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Abstract

Rationale/background

Though much smaller than the bovine industry, the porcine sector in Argentina involves a

large number of farms and represents a significant economic sector. In recent years Argen-

tina has implemented a national registry of swine movements amongst other measures, in

an effort to control and eventually eradicate endemic Aujesky’s disease. Such information

can prove valuable in assessing the risk of transmission between farms for endemic dis-

eases but also for other diseases at risk of emergence.

Methods

Shipment data from 2011 to 2016 were analyzed in an effort to define strategic locations

and times at which control and surveillance efforts should be focused to provide cost-effec-

tive interventions. Social network analysis (SNA) was used to characterize the network as a

whole and at the individual farm and market level to help identify important nodes. Spatio-

temporal trends of pig movements were also analyzed. Finally, in an attempt to classify

farms and markets in different groups based on their SNA metrics, we used factor analysis

for mixed data (FAMD) and hierarchical clustering.

Results

The network involved approximate 136,000 shipments for a total of 6 million pigs. Over 350

markets and 17,800 production units participated in shipments with another 83,500 not par-

ticipating. Temporal data of shipments and network metrics showed peaks in shipments in

September and October. Most shipments where within provinces, with Buenos Aires, Cor-

doba and Santa Fe concentrating 61% of shipments. Network analysis showed that markets

are involved in relatively few shipments but hold strategic positions with much higher

betweenness compared to farms. Hierarchical clustering yielded four groups based on SNA

metrics and node characteristics which can be broadly described as: 1. small and backyard
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Martı́nez-López B (2020) Application of network

analysis and cluster analysis for better prevention

and control of swine diseases in Argentina. PLoS

ONE 15(6): e0234489. https://doi.org/10.1371/

journal.pone.0234489

Editor: Grzegorz Woźniakowski, Panstwowy

Instytut Weterynaryjny - Panstwowy Instytut

Badawczy w Pulawach, POLAND

Received: December 12, 2019

Accepted: May 26, 2020

Published: June 17, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0234489

Copyright: © 2020 Baron et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data cannot be

shared publicly as this data is owned by a third-

party (the National Service of Agri-Food Health and

http://orcid.org/0000-0002-9036-1218
https://doi.org/10.1371/journal.pone.0234489
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234489&domain=pdf&date_stamp=2020-06-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234489&domain=pdf&date_stamp=2020-06-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234489&domain=pdf&date_stamp=2020-06-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234489&domain=pdf&date_stamp=2020-06-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234489&domain=pdf&date_stamp=2020-06-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234489&domain=pdf&date_stamp=2020-06-17
https://doi.org/10.1371/journal.pone.0234489
https://doi.org/10.1371/journal.pone.0234489
https://doi.org/10.1371/journal.pone.0234489
http://creativecommons.org/licenses/by/4.0/


farms; 2. industrial farms; 3. markets; and 4. a single outlying market with extreme centrality

values.

Conclusion

Characterizing the network structure and spatio-temporal characteristics of Argentine swine

shipments provides valuable information that can guide targeted and more cost-effective

surveillance and control programs. We located key nodes where efforts should be priori-

tized. Pig network characteristics and patterns can be used to create dynamic disease trans-

mission models, which can both be used in assessing the impact of emerging diseases and

guiding efforts to eradicate endemic ones.

1. Introduction

The porcine sector in Argentina is a relatively small industry comparatively to the beef sector,

representing only about 2% of the Argentinian livestock population [1]. This is similar to its

neighboring countries of Paraguay and Uruguay also covering the great plains of the South-

Eastern America. However, Argentinian swine production includes a robust industrial sector

as well as numerous backyard farmers whose livelihood depend on the small number of ani-

mals they raise. Argentina has established goals to eradicate endemic diseases, with high eco-

nomic costs, such as Aujesky’s disease which has been present in the country since 1979 [2, 3]

and to prevent the introduction of others for which the country is free, such as porcine repro-

ductive respiratory syndrome (PRRS), African swine fever (ASF) and classical swine fever

(CSF) [3]. In Argentina all movements of domestic livestock must be declared to the state vet-

erinary service (National Service for Agrifood Health and Quality, SENASA). If statutory

requirements are met, SENASA allows the movement of identified animals by issuing a permit

and data are recorded and stored in a database called the Integrated System of Management in

Animal Health (Sistema Integrado de Gestión de Sanidad Animal, Sigsa). Many infectious

agents are mainly transmitted between farms through the transport of live animals or via con-

taminated fomites carried by vehicles such as trucks transporting animals or products [4].

Thus, the analysis of pig movement networks can provide valuable insights to design more

cost-effective risk-based surveillance and control programs for diseases for which the country

aims to achieve eradication, like Aujesky’s disease. Moreover, with the global re-emergence of

diseases such as PRRS or ASF, it may help to better prevent and potentially control any of

those transboundary, diseases if they enter the country.

The use of social network analysis (SNA) and graph theory has been used in multiple

instances to characterize animal movements within a given livestock sector. This has been

used extensively to characterize movement networks for swine in Europe [5–7] and more

recently in North America and other regions [8, 9]. In South America, the method has been

used to characterize cattle movements in Uruguay [10] and Argentina [11] but to the best of

our knowledge has been scarcely used in the swine industry to date. In combination with other

methods such as mapping [12], epidemic simulation using the network structure [13] and

space-time clustering [14], SNA can define locations in time and space that are strategic for

the implementation of surveillance programs by for example, identify major nodes that can act

as super-spreaders and super-receivers, or identify communities and other network structures

that may be used to prevent disease transmission among regions or maximize the effectiveness

of control and vaccination programs.

PLOS ONE Network analysis of swine movement in Argentina

PLOS ONE | https://doi.org/10.1371/journal.pone.0234489 June 17, 2020 2 / 26

Quality of the Argentine Government, SENASA) and

has confidentiality issue as this is individual census

data. Data accessibility and restriction information

can be obtained from the National Service of Agri-

Food Health and Quality (SENASA). For information

about data accessibility and data requests please

contact infopublica@senasa.gob.ar. The authors

confirm that they had no special privileges to the

data and that other researchers will be able to

access the data in the same manner as the authors.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0234489
mailto:infopublica@senasa.gob.ar


The objective of this study is to describe and characterize the spatio-temporal swine move-

ment network in Argentina. For such purpose we will use a combination of spatio-temporal

analysis methods, network analysis and unsupervised machine learning techniques (cluster

analysis). Results of this study would inform the design of more cost-effective prevention and

control programs for swine diseases in the country and contribute to swine production

improvement and sustainability in South America.

2. Methods

2.1. Data collection and sources

In Argentina, the following data are recorded for each movement event: the province and dis-

trict of origin, the unique identifier of the source farm or market (RENSPA) and its geoloca-

tion (latitude and longitude), the date animals are to be transported, the species involved, the

number of individuals by age category, the reason for the movement, the province and district

of destination and the RENSPA and geolocation of the destination premise (farm, market or

slaughterhouse). These data are recorded and stored in a database called the Sanitary Manage-

ment System (Sistema de Gestión Sanitaria, Sigsa).

