
doi: 10.1186/1471-2156-15-S2-S1

Zhou, W. G., Rousset, F., and O’Neill, S. (1998). Phylogeny and PCR-based
classification of Wolbachia strains using wsp gene sequences. Proc. R. Soc. Lond.
B Biol. Sci. 265, 509–515. doi: 10.1098/rspb.1998.0324

Zug, R., and Hammerstein, P. (2012). Still a host of hosts for Wolbachia: analysis of
recent data suggests that 40% of terrestrial arthropod species are infected. PLoS
One 7:e38544. doi: 10.1371/journal.pone.0038544

Zug, R., and Hammerstein, P. (2015). Bad guys turned nice? A critical assessment
of Wolbachia mutualisms in arthropod hosts. Biol. Rev. Camb. Philos. Soc. 90,
89–111. doi: 10.1111/brv.12098

Zygouridis, N., Argov, Y., Nemny-Lavy, E., Augustinos, A., Nestel, D., and
Mathiopoulos, K. (2014). Genetic changes during laboratory domestication of
an olive fly SIT strain. J. Appl. Entomol. 138, 423–432.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Mateos, Martinez Montoya, Lanzavecchia, Conte, Guillén, Morán-
Aceves, Toledo, Liedo, Asimakis, Doudoumis, Kyritsis, Papadopoulos, Augustinos,
Segura and Tsiamis. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 23 June 2020 | Volume 11 | Article 1080

https://doi.org/10.1098/rspb.1995.0117
https://doi.org/10.1016/j.jip.2016.11.011
https://doi.org/10.1371/journal.pntd.0002362
https://doi.org/10.1038/232657a0
https://doi.org/10.1534/genetics.103.015990
https://doi.org/10.1073/pnas.0403853101
https://doi.org/10.1186/1471-2156-15-S2-S1
https://doi.org/10.1098/rspb.1998.0324
https://doi.org/10.1371/journal.pone.0038544
https://doi.org/10.1111/brv.12098
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

	Wolbachia pipientis Associated With Tephritid Fruit Fly Pests: From Basic Research to Applications
	Introduction
	The Economic Importance and Management of Tephritid Pest Species
	The Influence of Wolbachia on Host Ecology

	Methods to Study Wolbachia
	Methods to Assess Wolbachia Infection Status
	Methods to Taxonomically Characterize Wolbachia Strains
	Methods to Functionally Characterize Wolbachia Strains

	Wolbachia in Tephritids
	Taxonomic Distribution of Wolbachia-Tephritid Associations
	Wolbachia Prevalence in Tephritids (in Time/Space)
	Phenotypic Effects of Wolbachia in Tephritids
	Modes of Horizontal Transmission of Wolbachia Between Tephritid Hosts

	Considerations for Wolbachia-Based Iit in Tephritids
	The Advantage of Genetic Sexing Strains (GSS)
	Choice and Evaluation of Wolbachia Strains
	Other Considerations
	Species Recalcitrant to Wolbachia?
	Potential for Target Populations to Become Resistant to Sterile Males
	Potential Alternative Ways of Implementing Wolbachia-Based Approaches
	Potential Influence of Other Symbionts


	Conclusion
	Author's Note
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


