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Salinity induced anatomical and morphological changes in Chloris
gayana Kunth roots
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ABSTRACT: Chloris gayana Kunth is a grass species valuable as forage which was introduced into Argen-
tina to be used as pasture in saline soils of subtropical and warm-temperate zones, given its good adaptability
to drought, salinity and mild freezing. However, its tolerance varies according to the cultivar. In tetraploid
cultivars, important reductions in yield have been observed. Here, a study of the variations produced on the
root and stem system by salinity at different NaCl concentrations (0, 150 y 250 mM) was performed in the
Boma cultivar, with the aim of determining the anatomical and morphological alterations produced by the
salt excess. Plants cultivated with the highest level of salinity showed, in the whole, significant differences in
the measured variables.
   A diminution in absolute values of the variables and a major reduction in vascular tissue dimensions were
observed, which suggests that the lack of tolerance to salt stress could be related to a deficient adaptation to
absorb and transport water and nutrients from the roots.
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Introduction

Environmental factors influence both shoot and root
growth. In the first case, they affect both bud activation
and growth rate (Bell, 1986; Huber, 1997). Likewise
lateral roots quantity, development and function are af-
fected in the radical system (Glinski and Lipiec, 1990;
Hauser et al., 1995; Lynch, 1995). As consequence, plant
architecture is modified and so, its capacity to explore
and acquire resources from the medium (Dong and de
Kroon, 1994).

Among abiotic stresses, drought and salinity cause
a reduction in hydraulic conductivity in plants (Peyrano
et al., 1997; Steudle, 2000). The stress imposed by salts
excess is an important restriction for the productive use
of lands (Sanderson et al., 1997) as it reduces plant
growth and productivity at a soil conductivity over 4.5
dS/m (50 mM) (Muscolo et al., 2003).

High salt content, especially chloride and sodium
sulphates, affects plant growth by modifying their mor-
phological, anatomical (Kalaji and Pietkiewicz, 1993;
Huang and Redmann, 1995) and physiological traits
(Muscolo et al., 2003). Such growth impairment is due
to osmotic effects and ionic imbalances affecting plant
metabolism (Greenway and Munns, 1980).

It is known that under stressful conditions, root
system biomass decreases, however, detailed studies
about morphological and anatomical changes of roots
challenged to different saline conditions are scarce
(Córdoba et al., 2001).
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Salinity reduces root length and diameter (Neumann,
1995). Anatomically, it affects cell division and expan-
sion processes (Kurth et al., 1986; Zidan et al., 1990),
reduces the size of apical meristems, cortex and vascu-
lar cylinder. Additionally, stimulates exodermis and
endodermis suberization (Reinhardt and Rost, 1995;
Sanderson et al., 1997; Ramos et al., 2004) or the oc-
currence of atypical structures such as rhizodermis with
phi-thickenings. (Degenhardt and Gimmler, 2000). The
most common anatomical response to salinity is related
to cell wall modifications. In cotton, an accelerated
deposition of suberin in cells of the Casparian strip was
observed (Wilson and Peterson, 1983; Reinhardt and
Rost, 1995). Zhong and Lauchli (1993) found a rise in
uronic acid along with lower cellulose content per unit
of dry matter in cell walls of primary roots of cotton as
effect of elevated salts levels. These alterations could
be the cause of the change observed in the relative pro-
portions of root tissues (Ramos et al., 2004), which
modify the shape of the organ and its function (Hauser
et al., 1995). At a molecular level it is known that sev-
eral genes are expressed upon salt exposure and a num-
ber of proteins involved in salt-tolerance have been iden-
tified (Bohnert and Jensen, 1996).

Chloris  gayana Kunth is a grass species valuable
as forage which was introduced to Argentina to be used
as pasture in saline soils of subtropical and warm-tem-
perate zones (Burkart, 1969) given its good adaptabil-
ity to drought, salinity and mild freezing (Bogdan, 1969;
Duke, 1978). One of the known mechanisms of this spe-
cies to cope with salinity is the presence of bi-cellular
salt glands in its leaves which build up and excretes the
sodium excess (Amarasinghe and Watson, 1989;
Liphschitz and Waisel, 1974).

Due to the biological and agronomical importance
of C. gayana, the study of its mechanisms of tolerance
is of special importance (Kobayashi et. al., 2007). In
this case, it exist a broad variability in function of culti-
vars. Significant reductions in the tetraploid cultivars
productivities have been observed (Taleisnik et al., 1997;
de Luca et al., 2001). Reduced yielding in these culti-
vars under salinity is manifested as a higher number of
senescent leaves, a lower leaf area expansion and a mi-
nor number of stolons per plant (de Luca et al., 2001).