The swine demographics and movement data were provided by SENASA. Two datasets

were provided. The first one was the farm census of 2016, which included all registered pro-

ductive units as defined by SENASA, with at least one pig on site, their geolocation, and the

number of pigs (and other livestock species) in the unit. A productive unit is defined as the

unit managed by one farmer; a single actual farm can contain multiple units if multiple farmers

produce in the same farm. Therefore, the unit of observation in this study is the productive

unit. The second dataset included all pig movements in Argentina between units, from/to mar-

kets, and to slaughterhouses from January 2011 to December 2016. For this study, shipments

from units or markets to slaughterhouses were not included as they are considered dead-end

points for disease transmission and we were particularly interested to focus our attention in

the potential disease spread between farms.

2.2. Analysis

2.2.1 Descriptive analyses and mapping. Spatio-temporal aspects of pig farming and

movements in Argentina were described using tables, graphs, and maps. Bar plots were built

on a monthly basis for overall movements, movements to and from markets, overall pigs

moved, pigs moved through markets, and average shipment size to observe seasonal patterns.

Euclidean distance between shipping partners was computed using the geolocation of each

unit or market from the dataset. Using these geolocations, units and pig movements were geo-

graphically mapped using the “maps” package in R [15, 16] which pulls its shapefiles from the

open-source Natural Earth database [17].Points are plotted as units or markets involved in

movements, and arcs as shipments. Maps of all pig shipments were created for the total 2011–

2016 period as well as for each year and month. Similarly, maps with the subset of pig ship-

ments involving markets were created. To improve visualization of areas with high density of

swine farming and movements, kernel density maps were created in ArcGIS [18] for unit den-

sity, pig density, number of shipments per unit and number of pigs per shipment per unit.

2.2.2 Network construction and visualization. The networks were built using the igraph

package in R [19]. Nodes were defined as productive units and markets. Edges were defined as

individual shipments and weighted using the number of pigs per shipment. We built directed

networks, meaning the edges accounted for the direction of the shipment from one node to

another (i.e., Unit A sends pigs to Unit B). Networks were created for the total dataset as well

as by year to allow for comparison over time. Comparing networks over time help us to
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understand if there are stable and predictable movement patterns and relationships. In this

manner, we could identify specific nodes or groups of nodes that are likely to be important in

future movements, and thus could be targeted as strategic points for surveillance and interven-

tion strategies. Networks were graphed overall as well as on a monthly basis with a force-

directed Kamada-Kawai layout [20] for better visualization of individual nodes as well as net-

work structures. Graphing monthly networks allowed us to observe smaller structures where

features could be better distinguished. Color-coding was used to define node type (productive

unit or market).

2.2.3 Network analyses. From the full, yearly, and monthly networks we were able to

determine how many units and markets were involved in pig movements as well as to compute

key network metrics: in- and out-degree, betweenness, Eigen centrality, and network density.

Closeness centrality could not be properly computed as this was a disconnected network [21,

22]. We examined weak and strong components to evaluate clustering. These measures, which

have been previously described and shown relevant for preventive veterinary medicine [23],

are briefly described in Table 1. With these metrics, it was possible to evaluate the global struc-

ture of the network, compare the roles of markets and units in the movement network, and

evaluate the role of subgroups and individual nodes. Both weak and strong components allow

the identification of groups of units that have an intensive trade relationship with each other.

In terms of disease transmission, these components may help evaluate the extent to which an

outbreak might spread, if started in a given location in the network [e.g. 10]. Individual unit

and market metrics permit the evaluation of the level of activity and direct movements of an

individual node (degree), as well as the position of the node in relation to the network

(betweenness and Eigen centrality), which considers both direct and indirect connections.

Individual nodes with outstanding values, thus holding strategic positions, could then be suit-

able for targeted intervention. For instance, in the case of an outbreak, it would be possible to

determine which strategic nodes should be targeted first for surveillance and potential vaccina-

tion programs in a short period of time.

The sub-network without markets was also analyzed, given the apparent key role of markets

in the network, to see how this would affect the cohesiveness of the network. The same metrics

were measured for this sub-network. All analyses were conducted with R 3.3.1. [15] and

mapped using ArcGIS 10.6.1 [18].

We also aimed to identify groups of units and markets with similar movement patterns. For

such purpose we used FAMD (Factor Analysis for Mixed Data). FAMD is a variant of MFA

Table 1. Definitions of social network centralities used in this study.

Metric Definition Reference

In/out-degree

centrality

Total number of incoming or outgoing contacts during the period considered

for a single node. This is a measure of the absolute connectivity of a given node

[23, 27, 28]

Betweenness

centrality

For node A it is the sum of the proportion of shortest paths between pairs of

other nodes in the network that go through node A. It’s a measure of the

importance node A has in connecting other nodes in the network which don’t

have a direct connection.

[23, 27, 29]

Eigen centrality For a given node, it’s centrality is a proportion of the sum of centralities of its

neighbors

[27, 30]

Network density Proportion of observed edges in the network compared to the total number of

theoretical connections between all nodes.

[23, 31]

Strong component Component considering direct connections only between nodes. Directionality

of shipment is considered.

[22, 23, 32,

33]

Weak component Component considering both direct and indirect connections between nodes.

Directionality of shipment is considered.

[22, 23, 32,

33]

https://doi.org/10.1371/journal.pone.0234489.t001
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(Multiple Factor Analysis) which can account for both categorical and continuous variables by

combining PCA (Principal Component Analysis) for the continuous variables and MCA

(Multiple Correspondence Analysis) for the categorical ones. For FAMD, two categorical vari-

ables (province and node type) and thirteen continuous variables were considered (unit area,

unit population of pigs, unit population of other livestock, unit population of poultry, inde-

gree, outdegree, betweenness, number of pigs shipped out, number of pigs received, average

outgoing shipment size, average incoming shipment size, average distance of outgoing ship-

ment, average distance of incoming shipment). Following the selection of a model, hierarchical

clustering was used to define groups of nodes. Analysis was performed only on nodes which

participated actively in pig movements at any given point during 2011 and 2016 and was con-

ducted using the FactoMineR package in R [24].

2.2.4 Missing data. Some units and markets present in the shipment data (3.7% of the

total nodes) were not present in the 2016 census, and lacked geolocation. In those cases, we

used the mean values for longitude and latitude of other units in the same department as their

locations. This approach was chosen over the department centroid as it assumed that units

aren’t always uniformly distributed within a department. In this case a unit with unknown

coordinates is more likely to be closer to where other units might be concentrated or clustered.

3. Results

3.1 General characteristics of the pig industry in Argentina

The 2016 farm census recorded 97,605 productive units containing 4,988,169 pigs for 2016.

These units also recorded 15,832,134 other large animals, including cattle, small ruminants

and horses and 23,347,128 poultry. The average unit size was 51 pigs and the median was 8,

with the largest unit registering 98,230 pigs.

