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Abstract

Sex chromosomes play a central role in genetics of speciation and their turnover was suggested to promote divergence. In

vertebrates, sex chromosome–autosome fusions resulting in neo-sex chromosomes occur frequently in male heterogametic

taxa (XX/XY), but are rare in groups with female heterogamety (WZ/ZZ). We examined sex chromosomes of seven pests of

the diverse lepidopteran superfamily Gelechioidea and confirmed the presence of neo-sex chromosomes in their karyotypes.

Two synteny blocks, which correspond to autosomes 7 (LG7) and 27 (LG27) in the ancestral lepidopteran karyotype exem-

plified by the linkage map of Biston betularia (Geometridae), were identified as sex-linked in the tomato leafminer, Tuta

absoluta (Gelechiidae). Testing for sex-linkage performed in other species revealed that while LG7 fused to sex chromosomes

in a common ancestor of all Gelechioidea, the second fusion between the resulting neo-sex chromosome and the other

autosome is confined to the tribe Gnoreschemini (Gelechiinae). Our data accentuate an emerging pattern of high incidence

of neo-sex chromosomes in Lepidoptera, the largest clade with WZ/ZZ sex chromosome system, which suggest that the

paucity of neo-sex chromosomes is not an intrinsic feature of female heterogamety. Furthermore, LG7 contains one of the

major clusters of UDP-glucosyltransferases, which are involved in the detoxification of plant secondary metabolites. Sex

chromosome evolution in Gelechioidea thus supports an earlier hypothesis postulating that lepidopteran sex chromosome–

autosome fusions can be driven by selection for association of Z-linked preference or host-independent isolation genes with

larval performance and thus can contribute to ecological specialization and speciation of moths.
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Introduction

Sex chromosomes represent intriguing portions of the ge-

nome which play an important role in many evolutionary pro-

cesses including sexual and intragenomic conflict and

speciation (Masly and Presgraves 2007; Mank et al. 2014).

Indeed, the formation of postzygotic isolation can be charac-

terized by two empirical rules, both involving sex chromo-

somes, inferred from analyses of hybrid fitness. The first of

these known as the large-X effect refers to the disproportion-

ately large effect of the X chromosome compared with
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autosomes in introgression analyses of hybrid incompatibilities

(Masly and Presgraves 2007; Dufresnes et al. 2016). The sec-

ond, Haldane’s rule, which has proved to be one of the most

robust generalizations in evolutionary biology, states that

when in the F1 offspring of two different animal races one

sex is absent, rare, or sterile, that sex is the heterogametic sex

(Haldane 1922; Delph and Demuth 2016).

It was shown that larger and more heteromorphic sex

chromosomes were associated with faster evolution of post-

zygotic isolation (Turelli and Begun 1997; Lima 2014). Sex

chromosome size can increase via sex chromosome–auto-

some fusions, which result in so-called neo-sex chromosomes.

These have been suggested to promote divergence in fish

(Kitano et al. 2009; Kitano and Peichel 2012), mammals

(Graves 2016), and moths (Nguyen et al. 2013; Nguyen and

Carabajal Paladino 2016), although little is known about their

functional role in this process. Neo-sex chromosomes also

provide insight into the evolution of animal sex chromosomes

(Pala et al. 2012; Bachtrog 2013; Natri et al. 2013), which are

much older than the sex chromosome systems examined in

plants (Charlesworth 2015). To identify the evolutionary

forces driving sex chromosome–autosome fusions, the occur-

rence of derived multiple sex chromosome systems was re-

cently analyzed in vertebrates (Pokorn�a et al. 2014; Pennell

et al. 2015). These analyses yielded a striking pattern of a

higher incidence of fusions in male heterogametic ($XX,

#XY) than female heterogametic ($WZ, #ZZ) taxa.

Moreover, it was shown that Y–autosome fusions occur

most frequently. Theoretical models suggested that a combi-

nation of two or more evolutionary forces, such as under-

dominance of the fusions, male-biased mutation rates for

fusions, and female-biased reproductive sex ratio, is needed

to explain the asymmetry between the Y and W chromo-

somes (Pennell et al. 2015; Kirkpatrick 2017).

Moths and butterflies (Lepidoptera), together with their

sister order caddisflies (Trichoptera), constitute the most spe-

ciose lineage with female heterogamety. In their overview of

40 lepidopteran species with identified sex chromosomes,

Traut et al. (2007) listed 12 moths with multiple sex chromo-

somes. Since then, more neo-sex chromosome systems have

been reported in this order (Nguyen et al. 2013; �S�ıchov�a et al.

2013, 2015, 2016; Smith et al. 2016; Fraı̈sse et al. 2017;

Mongue et al. 2017; Traut et al. 2017; Picq et al. 2018).

Some of the derived sex chromosome systems correspond

to a conspicuously large sex chromosome pair (Nguyen et al.

2013; �S�ıchov�a et al. 2013; Mongue et al. 2017; Picq et al.

2018), which suggests that both W and Z sex chromosomes

fused with an autosome. Similar large chromosome pairs

were also observed in representatives of the families

Pyralidae, Oecophoridae, and Gelechiidae with reduced chro-

mosome numbers, but were considered autosomal fusion

products (Ennis 1976). Carabajal Paladino et al. (2016), how-

ever, showed that the large chromosome pair corresponds to

sex chromosomes in an invasive gelechiid pest, the tomato

leafminer Tuta absoluta (Gelechiidae).

To test for the presence of neo-sex chromosomes in their

genomes, we examined the karyotypes of several pests of the

diverse superfamily Gelechioidea, which contains �18,500

species (van Nieukerken et al. 2011) and comprises among

others the above-mentioned Oecophoridae and Gelechiidae

families. Our results confirmed a sex chromosome–autosome

fusion, which occurred in a common ancestor of all three

main lineages of Gelechioidea, namely the Gelechiid,

Scythridid, and Depressariid assemblages (Sohn et al. 2016).