Plant roots provide an ideal experimental system
to investigate the effects of salinity on growth and other
parameters given that, a) growth is restricted to a defi-
nite region, the millimetres immediately above the api-
cal meristem, followed by a non-growing zone consist-
ing of mature elongated cells located just some
centimetres above the tip (Ishikawa and Evans, 1995);

b) root cells can be directly exposed to different NaCl
concentrations by changing the root medium (Hilal et
al., 1998). For these reasons, we have chosen this sys-
tem to deepen the knowledge of the responses of this
halophyte growing under salt stress. In addition, there
is almost no study addressing this kind of studies from
a multivariate analysis perspective which allows corre-
lating and discriminating the relevance of each variable
involved.

Anatomical changes could compromise plant abil-
ity to conduct water and nutrients in high salinity. Ortega
et al. (2006) observed a diminution of leaf protoxylem
diameter in Rhodes grass leaves. Applying the law of
Hagen-Poiseulle which relates water flux to the forth
power of the xylem conduits radius, it can be deduced
that a small variation in this value would imply a big
increase in hydraulic resistance (Lewis and Bosse,
1995). A reduction in root hydraulic conductivity was
observed by Peyrano et al. (1997) in tomato under sa-
linity. Thus, we hypothesized that a reduction in vascu-
lar tissue dimensions more than any reduction in other
tissue, would limit growth under salt stress conditions.

Thus, the aims of this work were determining, in
tetraploid C. gayana roots, the morphological and ana-
tomical alterations produced by salt excess (as NaCl) in
the medium and whether they were correlated.

Materials and Methods

Plant material

Assays were carried out at the Juan Donnet Experi-
mental Field of the Agronomic Sciences College of the
Universidad Nacional del Litoral (Province of Santa Fe,
Argentina). Seeds of the tetraploid cultivar “Boma” were
germinated in a growing chamber at 26ºC. After 48 h,
plantlets were transferred to 4 L pots filled with perlite-
vermiculite (3:1). Plants were watered daily with a half-
strength Hoagland solution (Hoagland and Arnon,
1950). For plants subjected to experimental salinization,
this solution was supplemented with NaCl in two final
concentrations. Thus, three treatments were defined as:
no NaCl added (control), 150mM NaCl (low NaCl con-
centration) and 250 mM NaCl (high NaCl concentra-
tion). Salinization began 5 days after seedling emergence
watering with a 50mM NaCl supplement. From that
time, daily 50mM increments were performed until the
desired final NaCl concentration was reached. Salt con-
centration in the pots was monitored by conductivity
measurement in the leaked excess solution.
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After 40 days of treatments beginning, plants were
harvested for morphological and anatomical studies.
Roots were thoroughly washed and immediately im-
mersed in FAA fixative solution (ethanol 50% [v/v], gla-
cial acetic acid 5% [v/v], and formol 10% [v/v]) for 48 h;
then they were stored in 70% (v/v) ethanol until use.

Segments from the absorption zone (1.5 cm from
the tip) were sampled to perform permanent histologi-
cal preparations (Berlin and Miksche, 1976).  Shoots
were oven-dried for 72 h at 90°C to obtain dry matter.
After taking samples for morphological and anatomi-
cal studies, roots were oven-dried in the same manner.

Morphological parameters

Direct and derivative morphological variables were
determined: shoot and root dry mass, total dry mass,
shoot/root ratio, total root length according to Tennant
(1975) and specific root length as the ratio between to-
tal root length and root dry mass.

Anatomical parameters

Digital images of the histological preparations were
acquired using the Image-Pro Plus 7.0 Software Devel-
opment Kit (SDK, © Media Cybernetics v. 6, Silver
Spring CO., EEUU, 2000). In these, total area of each
root cross-section, and areas corresponding to cortical
parenchyma and vascular cylinder were measured. From
these data, the ratio between vascular cylinder and cor-
tical parenchyma areas was calculated.

Statistical analysis

An experimental design of completely random-
ized plots was run using between 9-12 plants per treat-
ment. Four roots per plant were sampled for anatomi-
cal studies.

Data were analyzed through ANOVA using the
Fisher least significant difference (LSD) test for com-
parisons of means (Sokal and Rohlf, 1971) using a 5%
level of significance. The adjustment of errors to nor-
mal distribution was verified through the Shapiro-Wilks
test and homoscedasticity was verified through the
Levene test.

Given that all variables were measured on the same
experimental units, multivariate analysis was applied
in order to obtain an appropriate picture of the corre-
lation and relative “weight” of each variable on the
final results.

