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Soil organic carbon changes 
simulated with the AMG model 
in a high-organic-matter Mollisol
  
Simulación de cambios en el carbono orgánico del suelo con el modelo AMG en un Mollisol con 
elevado contenido de materia orgánica
Simulação de alterações no carbono orgânico do solo com o modelo AMG num Molisolo com 
elevado teor de matéria orgânica

ABSTRACT

Soil organic carbon (SOC) management requires a precise knowledge of how it is affected by soil 
use. Simulation models could help for this purpose. The AMG model is simple, requires information 
that is easily available, and uses few parameters. This model has neither been calibrated/adjusted nor 
validated for loamy soils with high SOC concentrations. We hypothesized that AMG would satisfac-
torily simulate SOC stock changes in soils with these characteristics. The aims of this work were: 1) to 
adjust and validate AMG for different tillage systems, nitrogen (N) fertilization levels and crop types 
for loamy-high-SOC Mollisols, and 2) to simulate future SOC changes under different production 
scenarios. We used SOC stocks (0-20 cm depth) from three long-term experiments (1976-2012) (ti-
llage systems, crop rotations, and N fertilization) in the Southeastern Buenos Aires Province, Argen-
tina (37º 45' S, 58º 18' W) on a complex of Mollisols. Data from two of those experiments was split 
into two groups to adjust unknown model parameters and for cross validation. Data from the third 
experiment was used for independent validation. The model was used to simulate SOC stock variation 
(30 yr) under different combinations of initial SOC stocks (SOCi, three levels) and crop rotations (six 
rotations regarding continuous cropping and crop-pasture rotations). Model performance was eva-
luated through statistical indicators based on observed-simulated value differences, and simple linear 
regression of observed on simulated values. Cross validation yielded promising indicators with the 
mean observed-simulated value differences close to 0 (P > 0.05). Root mean square error (RMSE) and 
RMSE as percentage of the mean of observed values (RMSEp) were 6.0 Mg C ha-1 and 7.5%, res-
pectively, which are acceptable. Simple linear regression of observed and simulated values was highly 
significant (P < 0.01) with intercept and slope not different from zero and one (P > 0.05), respectively, 
although R2 was low. Indicators of model performance by groups of treatments were, in general, 
acceptable and did not show clear trends associated with any management type. However, model 
performance was poorer under no tillage (NT) and N fertilization probably because of little observed 
data available for that treatment factor combination. Validation with independent data confirmed that 
AMG simulated SOC change satisfactorily. Future scenario simulations showed that when the SOCi 
stock was high (close to SOC saturation), even rotations with high intensification and carbon input 
produced a SOC stock decrease. Conversely, when the SOCi stock was low (35% loss of SOC with 
respect to saturation) all scenarios led to a SOC stock increase. However, AMG failed to acceptably 
simulate the expected effect of pastures in the rotation. The AMG model satisfactorily simulated SOC 
stock changes due to different management techniques of soils with a loamy surface texture and high 
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original SOC stock. Therefore, the model could be used as a tool to help management planning with 
an admissible simulation error (RMSEp ~6%).