A synteny block involved in the fusion was identified as an

autosome homoeologous to the chromosome 7 of the ances-

tral karyotype represented by the peppered moth Biston betu-

laria (Geometridae) (cf. Van’t Hof 2013). Furthermore, we

discovered another fusion between the neo-sex chromo-

somes and homoeologue of the B. betularia chromosome

27 within the tribe Gnorimoschemini (Gelechiinae). A poten-

tial role of the sex chromosome turnover in the divergence of

Gelechioidea is discussed.

Materials and Methods

Insects

Representatives of five families within Gelechioidea were ei-

ther obtained from laboratory stocks or collected from natural

populations. A laboratory stock of the potato tuber moth,

Phthorimaea operculella (Gelechiidae), was provided by the

Atomic Energy Commission of Syria (Damascus, Syria). Larvae

were reared on wax-coated potato slices as described in Saour

and Makee (1997). Cultures of the Angoumois grain moth,

Sitotroga cerealella (Gelechiidae), from the Instituto de

Microbiolog�ıa y Zoolog�ıa Agr�ıcola (IMYZA), Instituto

Nacional de Tecnolog�ıa Agropecuaria (INTA) (Buenos Aires,

Argentina), and the Institute for Biological Control JKI,

Federal Research Centre for Cultivated Plants (Darmstadt,

Germany) were kept on wheat grains (M�endez et al. 2016).

A laboratory colony of the tomato leafminer, T. absoluta

(Gelechiidae), from IMYZA, INTA was maintained on potted

tomato plants under the conditions detailed in Cagnotti et al.

(2012). Specimens of the coconut black-headed caterpillar,

Opisina arenosella (Xylorictidae), were obtained from the col-

ony maintained on coconut leaflets at the Crop Protection

Division of the Coconut Research Institute of Sri Lanka

(Lunuwila, Sri Lanka). The larch case-bearer Coleophora lari-

cella (Coleophoridae) and the brown house-moth

Hofmannophila pseudospretella (Oecophoridae) were col-

lected as larvae from wild populations in Lev�ın (Li�sov, Czech

Republic). The dingy flat-body moth Depressaria daucella

(Depressaridae) was collected as larvae and pupae in Slapy u

T�abora (T�abor, Czech Republic). The material obtained in the

field was immediately processed for its future analysis, and

barcoded using a fragment of the cytochrome c oxidase

Carabajal Paladino et al. GBE
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subunit I (COI) gene as described in Hebert et al. (2004). The

sequences obtained were checked in the BOLD animal iden-

tification database (Ratnasingham and Hebert 2007) to con-

firm the identity of the specimens (for accession numbers of

the sequences, see supplementary table S1, Supplementary

Material online).

Processing of the Insects

Spread chromosome preparations were made from wing

imaginal discs, testes, or ovaries of the last instar larvae of

all species using the method of Traut (1976) with slight mod-

ifications detailed in �S�ıchov�a et al. (2013). For D. daucella,

preparations were also made from ovaries of female pupae.

The preparations were dehydrated in an ethanol series (70%,

80%, and 100%, 30 s each) and stored at �20 �C.

Nucleic acids were isolated from larvae or pupae. Given the

size of the specimens, total RNA was recovered using the

NucleoSpin RNA II (Macherey-Nagel, Düren, Germany) kit,

RNA blue (Top-Bio, Prague, Czech Republic), or RNAzol

(Sigma–Aldrich, St. Louis, MO). The first-strand cDNA was

then synthesized by random or oligo-dT primed SuperScript

III Reverse Transcriptase (Invitrogen, Carlsbad, CA). Genomic

DNA (gDNA) was extracted either by the NucleoSpin Tissue kit

(Macherey-Nagel) or the MagAttract HMW DNA Kit (Qiagen,

Hilden, Germany) and if needed, amplified by illustra

GenomiPhi HY DNA Amplification Kit (GE Healthcare,

Milwaukee, WI).

Fluorescence In Situ Hybridization Experiments

To identify sex chromosomes genomic in situ hybridization

(GISH) was performed as described in Yoshido et al. (2005).

Amplified male gDNA was fragmented by heating to 99 �C

for 10 min in a TProfessional TRIO thermocycler (Biometra,

Göttingen, Germany), and used as a species-specific compet-

itor DNA (�S�ıchov�a et al. 2013). Female gDNA was labeled with

fluorescein-12-dUTP (Jena Bioscience, Jena, Germany) using

the nick translation protocol of Kato et al. (2006) with 3.5-

h incubation at 15 �C. To accurately determine chromosome

numbers, fluorescence in situ hybridization (FISH) with

(TTAGG)n telomeric probes (tel-FISH) was performed either

alone or in combination with GISH as described in Yoshido

et al. (2005) and �S�ıchov�a et al. (2015). Unlabeled (TTAGG)n
telomeric probes were prepared by nontemplate PCR accord-

ing to Sahara et al. (1999) and labeled with Cy3-dUTP (Jena

Bioscience) using the same nick translation protocol as above,

but with 1-h incubation at 15 �C. For each slide, the hybrid-

ization mixture contained unlabeled fragmented male gDNA

(3mg) and female fluorescein-labeled gDNA (500 ng), and/or

Cy3-labeled telomeric probe (200 ng), and sonicated salmon

sperm DNA (25mg). The preparations were counterstained

with 0.5 mg/ml DAPI (4’,6-diamidino-2-phenylindole;

Sigma–Aldrich) in antifade based on DABCO (1,4-

diazabicyclo[2.2.2]octane; Sigma–Aldrich) (for composition,

see Traut et al. 1999).

Preparations from FISH experiments were observed in a

Zeiss Axioplan 2 microscope (Carl Zeiss, Jena, Germany)

equipped with appropriate fluorescence filter sets. Black-

and-white images were captured with an Olympus CCD

monochrome camera XM10 equipped with cellSens 1.9 dig-

ital imaging software (Olympus Europa Holding, Hamburg,

Germany). The images were pseudocolored and superim-

posed with Adobe Photoshop CS6 (Adobe Systems, San

Jose, CA).