In total, 739,786 movements were recorded between 2011 and 2016 involving 33,927,547

pigs. After taking out movements to slaughterhouses, analysis was performed on the remaining

135,538 movements for a total of 5,934,881 pigs involving farms and markets only. Average

shipment size was 44 pigs, with the median being 20 pigs. The 75%, 95% and 99% percentiles

were of 40, 141 and 450 pigs in a shipment. A total of 351 markets and 17,809 units were

involved in recorded movements, forming 40,931 shipment pairs. The remaining 83,506 units

from the census were not involved in shipping pigs between 2011 and 2016. The average num-

ber of shipments per pair of nodes was 3.3 and the median 1 (the 75%, 95% and 99% percen-

tiles being of 2, 11 and 37 respectively, with the maximum shipments between a pair reaching

544). The average number of pigs shipped between pairs was 145, with a median of 15 (the

75%, 95% and 99% percentiles being of 56, 393 and 1498 pigs, with the maximum reaching

368,398 pigs shipped between a pair).

3.2 Temporal trends in pig movements

As shipment data collection was first introduced in 2011, seasonal trends could not be

observed for that year, with the steady increase in the number of shipments during 2011

reflecting the increase in coverage and improvement in data collection, not an increase in ship-

ments. Movement patterns showed that peak months in number of shipments for the period

2012 to 2016 were the months of September and October (average of 2,430 and 2,439 ship-

ments, respectively) and the lowest months were January and February (average of 1,588 and

1,615) (Fig 1). Average monthly shipments for other months varied from 1,881 to 2,053. These

observations were even more pronounced when looking at markets exclusively. When com-

paring to the average number of monthly shipments going through markets each year, Sep-

tember and October had 1.82 and 1.66 times the amount of shipments whereas January and
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February had 0.40 and 0.56 times the number of shipments. For other months these values var-

ied between 0.79 and 1.16. However peak month for average shipment size were January and

December (54 and 53 pigs per shipment), with the lowest months being September and Octo-

ber (39 and 40 pigs per shipment) with other months varying between 42 and 49 pigs per ship-

ment on average. The average size of shipments increased steadily over the years from 34 pigs

in 2011 to 55 in 2016 (median from 15 to 20) (Fig 2). Therefore, even though the number of

shipments decreased from 25,655 in 2012 to 22,110 in 2016, the number of pigs shipped

increased from 962,006 to 1,219,726. For the years 2012 to 2016, we observed very similar

monthly patterns in movements, suggesting a relatively stable and predictable movement net-

work in Argentina.

3.3 Spatial distribution of the swine industry in Argentina

Mapping swine movements from 2011 to 2016 shows a concentration of movements in the

areas west of Buenos Aires, with a number of major actors on the periphery interacting with

the core industrial center of swine production (Fig 3). In terms of unit and pig density, we can

Fig 1. Number of pig shipments per month between 2011 and 2016 in Argentina.

https://doi.org/10.1371/journal.pone.0234489.g001

Fig 2. Average shipment size per month between 2011 and 2016.

https://doi.org/10.1371/journal.pone.0234489.g002
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distinguish three distinct areas concentrated in the provinces of Formosa, Chaco, Corrientes

and Misiones (Fig 4A–4B). The first is an area of high unit and high swine density covering

parts of the provinces of Buenos Aires, Santa Fe and Cordoba, and to a lesser extent those of

Entre Rios and San Luis. This area is on an axis that includes, from West to East, the cities of

Buenos Aires, Rosario, Santa Fe, Cordoba and San Luis. Secondly, there is an area of high unit

density but low swine density covering the Northeastern provinces of Formosa, Chaco and

Fig 3. Distribution of pig movements in Argentina from 2011 to 2016. Red nodes represent markets and blues nodes farms. Red lines

are movements coming from markets and blue lines coming from farms.

https://doi.org/10.1371/journal.pone.0234489.g003
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Misiones and to a lesser extent the provinces of Salta, Santiago del Estero and Corrientes. This

area is essentially located along the border with Bolivia and Paraguay. Finally, the rest of the

country has both low densities in units and pigs. At the provincial level, we can see that the 3

provinces of Buenos Aires, Cordoba and Santa Fe contain 36.6% of units (35,707) but 62.6% of

pigs (3,123,567). The remaining 9 North-East provinces contain 57.0% of units (55,619) and

32.2% of pigs (1,606,938) and the 11 western and southern provinces contain 6.4% of units

(6,279) and 5.2% of pigs (257,677) (Table 2). We observe that in all provinces, the mean size is

always quite higher than the median, indicating strongly right-skewed distributions in produc-

tive unit sizes.

3.4 Spatial and provincial patterns of swine farming and movements

When looking at the density maps of swine movements and comparing them with swine popula-

tion density, we confirm that there are similar spatial patterns with most movements being con-

ducted around the industrial area of swine farming (Fig 4C–4F), with few major hot-spots

Fig 4. Kernel density maps: of Argentinian (A), farm distribution in 2016, (B) swine distribution in 2016, (C) outgoing shipments from

2011 to 2016, (D) outgoing traded pigs from 2011 to 2016, (E) incoming shipments from 2011 to 2016 and (F) incoming traded pigs

from 2011 to 2016.

https://doi.org/10.1371/journal.pone.0234489.g004
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concentrating most of the incoming and outgoing shipments. Of 135,538 shipments, 83,077 ship-

ments (61.3%) were internal in the provinces of Buenos Aires, Córdoba and Santa Fe; 19,233 ship-

ments (14.2%) occurred between these 3 provinces; 14,303 shipments (10.6%) were between these

3 provinces and the other 20 provinces; 14,167 shipments (10.5%) were within each of the other

20 provinces and 4,758 shipments (3.5%) were between these 20 provinces (Fig 5 and Table 3).

Similar patterns could be seen when looking at the number of pigs shipped as opposed to the

number of shipments (Table 3). However, when looking at net number of incoming/outgoing

shipments between provinces, and disregarding internal provincial movements, there are some

interesting relationships (Fig 5). The province with the largest net number of outgoing ship-

ments is La Rioja, and the province with the largest net number of incoming shipments is La

Pampa, with 381,598 (99.997% of outgoing pigs) of the pigs leaving La Rioja, going to La Pampa

(89.5% of incoming pigs). Of these, 368,398 (96.5%) pigs were from a single movement pair

between two units. A similar partnership can be seen between Córdoba and Santa Fe, with

284,005 pigs leaving Córdoba (59.2% of outgoing pigs) going to Santa Fe (59.7% of incoming

pigs). Córdoba, La Rioja, Santa Fe, Buenos Aires and San Juan have all sent more than 100,000

pigs to other provinces from 2011 to 2016, making up 86% of between-provinces shipped pigs.

Similarly, Santa Fe, La Pampa, Buenos Aires, Cordoba and Mendoza have all introduced more

than 100,000 pigs, making up 88% of between-provinces shipped pigs (Fig 6).

Table 2. Farm and pig distribution by province in Argentina in 2016.