Thus, Principal Components Analysis, Biplot and
Minimum Spanning Tree of the parameters were run to
get a summary of the effects of salinity on the variables,
as a whole.

Principal Components Analysis reduces the
multivariated space to only two variables allowing,
through these new variables (principal component 1 and
2), to discriminate those which influence the most the
statistical results. It is a simplified way to explain the
total variability of the set of samples.

Minimum Spanning Tree was plotted in the Biplot
to show Principal Component Analysis or dimension
reduction accuracy. Lines joining the experimental units

TABLE 1.

Effects of NaCl treatments on several growth parameters. Results are mean ± SD; n was 9-12 per group. Different
letters indicate significant differences (P<0.05). Last row indicates the least significant difference (LSD) value
determined for each parameter.

Shoot Root Total Shoot/root Total Specific
Treatment dry mass dry mass dry mass ratio root length root length

(g) (g) (g) (m) (m.g-1)

no NaCl 0.46±0.15 a 0.14±0.05 a 0.60±0.19 a 3.27±0.58 a 8.18±2.01 a 60.74±14.7 a
added

Low NaCl 0.30±0.13 b 0.10±0.04 b 0.40±0.17 b 3.04±0.60 a 5.96±1.80 b 64.29±16.4 a
concentration

High NaCl 0.31±0.12 b 0.07±0.03 b 0.38±0.15 b 4.32±0.88 b 4.75±1.15 b 71.31±18.7 a
concentration

LSD 0.12 0.04 0.15 0.64 1.47 0.67
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without crossing each other in the Biplot indicate a good
dimension reduction, therefore a good explanation of
the multivariated reality. Cofenetic correlation coeffi-
cient quantifies how good the dimension reduction
through Principal Component Analysis was.

Statistical analyses were run using the InfoStat Pro-
fessional (v. p2, Group InfoStat, 2006) software program.

Results

Morphological parameters

C. gayana ´Boma´ biomass accumulation was re-
duced by salinity as seen from the significant lower val-
ues of shoot dry mass, root dry mass and total dry mass
in low NaCl concentration and high NaCl concentra-

tion respect to no NaCl added (Table 1).
Total root length was notably reduced upon expo-

sure to salt but, as with shoot dry mass, root dry mass
and total dry mass did not show significant differences
between low NaCl concentration and high NaCl con-
centration, despite the lower average value in high NaCl
concentration.

When the effects were expressed as percentage of
control (no NaCl added) shoot dry mass, root dry mass
and total dry mass displayed diminishing values as sa-
linity level increased but without statistical significance
(Table 2). On the other side, shoot/root ratio decreased
in low NaCl concentration but rose to about a signifi-
cant 32% in high NaCl concentration reflecting the
higher diminution of root dry mass against shoot dry
mass upon the highest salinity.

On respect of specific root length, there were no

TABLE 2.

Changes induced by salinity in morphological parameters values. Results are expressed as percentages of control
plants. Different letters indicate significant differences (P<0.05; n=9-12)

Treatment shoot dry root dry total dry shot/root total specific
mass mass mass ratio lenght lenght

Low NaCl -34.78 a -28.57 a -33.33 a -7.03 a -27.14 a +5.84 a
concentration

High NaCl -32.61 a -50.00 a -36.67 a +32.11 b -41.93 a +17.40 a
concentration

TABLE  3.

Salinity-induced effects cross-sectional total root area, vascular cylinder; cortical parenchyma and vascular cylinder/
cortical parenchyma ratio. Results are means ± SD; n was 9-12 per group. Different letters indicate significant
differences (P<0.05). Last row indicates the least significant difference (LSD) value determined for each parameter.

Treatment Total root area Vascular cylinder Cortical parenchyma Vascular cylinder/cortical
(mm2) (mm2) (mm2) parenchyma

No NaCl 0.59±0.17   a 0.10±0.03   a 0.42±0.14  a 0.25±0.06    a
added

Low NaCl 0.53±0.14   b 0.08±0.02   b 0.39±0.11  ab 0.20±0.06     b
concentration

High NaCl 0.46±0.16   b 0.06±0.02  c 0.34±0.14  b 0.18±0.05     b
concentration

LSD 0.07 0.01 0.06 0.03
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significant differences between treatments; although a
mild increase could be observed as salinity level in-
creased (Table 2).

Anatomical parameters

Root cross-sectional area, sampled on about 1.5 cm
from root apex, decreased as salt concentration increased
(Table 3, Fig. 1). Although in absolute figures salt treat-
ments were equivalent on this parameter, significant
differences were detected between the relative percent-
ages of diminution on respect to no NaCl added.