Screening for T. absoluta Sex-Linked Genes

The sex-linkage of selected genes was tested by means of

quantitative PCR (qPCR) using male and female gDNA as tem-

plate and autosomal gene as a reference (Nguyen et al. 2013;

Dal�ıkov�a et al. 2017). The selected genes were orthologous to

markers for all the chromosomes of the ancestral karyotype

represented by the B. betularia (Geometridae) linkage map

(Van’t Hof 2013) and the Melitaea cinxia (Nymphalidae) ge-

nome (Ahola et al. 2014) (supplementary table S2,

Supplementary Material online). Primers were designed using

available T. absoluta transcriptome sequences (Berger et al.

2016). The 1:1 (female:male) ratio of the used autosomal

reference genes, elongation factor 1 alpha (EF-1a) and acetyl-

cholinesterase 1 (Ace-1) (using Ace-1 as target and EF-1a as

reference), and the 1:2 ratio of the Z-linked control gene

kettin (ket) (using Ace-1 as reference) were verified before

analyzing other markers. The genes were tested in triplicates

of three independent samples of both male and female

gDNAs. Amplification efficiencies (E) of primer pairs were de-

termined from the slope of the standard curve generated by

plotting the threshold cycle (Ct) values against the log-

concentrations of serial dilutions of male and female

gDNAs. The female-to-male (F:M) ratio for each gene was

calculated for each female as [(1þ Etarget) ˆ

(Average_Cttarget_male � Cttarget_female)] / [(1þ Ereference) ˆ

(Average_Ctreference_male � Ctreference_female)], and then com-

pared with the expected values of 1 and 0.5 corresponding to

autosomal position and sex-linkage, respectively, by means of

one-sample t-test using R (R Core Team 2013) (supplementary

table S3, Supplementary Material online). Composition of the

reaction, cycling conditions, and sequences of forward and

reverse primers are detailed in supplementary tables S3 and

S4, Supplementary Material online.

Once these control genes were validated, the marker

genes (supplementary table S2, Supplementary Material on-

line) were analyzed using one biological replicate per sex with

three technical replicates per gDNA sample. In this case, the

F:M ratio was calculated using the delta delta Ct method as 2 ˆ

[(Cttarget_female � Ctreference_female) � (Cttarget_male �
Ctreference_male)], which is a simplified version of the aforemen-

tioned formula that assumes E¼ 1 for all genes. The obtained

Sex Chromosome Turnover in Moths of the Diverse Superfamily Gelechioidea GBE

Genome Biol. Evol. 11(4):1307–1319 doi:10.1093/gbe/evz075 Advance Access publication April 8, 2019 1309

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/article-abstract/11/4/1307/5432649 by guest on 05 July 2019

https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz075#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz075#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz075#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz075#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz075#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz075#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz075#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz075#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz075#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz075#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz075#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz075#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz075#supplementary-data


values were considered for analysis only if ket and/or the ref-

erence genes (EF-1a and Ace-1) compared with each other

provided the expected and previously corroborated 0.5 and 1

values, respectively. The experiments were carried out at least

three times, using both reference genes, EF-1a and Ace-1. All

reactions were performed in a final volume of 25ml using

SYBR Premix Ex Taq II (Perfect Real Time) (TaKaRa, Otsu,

Japan) and a final concentration of primers of 0.2 mM for

both the target and reference genes (except for pixie ATP-

binding cassette subfamily E member 1 [Pix] when a final con-

centration of 0.3 mM was used for the primers of the target

gene). The cycling conditions included an initial denaturation

at 95 �C for 3 min, then 45 cycles of 94 �C for 30 s, 60 �C for

30 s, 72 �C for 30 s, a final denaturation of 95 �C for 15 s, and

then an increase of temperature from 65 to 95 �C with incre-

ments of 0.5 �C for 5 s for the generation of melting curves.

The sequences of forward and reverse primers are detailed in

supplementary table S2, Supplementary Material online.

All qPCR experiments were performed in FrameStar 96

well plates (Institute of Applied Biotechnologies [IAB],

Prague, Czech Republic) covered by mltraAmp Plate Sealers

(Sorenson BioScience, Salt Lake City, UT) or qPCR adhesive foil

(IAB) using a C1000 Thermal cycler CFX96 Real-Time System

(Bio-Rad, Hercules, CA).

Cloning of Genes of Interest in Other Gelechioid Species

The genes of interest included the reference genes EF-1a and

Ace-1, together with the markers proven to be sex-linked in T.

absoluta, namely Pix and chitinase h (Chit) for the chromo-

some homoeologous to B. betularia linkage group (BbLG) 7,

and 90-kDa heat shock protein (Hsp90) and twitchin (Tw) for

the chromosome homoeologous to BbLG27 (see results for

details). Degenerate primers (supplementary table S5,

Supplementary Material online) were designed for regions

of coding sequences conserved between Lepidoptera and

other insect species, and used for RT-PCR amplification of

partial sequences with the first-strand cDNA as a template.

Amplified fragments were cloned using pGEM-T Easy Vector

System (Promega, Madison, WI) or CloneJET PCR cloning kit

(Thermo Fisher Scientific, Waltham, MA), and confirmed by

Sanger sequencing. The obtained sequences were deposited

in GenBank (for accession numbers, see supplementary table

S1, Supplementary Material online) and used for the design of

species-specific primers for qPCR experiments (supplementary

table S4, Supplementary Material online).