Number of Productive units Number of pigs Average unit size Median unit size Largest unit

Major swine producing provinces 35,707 3,123,567 87

Buenos Aires 17,762 1,226,498 69 10 56,910

Cordoba 12,017 1,117,913 93 12 24,281

Santa Fe 5,928 779,156 131 10 45,739

North East provinces 55,619 1,606,938 29

Capital Federal - - -

Chaco 12,007 253,609 21 9 11,168

Corrientes 6,798 73,685 11 3 9,958

Entre Rios 6,224 345,370 55 6 13,883

Formosa 7,110 172,040 24 8 1,701

La Pampa 3,167 160,835 51 14 19,939

Misiones 3,669 65,591 18 5 2,998

Salta 6,185 220,586 36 17 3,673

San Luis 3,965 216,976 55 6 98,227

Santiago del Estero 6,494 98,246 15 7 2,694

Western and Southern provinces 6,279 257,677 41

Catamarca 1,080 15,732 15 4 943

Chubut 378 24,562 65 12 6,494

Jujuy 581 25,940 45 6 4,676

La Rioja 564 23,610 42 3 12,725

Mendoza 1,137 35,303 31 5 2,687

Neuquen 329 20,593 63 8 9,746

Rio Negro 805 31,205 39 9 5,210

San Juan 258 42,698 165 3 21,489

Santa Cruz 72 3,272 45 13 563

Tierra del Fuego 16 973 61 7 472

Tucuman 1,059 33,789 32 4 4,504

Total 97,605 4,988,182 51 8 98,227

https://doi.org/10.1371/journal.pone.0234489.t002
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3.5 Network characteristics

As mentioned above, our unit/market-to-unit/market network had 135,538 edges, 17,809

nodes and 40,931 movement pairs. Of these pairs, 33,973 (83.0% of pairs) shipped between 1

and 99 pigs from 2011 and 2016 for a total of 670,660 pigs (11.3% of pigs), 6,237 (15.2% of

pairs) shipped between 100 and 999 pigs for a total of 1,734,453 pigs (29.2% of pigs) and 717

(1.8% of pairs) pairs shipped between 1,000 and 70,000 pigs for a total of 2,602,224 pigs (43.8%

of pigs). The remaining 4 movements pairs had shipped more than 160,000 pigs each for a

total of 927,544 pigs (15.6% of pigs). Most movements were conducted over small distances

with the median equal to 63 km. However, this was highly skewed with a mean of 142 km and

a maximum distance of 3,286 km. Over the years both the median and mean distance slightly

increased from 59 to 67 km and 136 to 152 km respectively (Table 4).

The monthly network graphs showed similar patterns, thus here we exemplify the 48th month

of data, December 2014, which was one of the most legible graphs, to discuss some of the struc-

tures of the network (Fig 7). The first pattern we can notice is that a large portion of units and

markets are connected, either directly or indirectly forming a major network community (Fig 7,

number 1). The rest of the units and markets for smaller communities, are disconnected from the

main community (Fig 7, number 2). In the main component, a very large blue node (market) sur-

rounded by a multitude of direct connections can be seen, forming a dense star pattern (Fig 7,

number 3). We can also observe some small nodes (usually units) which connect communities

that wouldn’t otherwise be connected (Fig 7, number 4). There are pairs of units that ship pigs to

one another multiple times (Fig 7, number 5). Though some major nodes exchanged pigs with

other major nodes, some also exchanged pigs with a multitude of smaller units and, are only

attached to another major node through a minor node (Fig 7, number 6). Finally, we have move-

ment pairs that are completely isolated from the rest of the network (Fig 7, number 7).

Given the limitations of visualizing the network on a graph as it gets bigger (e.g. yearly net-

work or full 6-year network), we also used a number metrics to help quantify some of the

structures and network attributes noted above (Table 4). Overall the network is not very cohe-

sive with a density that increased from 0.04% to 0.055% from 2011 to 2016. The majority of

units (83,506; 85.6%) in the 2016 census did not send or receive a single shipment during the

Fig 5. Allocation of shipments involving the provinces of Buenos Aires, Cordoba and Santa Fe. Edges thickness is proportional to the

number of shipments, with the two most important trade relationships highlighted in red.

https://doi.org/10.1371/journal.pone.0234489.g005

PLOS ONE Network analysis of swine movement in Argentina

PLOS ONE | https://doi.org/10.1371/journal.pone.0234489 June 17, 2020 10 / 26

https://doi.org/10.1371/journal.pone.0234489.g005
https://doi.org/10.1371/journal.pone.0234489


period 2011–2016. A narrow majority of units that did participate in movements only moved

once or twice over the whole period (9,146; 50.4%), with another 5,042 units (27.8%) partici-

pating in 3 to 10 shipments. When looking at indegree and outdegree, we observe that over the

years the median is 1, with the mean varying between 3 and 3.5. The 95th percentiles are also

low, around 7 to 11. However, we can see that the maximums are well above 1,000 for inde-

gree, and around 700 for outdegree each year. Similarly, when looking at betweenness we see a

relatively high mean but the median being 0, with some very extreme maximums, between

600,000 and 3,000,000 depending on the year. At the month level, these metrics showed

marked seasonal patterns with degree and density peaking in September and October (Fig 8)

and betweenness showing even stronger peaks in August, September and October (Fig 9).

When looking at strong and weak components, we can see a very large number of strong

components (between 5,500 and 6,900 depending on the year), and a small number of weak

components (between 431 and 568 depending on the year) (Table 4). In the weak components

we have one very large component which includes 79 to 83% of all nodes for any given year. All

other weak components are much smaller (mean size 2). Strong components are much smaller

on average with a mean and median of 1 and yearly maximums ranging from 270 to 564.

Table 3. Provincial distribution of shipments and number of shipped pigs in Argentina from 2011 to 2016.

Internal shipments (within

province)

Incoming

shipments

Outgoing

shipments

Internally shipped pigs (within

province)

incoming

pigs

outgoing

pigs

Main 3 provinces 83,077 24,371 28,398 3,848,169 828,330 837,858

Buenos Aires 32,740 6,382 8,138 1,243,754 192,302 169,528

Cordoba 30,280 7,177 13,794 1,119,648 160,396 480,045

Santa Fe 20,057 10,812 6,466 1,484,767 475,632 188,285

North East provinces 11,857 6,807 7,132 450,885 521,216 176,315

Capital Federal - 186 185 - 963 419

Chaco 1,367 490 299 18,426 6,794 6,078

Corrientes 184 386 158 2,910 7,305 6,440

Entre Rios 2,290 1,481 1,263 160,381 24,783 30,966

Formosa 857 217 96 32,906 3,369 3,709

La Pampa 2,298 1,637 2,186 55,716 426,500 56,584

Misiones 2,365 268 69 141,915 6,732 694

Salta 837 435 575 18,795 10,786 18,912

San Luis 1,453 1,082 2,103 13,922 20,132 46,618

Santiago del Estero 206 625 198 5,914 13,852 5,895

Western and Southern

provinces

2,310 7,116 2,764 91,088 195,193 530,566

Catamarca 51 535 174 1,042 12,480 6,428

Chubut 119 3 24 2,019 134 722

Jujuy 58 620 20 2,513 16,090 1,120

La Rioja 22 134 347 602 6,528 381,611

Mendoza 767 4,260 113 23,977 110,352 5,457

Neuquen 29 34 11 621 358 522

Rio Negro 759 189 134 45,341 2,870 1,086

San Juan 15 168 1,258 1,600 4,190 109,092

Santa Cruz 18 20 1 129 568 3

Tierra del Fuego 3 3 - 246 148 0

Tucuman 469 1,150 682 12,998 41,475 24,525

Total 97,244 38,294 38,294 4,390,142 1,544,739 1,544,739

https://doi.org/10.1371/journal.pone.0234489.t003
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3.6 The role of markets