RESUMEN
 
El manejo del carbono orgánico del suelo (SOC) requiere del conocimiento de cómo es afectado por su uso. Modelos 
de simulación podrían ayudar en esta tarea. El modelo AMG es simple, requiere información fácilmente disponible 
y se basa en pocos parámetros. Este modelo no ha sido calibrado ni validado para suelos de textura franca con 
elevado contenido de SOC. Nosotros hipotetizamos que AMG simulará satisfactoriamente los cambios en el SOC 
debidos al uso agrícola de suelos de tales características. Los objetivos fueron: 1) ajustar y validar AMG en diferentes 
condiciones de sistema de labranza, fertilización con nitrógeno (N) y tipos de cultivos para Mollisoles de textura 
superficial franca y elevado contenido de SOC, y 2) simular cambios futuros de SOC bajo diferentes escenarios de 
producción. Utilizamos los contenidos de SOC (0-20 cm) de tres experimentos de larga duración (1976-2012) 
de sistemas de labranza, rotaciones de cultivos y fertilización con N en el sudeste de la provincia de Buenos Aires, 
Argentina (37º 45' S, 58º 18' W) sobre un complejo de Mollisoles. Los datos de dos ellos fueron divididos en dos 
grupos al azar para ajustar algunos de los parámetros del modelo y para validación cruzada, respectivamente. Los 
datos del tercer experimento fueron utilizados para una validación independiente. El modelo fue usado para simular 
la variación del SOC (30 años) bajo diferentes combinaciones de contenido inicial de SOC (SOCi, tres niveles) y 
rotaciones de cultivos (seis rotaciones considerando agricultura continua y rotaciones cultivo-pastura). El desempeño 
del modelo fue evaluado a través de indicadores estadísticos basados en la diferencia observados-simulados y 
regresiones lineales simples de observados vs. simulados. La validación cruzada dio resultados prometedores con una 
media de observados-simulados cercana a 0 (P > 0,05). La raíz del cuadrado medio del error (RMSE) y el RMSE 
como porcentaje de la media de los valores observados (RMSEp) fueron 6,0 Mg C ha-1 y 7,5%, respectivamente, 
que son valores aceptables. La regresión lineal simple de observados vs. simulados fue altamente significativa (P 
< 0,01) con ordenada al origen igual a 0 y pendiente igual a 1 (P > 0,05), aunque el R2 fue bajo. Los indicadores 
por grupos de tratamientos fueron, en general, aceptables y no mostraron tendencias asociadas a un manejo en 
particular. Sin embargo, el desempeño del modelo fue más pobre bajo siembra directa (NT) con fertilización con 
N, posiblemente debido a la poca información disponible para esa combinación de tratamientos. La validación con 
datos independientes confirmó el buen desempeño de AMG. Las simulaciones a futuro mostraron que cuando SOCi 
era alto (cercano a la saturación de SOC), aún las rotaciones con alta intensificación y aporte de carbono provocaron 
disminución del contenido de SOC. Por el contrario, cuando SOCi fue bajo (35% de pérdida del SOC a saturación) 
todos los escenarios condujeron a aumentar el SOC. Sin embargo, AMG no fue capaz de simular aceptablemente el 
efecto esperado de las pasturas en la rotación. El modelo AMG simuló satisfactoriamente los cambios en contenido 
de SOC debido a diferentes manejos del suelo con textura franca y elevado contenido original de SOC. Por lo tanto, 
el modelo podría ser utilizado como herramienta de apoyo a la planificación del manejo con un error admisible 
(RMSEp ~6%).

RESUMO
 
A gestão do carbono orgânico do solo (SOC) necessita de um conhecimento rigoroso de como o uso do solo a pode 
afetar . Com esse objetivo podem ser utilizados  modelos de simulação. O modelo AMG é simples, requer informação 
facilmente disponível e baseia-se num reduzido número de parâmetros. Esse modelo não tem contudo  sido calibrado/
ajustado nem validado para solos argilosos com elevado nível de SOC. Neste estudo partiu-se da hipótese que o 
modelo AMG poderá simular satisfatoriamente as variações de SOC devidas ao uso agrícola em solos com essas 
características. Os objetivos foram: 1) ajustar e validar o AMG sob diferentes condições de sistema de preparação 
do solo, fertilização com azoto (N) e tipos de cultura para Molisolos com textura argilosa e elevado teor de SOC, e 
2) simular variações futuras de SOC sob diferentes cenários de produção. Para as simulações utilizaram-se os teores 
de SOC (0-20 cm) de três ensaios de longa duração (1976-2012) com sistemas de preparação do solo, rotações de 
culturas e fertilização com N no sueste da provincia de Buenos Aires, Argentina (37º 45' S, 58º 18' W) sobre um 
complexo de Molisolos. Os dados provenientes de dois de esses ensaios foram divididos em dois grupos ao acaso para 
ajustar parâmetros do modelo e para a validação cruzada, respetivamente. Os dados do terceiro ensaio forma usados 
para validar o modelo. O modelo foi usado para simular a variação de SOC (30 anos) sob diferentes combinações 
de teor inicial de SOC (SOCi, três níveis) e rotações de culturas (seis rotações com agricultura continua e rotações 
cultura-pastagem). O desempenho do modelo foi avaliado mediante índices estatísticos baseados na diferença 
observados-simulados, e regressões lineares simples entre observados e simulados. A validação cruzada apresentou 
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resultados promissores com uma média da diferença entre observados e simulados próxima de 0 (P > 0,05). A 
raiz do quadrado médio do erro (RMSE) e o RMSE expresso como percentagem da média dos valores observados 
(RMSEp) foram 6,0 Mg C ha-1 e 7,5%, respetivamente, os quais são valores considerados aceitáveis. A regressão 
linear simples entre observados e simulados foi altamente significativa (P < 0,01) com um coeficiente linear da reta 
de regressão próximo de 0 e com um coeficiente angular da reta próximo de 1 (P > 0,05), apesar do valor de R2 
ser baixo. Os índices por grupos de tratamentos foram, em geral, aceitáveis e não mostraram tendências associadas 
a uma gestão em particular. Contudo, o desempenho do modelo foi mais pobre em condições de fertilização com 
NT e N, possivelmente devido à pouca informação disponível para essa combinação de tratamentos. A validação 
com dados independentes confirmou que o AMG simulou a alteração do SOC de forma satisfatória. Os cenários 
futuros mostraram que quando o nível de SOCi foi elevado (próximo a saturação de SOC), mesmo as rotações com 
elevada intensificação e aportes de carbono provocaram diminuição do conteúdo de SOC. Pelo contrário, quando 
SOCi foi baixo (35% de perdas do SOC a saturação) todos os cenários aumentaram o nível de SOC. No entanto, o 
AMG não simulou aceitavelmente o efeito das pastagens na rotação. O modelo AMG simulou satisfatoriamente as 
variações de SOC devido a diferentes gestões do solo com textura argilosa e elevado teor inicial de SOC. Como tal, o 
modelo poderia ser usado como ferramenta de apoio no planeamento da gestão com um erro considerado admissível 
(RMSEp ~6%).