Quantitative Analysis of Gene Dose in the Other Gelechioid
Species

Quantitative PCR experiments using male and female gDNAs

as template were conducted in S. cerealella, P. operculella, C.

laricella, O. arenosella, H. pseudospretella, and D. daucella to

test for the sex-linkage of Pix, Chit, Hsp90, and Tw. Male and

female gene doses of the target genes were compared with

EF-1a and/or Ace-1. Three technical and three biological rep-

licates were used per experiment. Composition of the reac-

tions, cycling conditions, and sequences of forward and

reverse species-specific primers are detailed in supplementary

tables S3 and S4, Supplementary Material online. The F:M

ratio was calculated including the E value of the primers,

according to the formula mentioned earlier, and then com-

pared with the expected values of 1 and 0.5 corresponding to

autosomal position and sex-linkage, respectively, by means of

one-sample t-test using R.

Results

Barcoding of Collected Specimens

The field collected larvae used for chromosome preparations

were barcoded using a partial sequence of COI. The sequen-

ces confirmed the classification of H. pseudospretella

(Oecophoridae) and D. daucella (Depressaridae) with 100%

identity with their respective records in the BOLD database. In

the case of the Coleophoridae specimens, our search retrieved

matches with C. laricella and Coleophora sibiricella. Since the

geographical distribution of both species does not overlap in

the Czech Republic (La�stůvka and Li�ska 2011), we considered

the samples as C. laricella in our analysis. The consensus

sequences of the COI fragments for all species examined

were deposited in the GenBank database under accession

numbers detailed in supplementary table S1, Supplementary

Material online.

Karyotype Analyses

In comparison with the most common and ancestral lepidop-

teran chromosome number n¼ 31 (see Discussion for details),

all species of Gelechioidea studied herein showed a reduced

chromosome number ranging from n¼ 28 to n¼ 30. These

values are in concordance with those observed in other rep-

resentatives of the superfamily, which shows a modal chro-

mosome number of n¼ 29 in 15 out of 33 studied species

(supplementary table S6, Supplementary Material online).

FISH with the telomeric probe marking chromosome ends

was used to accurately count chromosome numbers in

some of the examined species (cf. �S�ıchov�a et al. 2015; not

shown).

In the Gelechiid assemblage, a complete karyotype analysis

including the identification of sex chromosome constitution

analysis has not been performed except for P. operculella

(Gelechiidae) (Bedo 1984; Makee and Tafesh 2006; supple-

mentary table S6, Supplementary Material online). In the pre-

sent study, we analyzed two representatives of the family

Gelechiidae, namely T. absoluta and S. cerealella.

In T. absoluta, Carabajal Paladino et al. (2016) determined

the haploid chromosome number of n¼ 29 and identified the

largest elements as sex chromosomes morphometrically. In

the present study, we identified the W chromosome by

Carabajal Paladino et al. GBE
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means of GISH, in which the labeled female gDNA-derived

probe was hybridized to chromosomes in excess of unlabeled

male competitor DNA. In mitotic complements, hybridization

signals clearly highlighted one chromosome of the large pair.

GISH thus confirmed that this is the W chromosome and im-

plied that the other large element represents the Z chromo-

some (fig. 1A). The probe produced signals scattered along

the W chromosome with notable exception of one subtelo-

meric and one interstitial gap in pachytene nuclei, and in

some experiments also highlighted the chromosome ends

(fig. 1B).

The haploid chromosome number of n¼ 30 was previously

described for males of S. cerealella (Lukhtanov and

Kuznetsova 1989). We confirmed the chromosome number

in mitotic complements, 2n ¼ 60, in males (not shown) as

well as in females (fig. 1C). Furthermore, we used GISH to

identify the female-specific W chromosome in mitotic

complements (fig. 1C). In most mitotic metaphases, the W

chromosome was not clearly discernible by size. In order to

improve the resolution, GISH experiments were performed on

female preparations of elongated pachytene bivalents. These

experiments provided a more informative labeling pattern of

the female genomic probe on the W chromosome.

Hybridization signals of the probe were scattered along the

entire W chromosome (fig. 1D). Interestingly, chromosome

preparations obtained from the Argentinian S. cerealella

females were contaminated with small DAPI-positive bodies,

most likely corresponding to some bacteria present in the

ovaries (fig. 1C).

Coleophora laricella (Coleophoridae) was the only repre-

sentative of the Scythridid assemblage examined in this study.

Mitotic metaphase complements consisted of n¼ 29 in both

males and females of this species. The karyotype of both sexes

comprised a conspicuously large chromosome pair (fig. 1E

FIG. 1.—Cytogenetic analysis of representatives of the Gelechiid and Scythridid assemblages. Chromosomes were counterstained with DAPI (blue);

female derived genomic probes (A–D) were labeled by Cy3 (red). (A and B) GISH in Tuta absoluta (Gelechiidae, Gelechiid assembl.): (A) female mitotic

metaphase consisting of 2n¼58 elements; note that the W chromosome is one of the two largest chromosomes in the complement; (B) female pachytene

nucleus; the probe labeled the W chromosome in the WZ bivalent and chromosome ends of most bivalents. (C and D) GISH in Sitotroga cerealella

(Gelechiidae, Gelechiid assembl.): (C) female mitotic metaphase consisting of 2n¼60 chromosomes; the W chromosome is not conspicuously larger

than the other chromosomes; note DAPI-stained small rod-shaped bodies, probably corresponding to bacteria; (D) late pachytene female nucleus; the

probe identified the W chromosome in the WZ bivalent. (E and F) Mitotic complements of Coleophora laricella (Coleophoridae, Scythridid assembl.) stained

with DAPI: (E) male mitotic metaphase consisting of 2n¼58 chromosomes; note a pair of large chromosomes (arrowheads); (F) female mitotic metaphase

comprising 2n¼58 chromosomes; note a pair of large chromosomes (arrowheads). Bar¼10mm.
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and F). Surprisingly, GISH provided weak or no hybridization

signals in mitotic nuclei (not shown). GISH carried out on less

condensed female pachytene chromosomes failed to identify

a W-chromosome as well (not shown). Telomeric FISH com-

bined with GISH was used as a control and yielded clear

telomeric but no GISH signals (not shown). So it seems that

our negative GISH results are not artifactual but rather point

to an exceptional molecular composition of the C. laricella W

chromosome. The W chromosome of C. laricella presumably

does not differ from the rest of the genome in that it com-

prises a diverse spectrum of ubiquitous repeats present at low

abundance.