During the total period of study, 11,394 shipments, involving 251,449 pigs arrived from units

to markets, 11,812 shipments involving 183,465 pigs went from markets to units and 1,201

shipments and 59,477 pigs going directly from market to slaughter. Thus, markets represent

1.8% of nodes but are involved in 17.4% of shipments and 7.3% of pigs moved. A total of 6,420

movement pairs (15.6% of all pairs) involved markets. Shipments involving markets were

much smaller, being on average of 19 pigs, with a median of 8 and a maximum of 487. As men-

tioned earlier, one particular market stands out, having much higher values for each of the net-

work metrics, compared to any other nodes in the network. This node is mapped with the

other 350 markets involved in the network, in Fig 10. We can see that a few markets form star

patterns (Fig 10), reflecting that they are connected to multiple units, and so hold strategic

positions. The important role of markets is confirmed by the metrics, with markets having

higher mean and median in and outdegree (mean of 7.5 and median of 1 for the full network

compared to, 18.4 and 6 for market outdegree and 14.5 and 2 for market indegree). The same

was observed for betweenness (mean of 318,732 for markets compared to 20,673 for the full

network). When building the network without the markets (Table 5), though network density

is only slightly different, with markets representing a small proportion of nodes, it is noticeable

that eigen centrality for the network is quite lower. Mean yearly betweenness also dramatically

decreases from 708 to 3,895 in the full network compared to 22 to 238 in the network without

markets. Finally, we can note that largest weak component now only includes 74 to 77% of

nodes compared to 79 to 83% to the full network. The new network has 16,145 nodes, 2,015

less compared to the full network. This means, that after accounting for 351 markets, 1,664

units have been excluded as they were moving pigs exclusively with markets.

When looking at monthly metrics, monthly density and degree follow similar patterns as

previously observed, with slightly lower values. A moderate peak is still visible around October

(Fig 11). However, the seasonal patterns observed in the full network for betweenness disappear

with no obvious yearly peak in August to October (Fig 12). The seasonality in betweenness was

driven by two specific markets mostly operating in August, October and November.

Fig 6. Distribution of inter-provincial traded pigs in Argentina between 2011 and 2016.

https://doi.org/10.1371/journal.pone.0234489.g006
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3.7 Factor analysis for mixed data

Due to a number of observations having some missing data in the variables of interest, analysis

was conducted on 14,099 complete observations out of the 18,160 nodes which participated in

the network. A first model was constructed using FAMD which included all the variables origi-

nally selected. FAMD plots variables in a multi-dimensional space based on how they interact,

Table 4. Network centrality values and characteristics for the yearly networks from 2011 to 2016 and the complete network (whole time period).

2011 2012 2013 2014 2015 2016 Total

Network attributes

Number of farms & markets (nodes) 5,852 8,110 7,603 6,807 6,784 6,323 18,160

Number of shipments (edges) 14,897 25,655 25,826 23,695 23,355 22,110 135,538

Number of pigs shipped 509,965 962,006 1,015,450 1,091,699 1,136,035 1,219,726 5,934,881

Euclidean distance (edge length), km

Median 66.5 59.4 60.6 62.3 65.7 67.9 63.3

Mean 142.8 136.2 135.5 141.8 147.1 152.2 142.3

95th percentile 520.3 527.0 520.6 540.2 544.2 553.1 539.4

Maximum 1,404 2,519 2,872 3,286 1,591 1,278 3,286

Shipment size

Median 15 17 18 20 20 20 20

Mean 34 38 39 46 49 55 44

95th percentile 113 120 125 150 160 200 141

Maximum 7,362 7,819 3,000 10,727 14,443 10,370 14,443

Indegree

Median 1 1 1 1 1 1 1

Mean 2.55 3.16 3.4 3.48 3.44 3.50 7.46

95th percentile 7 8 10 10 11 11 21

Maximum 1,337 1,361 1,423 1,252 1,354 1,239 7,966

Outdegree

Median 1 1 1 1 1 1 1

Mean 2.55 3.16 3.4 3.48 3.44 3.50 7.46

95th percentile 9 12 12 13 13 13 29

Maximum 777 658 730 744 661 708 4,278

Betweenness

Median 0 0 0 0 0 0 0

Mean 771 1,723 3,895 886 1,398 708 20,673

95th percentile 538 1,754 2,571 981 1,259 918 28,143

Maximum 687,196 1,238,883 2,999,446 726,797 1,172,503 601,057 30,558,417

Eigen Centrality -57.12 41.86 48.45 41.38 45.93 51.93 260.62

Network density (%) 0.0435 0.0390 0.0447 0.0511 0.0508 0.0553 0.0411

Strong components

Number 5,486 7,499 6,911 6,358 6,303 5,882 14,314

Largest component 287 464 564 270 344 285 3,546

Median size 1 1 1 1 1 1 1

Mean size 1.07 1.08 1.10 1.07 1.08 1.08 1.27

Weak components

Number 431 568 533 497 493 485 923

Largest component (% nodes) 4,843 (82.8) 6,684 (82.4) 6,199 (81.5) 5,444 (80.0) 5,468 (80.6) 4,994 (79.0) 16,000 (88.1)

Median size 2 2 2 2 2 2 2

Mean size 13.58 14.28 14.26 13.7 13.76 13.04 19.67

https://doi.org/10.1371/journal.pone.0234489.t004
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with coordinate values ranging from -1 to 1 in each dimension. The number of dimensions is

dependent on the number of variables, and the number of categories within categorical vari-

ables [24]. Typically, results are interpreted in the first 2 or 3 dimensions as these explain most

of the data variation. Values close to 0 reflect variables with low discriminatory power, thus

variables which do not divide observations in distinct groups. Coordinate values closer to -1 or

1 have high discriminatory power. For this study, variables which did not reach coordinate val-

ues of 0.2 in either dimension 1 or 2 were excluded as active variables and only included as

Fig 7. Network graph for December 2014. Node size represents the log value for node betweeness.

https://doi.org/10.1371/journal.pone.0234489.g007

Fig 8. Time series of the monthly density values from 2011 to 2016 (A) and boxplot of the density values aggregated by month from 2011 to 2016

(B).

https://doi.org/10.1371/journal.pone.0234489.g008
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passive supplementary variables, meaning that these variables were not discriminatory enough

to help divide nodes into groups. These non-discriminatory variables included unit area, non-

swine livestock population, poultry population and distance covered by incoming and outgo-

ing shipments. Province was also excluded from the model as the large number of categories

created a large number of dimensions which explained very little of the variance and made it

impossible to define clear groupings. The final model was studied in the first two dimensions,

which accounted for 27.5% and 23.6% of the total variance respectively. As these accounted for

more than half of the variance, and dimension 3 dropped to 14.1% of variance, results were

interpreted using graphical representations in the first two dimensions (Fig 13). The three con-

tinuous variables with the highest contribution (i.e., the most discriminatory power) were

indegree, outdegree and betweenness in both dimension 1 and 2 (Table 6). The active variables

all had positive coordinates in both dimensions, thus trending towards discriminating nodes

with a combination of higher values. This means that high values of one variable tends to com-

bine with high values of the other variables as well within observations. These variables are

plotted in Fig 13.