On the contrary, cross-sectional area of the vascu-
lar cylinder showed significant differences between all
treatments (Table 3) decreasing from control to high
NaCl concentration.

On regard to the parenchyma, only the highest salt
level was significantly different to control. Low NaCl
concentration was not different to either of the other
treatments.

The vascular cylinder/cortical parenchyma ratio was
affected by salinity as both levels of NaCl were differ-
ent from no NaCl added (control plants). However, de-
spite of the decreasing tendency, no differences were
detected between salinity levels in absolute values (Table
3). In percentage values, there was a reduction in the
vascular cylinder/cortical parenchyma ratio of a 20%
and 28% for low NaCl concentration and high NaCl
concentration respectively, reflecting the greater reduc-
tion for vascular cylinder compared to cortical paren-
chyma in the same treatments, (Table 4). This would
indicate that the reduction in vascular cylinder and cor-
tical parenchyma cross-sectional area are equivalent and
proportional as salinity increases, at least at the sensi-
bility of the experimental system of this study.

Multivariated analysis

A high cofenetic correlation coefficient (0.99) in-
dicated a good projection quality of the observations
in the plane of the selected components. The Principal
Components explained about 89.4% of the total varia-
tion. Principal Component 1 explained a 74.6% of to-
tal variation and discriminated plants according to the
assayed salinity levels. As it can be seen on Figure 2,
control plants tended to cluster to the right, low NaCl
concentration ones to the middle and high NaCl con-
centration to the left of the graph.

Considering Principal Component 1, there was no
prevalence of any variable: all of them clustered around
an eigenvalue of 2.5. Shoot dry mass and total lenght

FIGURE 1. Effects of salinity on anatomical parameters.
Representative cross-sections of permanent microscopic
preparations of Chloris gayana roots. A: control roots; B:
root under 150 mM NaCl (low NaCl concentration); C:
root under 250 mM NaCl (high NaCl concentration). VC:
vascular cylinder; CP: cortical parenchyma. Bar repre-
sents 200 μm.
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were highly correlated. On the other hand, the same situ-
ation was observed between total area and cortical pa-
renchyma (Fig. 2). However, no correlation was detected
between the former two and these later ones.

Considering Principal Component 2, shoot dry mass
and total area are the variables which weighted the most,
however as this Principal Component did not discrimi-
nate observations between treatments, and the variabil-
ity explained is just about 16%, it was not considered
for the analysis.

TABLE  4.

Changes induced by salinity in anatomical parameters values. Results are expressed as percentages of control
plants. Different letters show significant differences (P<0.05; n=9-12).

Treatment Total root Vascular Cortical Vascular cylinder/cortical
area cylinder parenchyma parenchyma

Low NaCl -10.17 a -20.00 a -7.14 a -20.00 a
concentration

High NaCl -22.03 b -40.00 b -19.05 b -28.00 a
concentration

FIGURE 2. Principal Components (PC1 and PC2), Biplot graph (variables and observations) and Minimum
Spanning Tree of the parameters (broken line between circles). Green circles: no NaCl added plants, yel-
low: low NaCl concentration plants, red: high NaCl concentration plants. SDM: shot dry mass, TL: total root
length, RDM: root dry mass, VC: vascular cilynder area of cross-sectional root, CP: cortical parenchyma
area of cross-sectional root, TA: total area of cross-sectional root.

Discussion

According to their susceptibility to soil salt con-
centration, plants can be classified as halophytes or
glycophytes (Hester et al., 2001). The former are ca-
pable of absorbing and accumulating high salt levels in
tissues through ion inclusion in vacuoles, synthesis of
osmotic compounds (Gorham et al., 1985) which pro-
tect against dehydration (Shinozaki and Yamaguchi-
Shinozaki, 1999) and the existence of excretory glands
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located on the leaf surface (Luna et al., 2002; Kobayashi
et. al., 2007). On the contrary, glycophytes can not avoid
ion entrance to tissues and experience the adverse ef-
fects of poisonous ions accumulation (Greenway and
Munns, 1980). Only a few can avoid ion intake into tis-
sues by osmotic adjustment, but in both kind of plants,
the highest level of salinity tolerated is very low (Yeo,
1983). A gradient of salinity tolerance exists between
both plant categories and the morpho-physiologic re-
sponse depends on the particular species (Alshmmary
et al., 2004).

As it has been seen in this work C. gayana biomass
accumulation was significantly affected by salinity. Al-
though growth continues even at high salt concentra-
tions, shoot dry mass was significantly reduced (Table
1). Same response was observed by Muscolo et al.
(2003) in kikuyu grass (Pennisetum clandestinum
Hochst).