Within the Depressariid assemblage, three species,

namely O. arenosella (Xyloryctidae), H. pseudospretella

(Oecophoridae), and D. daucella (Depressaridae), were in-

vestigated. In O. arenosella, the diploid chromosome com-

plement consisted of 2n ¼ 60 chromosomes in both males

(fig. 2A) and females (fig. 2B). No elements showed signif-

icant size differences in O. arenosella, with all chromosomes

decreasing gradually in size, which is typical for lepidopteran

karyotypes (fig. 2A and B). In addition, no mitotic chromo-

some was reliably discerned by GISH in this species as the

female-derived genomic probe labeled all chromosomes

more or less with the same intensity (not shown). In pachy-

tene, the probe labeled all bivalents, some along the entire

chromosome length and some preferentially in subterminal

regions. However, one bivalent was conspicuous by its het-

eromorphic staining with one of its threads intensively

stained while the other was not (fig. 2C). It is reasonable

to assume that this bivalent corresponds to the WZ sex chro-

mosome pair. The absence of hybridization signals on the Z

chromosome is likely a result of its hemizygosity in females

from which the GISH probe was derived. The sex chromo-

some bivalent identity was further supported by its meiotic

pairing pattern, as the signal-free chromosome typically

twisted several times around its labeled partner (fig. 2C).

This was due to the size difference between the sex chro-

mosomes with the W being much shorter than the Z chro-

mosome (cf. Marec and Traut 1994).

In H. pseudospretella, a reduced diploid chromosome num-

ber of 2n¼ 56 with two large chromosomes was observed in

mitotic metaphase nuclei of both sexes (fig. 2D and E). The

female-derived genomic probe clearly highlighted one of the

large chromosomes in female mitotic metaphase comple-

ments (fig. 2E). Thus, the largest chromosome pair most likely

comprises the sex chromosomes. However, in female pachy-

tene nuclei, a WZ bivalent could not be identified without the

use of GISH. This method revealed a bipartite organization of

the W chromosome, as it strongly labeled one terminal region

corresponding to roughly one-third of the sex chromosome

bivalent (fig. 2F).

The diploid chromosome number was 2n ¼ 60 in both

sexes of D. daucella. Neither male nor female mitotic comple-

ment comprised any notably larger chromosome (fig. 2G and

H). GISH identified one of the larger chromosomes as the W

chromosome in the D. daucella female mitotic metaphase

complements (fig. 2H). In female pachytene nuclei, the WZ

bivalent was easily discerned by the heterochromatic W

thread (not shown). GISH showedscattered hybridization sig-

nals colocalizing with DAPI positive blocks on the W chromo-

some (fig. 2I).

Identification of Sex-Linked Synteny Blocks in Gelechioidea

To identify sex-linked synteny blocks, the sex-linkage of T.

absoluta genes was tested by qPCR using male and female

gDNA as template. This method can detect hemizygosity of

Z-linked markers caused either by the absence or molecular

degradationof theirW-linkedgene copies (Nguyenet al. 2013;

Dal�ıkov�a et al. 2017). The variable female-to-male (F:M) ratio

between the selected reference genes EF-1a and Ace-1, using

Ace-1 as target and EF-1a as reference, was 1.000 6 0.102

(SE), which statistically differed from 0.5 (P< 0.05) but not

from 1 (P> 0.05) (supplementary table S3, Supplementary

Material online). The F:M ratio for ket, using Ace-1 as refer-

ence, gave a value of 0.498 6 0.090, which significantly dif-

fered from 1 (P< 0.05) but not from 0.5 (P> 0.05)

(supplementary table S3, Supplementary Material online).

These results indicated that females and males had the

same copy number of both Ace-1 and EF-1a genes, and

that females had half the number of copies of ket with

respect to males, which was expected as this gene repre-

sents a standard marker for the lepidopteran Z chromo-

some (cf. Nguyen et al. 2013; Van’t Hof 2013). The

analysis thus confirmed that the Ace-1 and EF-1a genes

are autosomal and can be used as reference genes for fur-

ther studies. It also proved ket as a good control gene for

the screening of sex-linked markers in T. absoluta.

The results of the screening of marker genes in T. absoluta

are presented in supplementary table S2, Supplementary

Material online and figure 3. Markers orthologous to genes

of B. betularia (Geometridae) LG1 (ket), LG7 (Pix) and LG27

(Hsp90) were sex-linked in this species, with F:M ratios rang-

ing from 0.491 (ket) to 0.590 (Hsp90), considering the values

obtained with both reference genes (EF-1a and Ace-1). The

rest of the markers ranged from 0.800 for ribosomal protein

L4 (marker for BbLG29) to 1.508 for 18–56 protein (marker

for BbLG20), and were considered autosomal. Deviation of

markers from the expected F:M value of 1 could be attributed

to differences in primer efficiency, which was not corrected in

the initial screening.

BbLG1 corresponds to the Z chromosomes in the ancestral

karyotype of n¼ 31, while the other two chromosomes

(BbLG7 and BbLG27) are autosomes. An extra marker gene

was hence considered for further analysis of these autosomes:

Chit for BbLG7 and Tw for BbLG27. Orthologs of all four

marker and both reference genes were then amplified and

cloned from P. operculella, S. cerealella, C. laricella,
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O. arenosella, H. pseudospretella, and D. daucella. The partial

sequences were deposited in NCBI (accession numbers in sup-

plementary table S1, Supplementary Material online) and

used for the design of species-specific primers for qPCR

experiments (supplementary table S4, Supplementary

Material online).