Hierarchical clustering suggested the optimal number of four clusters (Fig 14). These could

be defined as cluster 1 comprised of small units (low pig population) with a combination of

low network metrics (betweeness and in- and out-degree), low shipment sizes; cluster 2 com-

prised of large units with a combination of low betweeness but high in- and out-degree and

large shipment sizes; cluster 3 comprised of markets (no pig population) with a combination

of high betweeness but low in- and ou-degree and small shipment size; and cluster 4 comprised

of a single node, the major outlying market mentioned previously with extremely high values

for betweenes and in- and ou out-degree but low shipment sizes. Detailed results of the values

within each cluster are presented in Table 7.

4. Discussion

Swine farming in Argentina may not represent the bulk of meat production compared to cattle

or poultry in the country. However, it is still an important sector both at the industrial and

community level and has a substantial potential to grow and expand, particularly now that

other traditional pig producing regions such as China or Europe have been affected by ASF.

Swine farming in Argentina is divided into two main groups, an industrial production sector,

and small-scale and backyard farming. Thus, every value relating to pig numbers or

Fig 9. Time series of the monthly mean betweenness value from 2011 to 2016 (A) and boxplot of the betweenness values aggregated by month from

2011 to 2016 (B).

https://doi.org/10.1371/journal.pone.0234489.g009
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movements are highly skewed with a large majority of small holdings and a few very large

holdings that ship large numbers of animals. The presence of other livestock species was also

indicative of the difference between large and small swine units, with large swine units having

little to no other livestock on the premise, and most other livestock being on units with small

or medium sized swine herds. The industrial-backyard dichotomy was evident when mapping

the units, with swine density not fully matching unit density. The open plains west of Buenos

Aires contain the so-called industrial swine belt of Argentina with high densities of both pig

units and number of pigs. The more densely forested Northeast is home to a large amount of

backyard farmers, which explains the very high density of units with a low density of pigs.

Fig 10. Map of shipments going to or coming from markets, from 2011 to 2016. Only market nodes are shown. Red lines represent

shipments coming from markets, and blue lines, coming from farms.

https://doi.org/10.1371/journal.pone.0234489.g010
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Both these areas are also where human population density is the highest [25]. Finally, the less

densely populated mountainous regions in the West, bordering Chile, and desert regions in

the South is home to fewer small backyard holdings. However large holdings still exist in lim-

ited numbers across the country, as noted by the skewness in unit size for each province.

Table 5. Network centrality values and characteristics for the yearly sub-networks from 2011 to 2016 and the full sub-network (whole study period) after removing

markets.

2011 2012 2013 2014 2015 2016 Total

Network attributes

Number of farms & markets (nodes) 4,928 7,134 6,737 6,148 6,113 5,662 16,145

Number of shipments (edges) 11,002 21,097 21,443 20,248 19,724 18,820 112,334

Number of pigs shipped 442,382 889,119 939,700 1,022,790 1,063,184 1,142,792 5,499,967

Euclidean distance (edge length), km

Median 80.9 64.8 64.1 65.1 69.3 70.3 67.9

Mean 164.4 146.6 143.6 150.2 157.7 162.2 153.0

95th percentile 549.6 545.1 540.6 551.9 570.2 578.2 554.7

Maximum 1,404 2,519 2,872 3,286 1,591 1,278 3286

Shipment size

Median 20 20 20 22 20 23 20

Mean 40 42 44 51 54 61 49

95th percentile 130 126 140 167 185 200 156

Maximum 7,362 7,819 3,000 10,727 14,443 10,370 14,443

Indegree

Median 1 1 1 1 1 1 1

Mean 2.23 2.96 3.18 3.29 3.23 3.32 6.96

95th percentile 6 7 9 10 10 11 20

Maximum 351 1,293 967 837 733 511 4,547

Outdegree

Median 1 1 1 1 1 1 1

Mean 2.23 2.96 3.18 3.29 3.23 3.32 6.96

95th percentile 8 11 12 12 12 12 27

Maximum 401 388 368 400 417 377 1,955

Betweenness

Median 0 0 0 0 0 0 0

Mean 22 238 109 86 85 66 17,832

95th percentile 20 213 84 56 79 54 18,879

Maximum 8,514 241,007 46,307 40,735 27,899 22,443 17,995,571

Eigen Centrality 17.15 21.91 21.63 23.35 32.37 35.77 90.28

Network density (%) 0.0453 0.0415 0.0473 0.0536 0.0528 0.0587 0.0431

Strong components

Number 4,832 6,918 6,516 5,949 5,919 5,483 13,446

Largest component 8 47 47 51 45 29 2,278

Mean size 1 1 1 1 1 1 1

Median size 1.02 1.03 1.03 1.03 1.03 1.03 1.20

Weak components

Number 483 644 611 539 537 531 1,049

Largest component (% nodes) 3,801 (77.1) 5,484 (76.9) 5,134 (76.2) 4,570 (74.3) 4,693 (76.8) 4,229 (74.7) 13,660 (84.6)

Mean size 2 2 2 2 2 2 2

Median size 10.20 11.08 11.03 11.41 11.38 10.66 15.39

https://doi.org/10.1371/journal.pone.0234489.t005
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The density of recorded shipments, ingoing or outgoing, was also very focalized around cer-

tain specific points in the industrial swine belt and this is in part because a few very large hold-

ings and markets were involved in very large portion of shipments. Some of these holdings

have near exclusive partnerships with other large holding, repeatedly sending large shipments

in one direction. Though the data did not have enough information to confirm this, we suspect

that this represents large breading farms sending many young pigs to large fattening or finish-

ing farms, as is relatively common in industrial swine farming worldwide [5,8].

Seasonal trends were less clear to interpret. It is likely that to a certain extent movements

reflect seasonal patterns in swine farming as has been shown in the cattle industry [11, 26].

During the summer, pig fattening is less efficient and animals are relatively small when they

are shipped out in December-January to make way for new incoming piglets that will start the

fattening process. Given the smaller size of shipped animal, more animals are shipped on

fewer trucks explaining that there are fewer shipments during those months but with a larger

average number of pigs per shipment. However, the increase in the number of shipments in

October-November, might also reflect the industry getting ready for increased meat consump-

tion that always occurs during the spring and summer. Movements to and from markets

showed a major increase in September and October which might also reflect the period of

Fig 11. Time series of the monthly density value from 2011 to 2016 in the network without markets (A) and boxplot of the betweenness values

aggregated by month from 2011 to 2016 in the network without markets (B). These graph are on the same scale as Fig 8.

https://doi.org/10.1371/journal.pone.0234489.g011

Fig 12. Time series of the monthly mean betweenness value from 2011 to 2016 in the network without markets (A) and boxplot of the

betweenness values aggregated by month from 2011 to 2016 in the network without markets (B).

https://doi.org/10.1371/journal.pone.0234489.g012
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activity of certain markets, thus affecting the overall picture as well. This is confirmed by the

important peaks in mean betweenness during those same months which were mainly driven

by markets indirectly connecting multiple units that otherwise would not have been in contact.