In coincidence with other studies in which root bio-
mass rarely overcome shoot biomass (Agren and Ingestad,
1987; Baxter et al., 1994; Canham et al., 1996; Bolinder
et al., 1997; Ryser et al., 1997; McConnaughay and
Coleman, 1998), shoot biomass always over passed root
biomass, in absolute figures (Table 1). The significantly
higher shoot/root ratio at the highest salt level indicated
that the accumulated dry mass in roots was more affected
that the one in the shoot (Table 2). This reduction in shoot/
root ratio would reflect that the mechanisms controlling
shoot growth are less affected by salinity than those which
control root growth. This pose an interesting trait to study
whether this factor is one of the determinants of the higher
sensibility to saline stress reported for C. gayana tetrap-
loid cultivars (Taleisnik et al., 1997; de Luca et al., 2001;
Luna et al., 2002).

On the contrary to tetraploid cultivars, diploid ones
possess a major tolerance conferred by resistance mecha-
nisms (Guggenheim and Waisel, 1977; Russell, 1976).

Ortega and Taleisnik (2003) observed a diminution
in elongation leaf rates of C. gayana, partially compen-
sated with a longer elongation time. Similar effects were
observed by Beemster y Masle (1996) in wheat grow-
ing in soils with high resistance to penetration. Total
lenght decreased sensibly as medium salinity increased
as seen before (Neumann, 1995). However, specific
lenght was not reduced. In percentage, there was a ten-
dency to a higher specific lenght in high NaCl concen-
tration plants. This would show certain adaptability in
this tetraploid cultivar (probably a longer elongation
time) which would not be enough to compensate the
negative effects of the saline environment. This adapta-
tion (higher specific lenght) was also described by Miller

(1986), who pointed out that in higher plants exist
mechanisms to cope with different stressful situations,
namely root system slendering and expansion, changes
in shoot/root ratio and an additional development of
adventitial roots. Similar observations were done by
Zwieniecki and Newton (1995), in plant roots growing
under mechanical stress.

As some morphological parameters were negatively
affected by salinity, some anatomical variables were di-
minished as well. Cortical parenchyma and vascular cyl-
inder were reduced (Table 3), an effect that was observed
in cotton (Reinhardt and Rost, 1995), perennial forages
(Sanderson et al., 1997) and Pappophorum philippianum
Parodi (Ramos et al., 2004). However, in our case the
reduction was greater in the transport tissue (Table 4)
supporting our hypothesis about the relevance of this ef-
fect on the ability of the plant to conduct water and nutri-
ents in high salinity. This effect was previously observed
in sorghum (Baum et al., 2000) and rhodesgrass (Ortega
et al., 2006) leaves. In the latter, the leaf protoxylem di-
ameter was a 65% lower in salinized plants being a prob-
able limiting factor to hydraulic conductivity and there-
fore to tissue expansion. Xylem elements diameter and
characteristics of the terminal cell walls are the main deter-
minants of xylem hydraulic resistance (Tyree and Sperry,
1989; Davis et al., 1999; Hacke and Sperry, 2001).
Peyrano et al. (1997) observed a reduction in root hy-
draulic conductivity in tomato under salinity. However,
Principal Component Analysis revealed that anatomical
and morphological parameters were not correlated (Fig.
2). In fact, on the contrary to our expectations, the sig-
nificant reduction in vascular cylinder did not have the
same effect either on shoot nor root development (shoot
dry mass and total root lenght). The positive correlation
between the latter variables was some higher than the
one between shoot dry mass and root dry mass (Fig. 2).
The apparent “privilege” of shoot dry mass over root dry
mass indicated by the higher shoot/root ratio would make
soil exploration difficult for salinized plants.

It must be noted that anatomical observations were
performed on the absorption zone which is just a small
part of the entire root system. The obtained results may
not reflect the salt-induced disturbances at organ level.

In conclusion, C. gayana Kunth tetraploid cultivar
Boma showed a salinity-induced reduction in almost all
morphological and anatomical variables recorded in this
study. The lower shoot/root ratio would indicate a higher
sensibility of root growth machinery against saline stress
conditions. The increase in specific root lenght would
not be enough to compensate the susceptibility of this
cultivar to salinity.
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In salinity, vascular cylinder/cortical parenchyma
ratio was reduced, evidencing a low tolerance of this
tetraploid cultivar to saline environments due to a lower
capacity to conduct water and nutrients (vascular tis-
sues were more affected than any other ones). Despite
of this, significant differences were not detected in ei-
ther assayed salinity levels on regard of this variable.
Therefore, the existence of tolerance mechanisms to high
salinity could not be ruled out.
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