The results in T. absoluta and the other gelechioid species

are shown in supplementary table S3, Supplementary

Material online and summarized in figure 4. The F:M ratio

values for both chromosomal markers corresponding to

BbLG7 significantly differed from 1 (P< 0.05) but not from

0.5 (P> 0.05) in all species except for D. daucella, which

FIG. 2.—Cytogenetic analysis of representative of the Depressariid assemblage. Chromosomes were counterstained with DAPI (blue); female-derived

genomic probes (C, E, F, H, I) were labeled by Cy3 (red). (A–C) Opisina arenosella (Xyloryctidae): (A) male mitotic metaphase consisting of 2n¼60 elements;

(B) female mitotic metaphase consisting of 2n¼60 chromosomes; (C) GISH on female pachytene nucleus; note the hybridization signals on all bivalents

either along the entire chromosomes or with preference for subterminal regions; the WZ bivalent is identified by the signal intensity that differs between the

W and Z chromosome threads, as well as by the characteristic pairing of the longer Z chromosome twisted around the much shorter W chromosome. (D–F)

Hofmannophila pseudospretella (Oecophoridae): (D) male mitotic metaphase consisting of 2n¼56 chromosomes; note the two largest chromosomes

(arrowheads); (E and F) GISH on female chromosome preparations; (E) female mitotic metaphase comprising 2n¼56 chromosomes; note that GISH

identified the W chromosome as one of the two largest chromosomes; (F) female pachytene nucleus; note the size and bipartite organization of the

WZ bivalent with about one-third of the W chromosome thread strongly labeled with the probe. (G–I) Depressaria daucella (Depressariidae): (G) male mitotic

metaphase comprising 2n¼60 chromosomes; note that there is no conspicuously larger chromosome pair; (G–I) GISH on female chromosome preparations;

(H) female mitotic metaphase consisting of 2n¼60 elements with the W chromosome identified by the probe; (I) female pachytene nucleus; note the WZ

bivalent showing scattered hybridization signals of the probe on the W chromosome thread. Bar¼10mm.

Sex Chromosome Turnover in Moths of the Diverse Superfamily Gelechioidea GBE

Genome Biol. Evol. 11(4):1307–1319 doi:10.1093/gbe/evz075 Advance Access publication April 8, 2019 1313

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/article-abstract/11/4/1307/5432649 by guest on 05 July 2019

https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz075#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz075#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz075#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz075#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz075#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz075#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz075#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz075#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz075#supplementary-data


suggested that the markers were sex-linked. In D. daucella,

the F:M ratio of Chit was 0. 528 6 0.021, while for Pix it was

0. 861 6 0.074 (EF-1a as the reference gene), which is con-

sistent with sex-linkage of the former and autosomal inheri-

tance of the latter.

For the BbLG27 markers, the F:M ratio statistically differed

from 0.5 (P< 0.05) but not from 1 (P> 0.05) in S. cerealella,

C. laricella, O. arenosella, H. pseudospretella, and D. daucella,

indicating that the markers had an autosomal location. The

opposite situation was observed in T. absoluta, meaning that

both markers were sex-linked in this species. Interesting

results were obtained in P. operculella, where Tw was sex-

linked but Hsp90 was not (F:M ratios of 0. 578 6 0. 019 and

0.999 6 0.047, respectively; EF-1a as the reference gene).

These findings, together with the discrepancies found for

the markers for BbLG7 in D. daucella, were corroborated us-

ing the second reference gene (Ace-1) with a similar outcome

(supplementary table S3, Supplementary Material online).

Discussion

In this study, we analyzed the sex chromosomes of seven

species sampled across all three major lineages of the super-

family Gelechioidea (cf. Sohn et al. 2016; for phylogenetic

relationships, see fig. 4 and supplementary fig. S1,

Supplementary Material online). All species under study

have a derived chromosome number compared with the an-

cestral lepidopteran karyotype of n¼ 31. Our cytogenetic

analyses confirmed the expected presence of a large chromo-

some pair in the karyotypes of T. absoluta (Gelechiidae), C.

laricella (Coleophoridae), and H. pseudospretella

(Oecophoridae), species with karyotypes reduced to n¼ 29

in the first two and n¼ 28 in the latter (figs. 1A, B, E, F and

2D, E). The existence of a conspicuously large chromosome

pair was a characteristic feature of the Gelechioidea karyo-

types described to date (supplementary table S6,

Supplementary Material online) and Ennis (1976) regarded

them as autosomal fusion products. The GISH experiments

performed in this study, however, confirmed that the largest

chromosome pairs are indeed sex chromosomes in T. absoluta

and H. pseudospretella (figs. 1A and 2E). In C. laricella, the W

chromosome could not be identified (not shown). Thus, our

cytogenetic data suggest that the largest chromosome pair

corresponds to sex chromosomes only in some gelechioid

species. A similar size difference, that is, the largest chromo-

some pair being about 1.5–2 times larger than the second

largest one in a descending size series, was also observed in

other Coleophora species (Lukhtanov and Puplesiene 1999)

and in P. operculella (Gelechiidae) (Bedo 1984) suggesting

chromosome fusions. Interspecific differences were observed

in the relative size of the sex chromosomes, which were not so

conspicuous in species with n¼ 30, namely S. cerealella

(Gelechiidae), O. arenosella (Xylorictidae), and D. daucella

(Depressaridae) (figs. 1C, D and 2A–C, G–I). A larger chromo-

some pair, which was not detected in our study, was reported

for S. cerealella by Lukhtanov and Kuznetsova (1989) based

on preparations of metaphase I bivalents from males (supple-

mentary table S6, Supplementary Material online). This incon-

sistency could be caused by different methods, tissues used

for chromosome preparations, and the type of cell division.