The fact that shipments through markets drive the peaks in the number of shipments in Sep-

tember and October might also be an explanation as to why these months had on average the

smallest shipment sizes, as shipment through markets were smaller than shipments between

units only. The repeating patterns over the years 2011 to 2016 showed that shipments follow a

stable network that can be predicted with some reliability over future years. The observed

trend of decreasing shipments over the years whilst the number of shipped pigs increased

might reflects financial strain due to the economic crisis, with farmers aiming to cut cost on

shipments by shipping more pigs in a shipment.

Network graphs can provide valuable insights about network structure and can help to

identify key nodes where surveillance and outreach should be focused. For example, in the

December 2014 graph (Fig 7) we noticed an important market located just west of Buenos

Aires which consistently plays on central role between a large number of units, connecting

with both major and minor nodes in the network. This same market drives the seasonal varia-

tion in betweenness with peaks from August to October, whilst remaining active the rest of the

year also. As noted, we distinguished several patterns in this graph which help to illustrate the

fact that the number of animals and shipments a node ships is not directly associated with the

Fig 13. Correlation circle for continuous variables included in the final factor analysis for mixed data model

(FAMD) along dimension 1 and 2. Variables in green are active and in purple are supplementary. All active variables

have positive coordinate values in both dimension 1 and 2. The variable names relate to: indegree, outdegree,

betweenness, Pig.in = total number of incoming pigs in a given unit, Pig.out = total number of outgoing pigs, Pig.

pop = pig population, Av.pig.out = average size of outgoing shipment Av.pig.in = average size of incoming shipment,

Polutry = poultry population, Livestock = livestock population, Distance.out = mean distance of outgoing shipment,

Distance.in = mean distance of incoming shipment, Area = area of unit.

https://doi.org/10.1371/journal.pone.0234489.g013
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importance of a node in the network in terms of connecting units and markets and potentially

contributing to a high potential of disease spread. Small nodes which only connect between

two other nodes and only have 2 shipments, might not appear important in terms of number

of shipments and pigs shipped, without visualizing the network and network metrics, but can

be located in strategic positions in the network and serve as a bridge by indirectly connecting

other groups of nodes or two highly connected communities that otherwise will be not con-

nected. Conversely nodes that send repeated number of shipments to a single other node

might not necessarily have an important role in the network in terms of disease spread, despite

the large number of shipped animals, as they only contact one or a few partners and can be in

an isolated circuit. The repeated nature of shipments between two nodes was also exemplified

above with only 4 movement pairs exchanging nearly 16% of swine shipped. Repeated

exchanges often occur when there is a specific partnership between a large breading unit and a

large fattening unit, with the piglets going from one to the other at regular intervals, without

going further into the farm network. Thus, a large portion of shipments could be considered

to have relatively low importance for surveillance and control needs. Though some major

nodes followed this repeated pair patterns with other major nodes, some send shipments to

multiple smaller nodes, and were only attached indirectly to another major node. Here we

have much higher spreading risks as these units hold more central role in the various commu-

nities. Finally, we noted some isolated pairs outside of the main network which are likely to be

backyard farmers that might exchange a few pigs or a boar, with a neighbor without ever con-

tributing to the network as whole. These units can also be seen on the periphery of the commu-

nities and a large number of them only participated in pig movements once in the whole 6

years of our time period. However, there were two major limitation in assessing indirect con-

nections between nodes. Firstly, the networks presented in this paper were all static, even if

observed at different time-scales. This creates an issue, where, for example: in a monthly

Table 6. Results of factor analysis for mixed data (FAMD). Coordinates represent the mean location of a variable along the 2 dimensions under study, and contribution

represents the discriminatory power of the given variable in dimension 1 or 2. (Supplementary categorical variable of province not shown for clarity, due to the large num-

ber of provinces).

Dimension 1 Dimension 2

Coordinates Contribution Coordinates Contribution

Active Continuous Variables

Betweenness 0.636 13.71 0.497 9.73

Indegree 0.598 12.11 0.556 12.21

Outdegree 0.585 11.61 0.490 9.45

Number of incoming pigs 0.417 5.90 0.478 9.00

Number of outgoing pigs 0.324 3.56 0.388 5.92

Pig population 0.149 0.76 0.278 3.04

Average incoming shipment size 0.109 0.40 0.195 1.50

Average outgoing shipment size 0.107 0.39 0.230 2.09

Active Categorical Variable categories

Node type: Market 5.927 50.70 -4.865 46.26

Node type: Farm -0.101 0.87 0.083 0.79

Supplementary Continuous Variables

Area -0.016 NA 0.001 NA

Non-pig livestock population -0.046 NA 0.013 NA

Poultry population 0.007 NA 0.018 NA

Average distance of incoming shipments 0.082 NA -0.017 NA

Average distance of outgoing shipments 0.102 NA 0.017 NA

https://doi.org/10.1371/journal.pone.0234489.t006
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network, two farms A and C are connected via two separate shipments through farm B. These

two shipments might be distant in time by one day or by as much as thirty, and this time-lapse

might make the indirect connection note-worthy or irrelevant in terms of disease transmission

Fig 14. Location of nodes in dimensions 1 and 2 following coordinates obtained from factor analysis of mixed

data (FAMD) with color coding from hierarchical clustering. Cluster 1 represents small and backyard productive

units (low degree, betweenness, pig population and shipment size), cluster 2 represents large and industrial farms (high

degree, pig population and shipment size but low betweenness), Cluster 3 represents markets (high betweenness but

low degree and shipment size, and no pig population) and cluster 4 is a single outlying market with extremely high

values for betweenness, degree but small shipment size and no pig population.

https://doi.org/10.1371/journal.pone.0234489.g014

Table 7. Characteristics of the four clusters defined by hierarchical clustering based on the active variables selected from factor analysis for mixed data (FAMD).

Variables Cluster 1 Cluster 2 Cluster 3 Cluster 4

Farms with lower trade

metrics

Farms with high trade

metrics

Markets with lower trade

metrics

Market with high trade

metrics

Number of nodes in cluster 13,845 17 236 1

Mean Betweenness 19,617 12,754 190,598 30,558,417

Mean Indegree 7.8 117.5 14.5 7,966

Mean Ourdegree 8.1 132.7 31.9 4,278

Mean Number of incoming

pigs

299 62,160 214 200,857

Mean Number of outgoing pigs 298 64,078 144 149,550

Mean Pig population 226 22,246 0 0

Average incoming shipment

size

14 1,630 12 25

Average outgoing shipment

size

19 1,458 5 35

https://doi.org/10.1371/journal.pone.0234489.t007

PLOS ONE Network analysis of swine movement in Argentina

PLOS ONE | https://doi.org/10.1371/journal.pone.0234489 June 17, 2020 21 / 26

https://doi.org/10.1371/journal.pone.0234489.g014
https://doi.org/10.1371/journal.pone.0234489.t007
https://doi.org/10.1371/journal.pone.0234489


from A to C. This problem would be exacerbated with larger time steps. It would thus be useful

to use a dynamic network structure to better capture the risk of transmission through indirect

connections, considering the incubation period, latent period and other temporal characteris-

tics of any specific disease under study. Secondly, the lack of direct animal tracing meant it

wasn’t possible to assess which shipments continued directly from a node A to C via B. This is

especially true with markets where numerous shipments come in and exit at any given time,

with no resident population. Thus, if farm A, sends a shipment to market B, and shortly after,

farm C receives a shipment from market B, there is no way to know if this shipment contains

the same pigs sent by farm A, or other pigs that were at the market at the same time, and

which might or might not have been in close contact to pigs from farm A. This is certainly

something that could be added if individual pig identification expands in Argentina and that

information becomes available for analysis in the future.