To confirm the fusions and identify the synteny blocks in-

volved, we tested selected markers for all chromosomes of

the ancestral karyotype with n¼ 31 (Van’t Hof 2013; Ahola

et al. 2014) for their sex-linkage in T. absoluta by means of

FIG. 3.—Screening of marker genes in Tuta absoluta by means of qPCR. Blue dots represent the average female-to-male ratio values obtained for each

marker using EF-1a as the reference gene. Orange dots are the average values for the same variable obtained using Ace-1 as the reference gene. Whiskers

show the SE. Red dashed lines are used to show how each value correlates with 1 (autosomal) and 0.5 (sex-linked) expected female-to-male ratios. Note that

most of the data points fluctuate�1, except for those corresponding to BbLG1, BbLG7, and BbLG27 which are closer to 0.5 than to 1. BbLG, Biston betularia

linkage group.
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qPCR. The qPCR results confirmed the sex-linkage of markers

located on the Z chromosome in other Lepidoptera (Nguyen

et al. 2013; Van’t Hof 2013) and identified synteny blocks

homoeologous to B. betularia (Geometridae) linkage group

(BbLG) 7 and 27 as candidates for fusions (fig. 3). Testing of

two markers for each chromosome, namely Pix and Chit for

BbLG7, and Hsp90 and Tw for BbLG27, confirmed their sex-

linkage in T. absoluta and thus strongly supported fusions of

these synteny blocks with the ancestral Z chromosome (sup-

plementary table S3, Supplementary Material online and

fig. 4). qPCR analyses of Pix and Chit in the other species

showed a sex-linkage of both markers in all gelechioids but

D. daucella, in which only Chit and not Pix was sex-linked

(supplementary table S3, Supplementary Material online

and fig. 4). Assuming current phylogenetic hypotheses

(Heikkil€a et al. 2014; Sohn et al. 2016; supplementary fig.

S1, Supplementary Material online), the qPCR results suggest

that the fusion of the Z chromosome and chromosome

homoeologous to BbLG7 [hereinafter F(Z; 7)] occurred in a

common ancestor of the superfamily Gelechioidea. Thus, the

autosomal location of Pix in D. daucella most likely points to a

secondary translocation of this gene to an unidentified auto-

some (cf. Nguyen et al. 2013) or the W chromosome (Van’t

Hof 2013) or to incomplete degeneration of its W-linked

copy. The latter, however, seems unlikely in this case, as the

F(Z; 7) fusion occurred �100 Ma (Wahlberg et al. 2013). Sex-

linkage analyses of Hsp90 and Tw revealed that these markers

are autosomal in all species but two representatives of the

family Gelechiidae, T. absoluta and P. operculella, with Tw

sex-linked in the latter but not Hsp90 (supplementary table

S3, Supplementary Material online and fig. 4). This, together

with the autosomal localization of both markers in S. cereal-

ella, suggests that the neo-Z chromosome formed by the F(Z;

7) fusion further fused with BbLG27 [hereinafter F(neo-Z; 27)]

in a common ancestor of the tribe Gnorimoschemini.

However, we cannot exclude the possibility that the F(neo-

FIG. 4.—Phylogenetic relationship between the species analyzed in this study, including a graphic representation of the results obtained using qPCR for

the analysis of selected marker genes. Bar charts show the obtained female-to-male ratios (including SEs) of the copy number of the selected marker genes

Pix and Chit for BbLG7, and Hsp90 and Tw for BbLG27, using EF-1a as the reference gene. Values close to 0.5 indicate sex-linkage, while values close to 1

indicate autosomal location of the marker. F:M ratio, female-to-male ratio. Note that the decrease in chromosome numbers coincides with sex chromo-

some–autosome fusions confirmed by qPCR. Diamond, confirmed fusion; circle, translocation or incomplete degeneration of one marker; square, putative

fusion suggested by cytogenetic data.
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Z; 27) fusion occurred earlier in the subfamily Gelechiinae (cf.

Karsholt et al. 2013). Autosomal linkage of Hsp90 in P. oper-

culella can again be explained by its translocation (see above).

However, given the relative young age of the F(neo-Z; 27)

fusion, we cannot fully rule out the Hsp90 allele persisting

on the neo-W chromosome. Further research is needed to

trace the exact evolutionary origin and level of differentiation

of the F(neo-Z; 27) fusion. Moreover, the reduced chromo-

some number observed in H. pseudospretella (see above), the

large size of its neo-sex chromosome pair along with the par-

tial differentiation of its W chromosome suggest that another

fusion between the F(Z; 7) and an autosome occurred inde-

pendently in the family Oecophoridae.

Our results hence clearly show that at least two sex chro-

mosome–autosome fusions occurred in the evolution of the

diverse superfamily Gelechioidea. This finding further adds to

the growing list of derived sex chromosome systems recently

identified in various lepidopteran taxa, such as leafrollers of

the family Tortricidae (Nguyen et al. 2013; �S�ıchov�a et al.

2013; Picq et al. 2018), leaf miners of the family

Gracillaridae (Dal�ıkov�a et al. 2017; Fraı̈sse et al. 2017), and

Leptidea wood white (Pieridae) (�S�ıchov�a et al. 2015, 2016)

and Danaus (Nymphalidae) butterflies (Smith et al. 2016;

Mongue et al. 2017; Traut et al. 2017). The latter represent

yet another case of repeated sex chromosome–autosome

fusions, similar to those reported in this study. All these find-

ings illustrate that neo-sex chromosomes are not exceptional

in moths and butterflies. Rather, they appear to be relatively

common, not only in terms of number of species, as the

Tortricidae and Gelechioidea taxa alone comprise together

about 17% of the described lepidopteran biodiversity

(Beccaloni et al. 2018) but also in the number of independent

origins (Nguyen and Carabajal Paladino 2016; cf. Pokorn�a

et al. 2014). This suggests that the paucity of sex chromo-

some–autosome fusions is not an intrinsic feature of female

heterogamety as previously assumed (Pokorn�a et al. 2014;

Pennell et al. 2015).

Lepidoptera possess holokinetic chromosomes, which at-

tach to kinetochore microtubules along most of the chromo-

somal surface (Wolf 1994). This reduces the risk of formation

of dicentric and acentric chromosomes and hence it is

expected to facilitate chromosomal rearrangements

(Wrensch et al. 1994). Indeed, high variation in chromosome

numbers was observed in moths and butterflies (Blackmon

et al. 2017). However, this genome instability is confined

only to a few lepidopteran taxa (Robinson 1971; Talavera

et al. 2013). Comparative genomic studies have revealed

that lepidopteran karyotypes are very stable with the modal

chromosome number of n¼ 31 being the ancestral one.

Furthermore, it has been shown that chromosome fusions

are not random in this insect order since independent fusions

observed in distant species involve the same small and repeat-

rich chromosomes (Van’t Hof 2013; Ahola et al. 2014).

Reconstructions of karyotype evolution in several lepidopteran

clades with derived sex chromosome systems also show that

the first large-scale chromosome rearrangements which dif-

ferentiated the karyotypes of examined taxa from the ances-

tral n¼ 31 tend to be sex chromosome–autosome fusions

(Nilsson et al. 2008; Nguyen et al. 2013; �S�ıchov�a et al.

2013; Dal�ıkov�a et al. 2017; Mongue et al. 2017). Although

the reconstruction of karyotype evolution in a group so di-

verse as Gelechioidea is challenging due to the scarcity of

available data (supplementary table S6, Supplementary

Material online), the reduced chromosome number of

n¼ 30 in families Gelechiidae, Elachistidae, Xyloryctidae,

and Depressariidae suggests that the F(Z; 7) fusion occurred

early in the karyotype evolution of gelechioids.

This propensity of lepidopteran sex chromosomes for

fusions could shed light on the evolutionary forces driving

chromosomal change. The higher rate of sex chromosome–

autosome fusions in XX/XY than in WZ/ZZ systems observed

in vertebrates (Pokorn�a et al. 2014; Pennell et al. 2015) led to

the conclusion that fusions must be driven by two or more

evolutionary forces (Pennell et al. 2015; Kirkpatrick 2017). A

simpler explanation for the higher rate of Y-autosome fusions

in vertebrates, random genetic drift (Kirkpatrick 2017), was

dismissed due to the lack of multiple sex chromosomes in

female heterogametic groups (Pennell et al. 2015;

Kirkpatrick 2017). Genetic drift, however, can be invoked to

explain the high incidence of neo-sex chromosomes in

Lepidoptera. In such case, the same pattern observed in ver-

tebrates (a higher incidence of W–autosome than Z–auto-

some fusions) is expected for lepidopteran multiple sex

chromosome systems. However, the W–autosome and Z–au-

tosome fusions resulting in multiple sex chromosome consti-

tutions WZ1Z2 and W1W2Z, respectively, observed so far in

Lepidoptera are tied (Traut et al. 2007; �S�ıchov�a et al. 2015,

2016; Smith et al. 2016). Furthermore, many of the other

recently reported neo-sex chromosomes systems are not in-

formative as males and females exhibit the same chromo-

some number (Nguyen et al. 2013; Dal�ıkov�a et al. 2017;

Fraı̈sse et al. 2017; Mongue et al. 2017; this study).

Available data thus do not allow us to evaluate the role of

genetic drift in sex chromosome–autosome fusions in

Lepidoptera.

Chromosome rearrangements such as fusions or inversions

affect linkage relationships and thus can play an important

role in adaptation and speciation (Yeaman 2013;

Charlesworth 2015; Ortiz-Barrientos et al. 2016). In leafrollers

of the family Tortricidae, Nguyen et al. (2013) reported the

fusion of the Z chromosome with an autosome homoeolo-

gous to BbLG15. This chromosome is enriched in genes in-

volved in detoxification and regulated absorption of plant

secondary metabolites, namely esterases and ABC transport-

ers, which are crucial for the performance of lepidopteran

larvae on their host plants. The fusion thus linked these per-

formance genes together with sex-linked female preference

or host-independent isolation genes, which can facilitate
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adaptation and speciation in the presence of gene flow

(Matsubayashi et al. 2010). Furthermore, it was hypothesized

that the neo-Z-linked performance genes got amplified to

make up for their nonrecombining and thus gradually degen-

erating maternally inherited gametologues (Nguyen et al.

2013). Following functional divergence of the new perfor-

mance gene copies supposedly contributed to adaptation to

new hosts which could eventually result in the formation of

new species (cf. Li et al. 2003). Interestingly, BbLG7, which is

involved in the F(Z; 7) fusion shared by all gelechioids, com-

prises the largest cluster of UDP-glycosyltransferases (UGTs).

Enzymes encoded by the UGT gene family catalyze the gly-

cosylation of small lipophilic compounds, turning them into

water-soluble and thus more easily excreted products (Ahn

et al. 2012). Although UGTs have been considerably under-

studied compared with other detoxification families, evidence

supporting their role in detoxification of plant secondary

metabolites and insecticides in Lepidoptera has been growing

(Ahn et al. 2011; Wouters et al. 2014; Krempl et al. 2016; Li

et al. 2017). Therefore, we hypothesize that the sex chromo-

some–autosome fusions may indeed contribute to ecological

specialization and speciation in moths.

Sex chromosome turnover has been shown to predate, so

far, two large lepidopteran radiations, Tortricidae and

Gelechioidea (Nguyen et al. 2013; this study). The F(Z; 7) fu-

sion observed in gelechioids fits well the scenario drawn by

Nguyen et al. (2013) and the enrichment in performance

genes of the autosomes involved in fusions in both lineages

points to more general aspects of the lepidopteran karyotype

evolution. The superfamily Gelechioidea provides an opportu-

nity to test the hypothesis on the role of neo-sex chromo-

somes in the speciation of Lepidoptera, as sister lineages

with and without neo-sex chromosomes of different age

can be examined in parallel, along with their diversification

rates.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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