It is also interesting to discuss and compare the metrics we obtained with those described

in previous studies. Overall, monthly network density values varying between 1.5�10−7 and

2.5�10−7 (Fig 8A) reflected a very loose and disjointed network. These values are much lower

than that seen in countries with a much larger swine industrial sector but little backyard swine

production such as the United States of America, Canada and Germany, [5, 6, 8], with values

ranging 3�10−3 and 8�10−3. This can be explained by the very large number of nodes that never

engaged in shipping or receiving pigs. It is likely that restricting the network to large industrial

farm we would reach density values similar to that shown in the examples above.

Centrality metrics reflected generally the patterns observed in the graph. The very low

mean yearly indegree and outdegree confirmed the fact that the vast majority of units partici-

pated very little in pig movements over the 6 years under study. However, the very large maxi-

mum indegree and outdegree, between 650 and 1,450, each year all relate to the market

mentioned above, with the next most important nodes being a few units with several dozens to

hundreds of shipments, with yearly maximums ranging from 350 to 1,300. We see here the

highly skewed nature of shipments with a few nodes concentrating a large portion of ship-

ments. This pattern was also noted in the Argentinian bovine industry [11, 26]. The mean and

median betweenness of 0 each year relates to the fact that most units are peripheral to the net-

work contributing one shipment in one direction or the other without ever connecting indi-

rectly two or more nodes. Once again, the extreme values are from the major market near

Buenos Aires. Interestingly, some units with high degree values did not also have high

betweenness values. Nodes with high degree values and low betweenness are linked to the pair-

ing partnership discussed above, between a specific breading unit sending multiple shipments

to a specific fattening unit, without connecting much with other nodes. In the context of infec-

tious disease, though in and outdegree give useful information in regards to the intensity of

movements, betweenness is most interesting in terms of finding nodes with strategic locations

in the network and where surveillance would be the most useful. In this sense we can see that

markets have a role in the swine movement network in Argentina disproportionate to the

number of shipments and pigs that actually go through them. Not only were degree values on

average higher for markets than for productive units but taking markets out of the network

dramatically reduced the monthly betweenness of the network, presumably breaking up the

network into smaller less connected components. Moreover, removing markets from the net-

work also drastically reduced the overall eigen centrality, indicating the role of markets in indi-

rectly connecting multiple communities of nodes together. Thus, markets play key roles in

indirectly connecting units that would not have been connected otherwise. Once again, we

have to take into account the limitations of static monthly networks and the lack of continued

shipment tracing in trying to assess the value of an indirect connection for disease transmis-

sion. The fact that monthly centrality values followed repeated patterns over the years,
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particularly betweenness, is interesting in terms of being able to predict periods of strategic

importance with the months of August, September and October being of crucial importance.

Thus, by combining information about time and place, we can select specific nodes, productive

units and markets, that would be of crucial importance for a control campaign or outbreak

management at specific times of the year. Eigen centrality is another way we can distinguish

nodes with high connectivity, with strategic roles in the network.

Community algorithms also reflected what we observed in the graph with one large com-

munity containing most nodes in any given month, which included multiple strong compo-

nents connected indirectly by a few nodes, and a multiplicity of small independent

communities on the periphery. However, the largest community still contained a smaller pro-

portion of nodes compared to examples in more industrial production systems in the US and

Germany [5, 8] where more than 90% of nodes were contained in the largest community. This

could be explained by the fairly large proportion of backyard producers that do not exchange

pigs with more industrial facilities. However, the proportion of units involved in the large

community in Argentina remained much larger compared to examples in Canada, France,

Italy and Spain, which also have industrial swine production systems [6, 7]. Given that multi-

ple factors might divide a single country’s sector in multiple communities, such as type of

farming, but also presence of industrial groupings or partnerships, geography and natural bar-

riers or the role of markets, it is difficult to draw direct comparison between systems without

looking more closely into a more detailed layout of the communities. Looking at geographical

clustering of communities [7], would be a next step in characterizing the Network structure in

Argentina. Seeing that most shipments remain within a given province does provide some evi-

dence of potential clustering of communities within provinces. The large amount of small

strong components reflect that most shipping partnerships are in pairs, with a few nodes

branching out into star patterns, connecting directly with multiple other nodes. This commu-

nity structure was repeated across years and months.

Furthermore, factor analysis re-enforced the notion that a small group of large industrial

farms play a disproportionate role in sending and receiving swine shipments in terms of volume

and could help identify the most crucial of these. The vast majority of farms being small scale

enterprises that do not participate much in pig movements, if at all. However, in it is interesting

to note that when comparing values between clusters 1 and 2, though cluster 2 had on average

values much superior to cluster 1 in almost every variable included in the model, this was not

the case for an important exception, betweenness. In this regard small units in cluster 1 had an

average betweenness slightly higher than cluster 2 and much lower than the market clusters.

This relates to the point mentioned above about smaller nodes with low degree and high

betweenness which are likely small holdings moving pigs at “random” as opposed to large hold-

ings sending a large number of repeated shipments to a select few other units, and thus not

being necessarily as important in the network as the large number of shipments suggests. It is

also notable when looking at Fig 14, that though cluster 3 and 4 are distinctly different from

each other and cluster 1 and 2, there seem to be some level of overlap between cluster 1 and 2,

despite the large differences in mean values. This suggests, that though we can divide units into

two broad types, there is no clear limit between these, and a number of units have more inter-

mediate values. Here again, markets appear to have a much more important role in pig move-

ments even when removing the one major outlier which formed its own spate cluster.

5. Conclusion

The characterization of the network structure of swine movements in Argentina provides use-

ful information to build targeted and cost-effective surveillance and control system in an area
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of the world where the swine industry has been little studied to date. Such network structures

can be adapted to create dynamic disease transmission models for multiple agents to test the

impact of risk-based surveillance and intervention to help eradicate endemic diseases such

Aujesky’s disease and to predict the impact of the potential introduction of new pathogens

such as the PRRS, ASF and CSF viruses. However, to fully assess the risk and impact of intro-

duction of pathogens for which Argentina is currently free, data about pig imports would be

crucial. This would allow the localization of startegic points for surveillance and control such

as units and markets that are the primary importers and ports of entry. Unfortunately the data-

set available to us did not contain such information, thus limiting the scope of our study to

national level movements. This should be considered for any future and expanded study of

swine movements in Argentina.

Argentina has a broadly two system swine sectors with a very connected centralized indus-

trial core conducting most movements and a very decentralized small-scale sector. Both sec-

tors do have contacts between each other and the presence of small, but highly connected

markets provides key locations to be chosen as strategic points for surveillance and control, as

well as ideal places to conduct outreach to farmers about biosecurity measures and best man-

agement practices for risk-mitigation strategies.
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