1. Introduction

Organic matter is a key soil component (soil organic matter, SOM) that controls its productivity, 
environmental quality and social sustainability. Moreover, SOM defines agroecosystem 
sustainability and regulates soil resiliency after disturbances by cropping. Soil organic 
matter is directly involved in the soil's physical, chemical, and biological properties and its 
resistance to degradation (Reicosky et al. 2011). Transformation of carbon (C) from plant 
and animal tissue to soil organic carbon (SOC) converts the soil into a sink of atmospheric 
carbon dioxide (CO2), contributing to its reduction (Stockmann et al. 2013). Therefore, SOM 
defines soil functioning in the agroecosystem and influences most of its ecosystem services 
(Powlson et al. 2011). Soil organic matter is a complex of organic substances, whose 
dynamics are regulated by carbonated inputs and transformation processes (Stevenson 
and Cole 1999), which in turn are regulated by environmental constraints and management 
practices (Reicosky et al. 2011).

A careful management of SOC to reduce its loss and/or promote its accumulation requires 
a precise knowledge of how management and crops affect SOC dynamics under different 
environments. However, owing to the complex interactions among factors that influence 
SOC dynamics, prediction of the SOC stock change due to cropping is difficult. Mathematical 
models have been used to try to describe, explain and/or reproduce natural events as simply 
as possible. Even though models cannot take into account all the factors that interact in 
natural systems, they have been useful for understanding many of the processes involved 
(Jørgensen and Bendoricchio 2001a). Hence, simulation models arise as an important tool 
to predict consequences of agronomic decisions on SOC dynamics and therefore on system 
sustainability (Quiroga and Studdert 2015). 

Simulation models are developed using empirical information generated in experiments 
(short- or long-term trials) carried out at specific sites, and then validated using different 
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information than that used for their development 
(Jørgensen and Bendoricchio 2001b). 
However, when a model is to be used in other 
environments, it is imperative to both validate 
and calibrate it (Smith et al. 1997) in order to 
adjust its parameters and reduce the uncertainty 
of the simulations (Gupta et al. 2006). 

Soil organic C simulation models used throughout 
the world differ in simplicity and precision (Smith 
et al. 1997). Model complexity is defined by 
the depiction detail of the SOC dynamics, 
the biological and physic-chemical processes 
taken into account, the number of parameters 
involved, the simulation time step considered, 
and the input information required. Complex and 
sophisticated simulation models may describe 
system processes with high precision. However, 
they generally demand much input information 
and use a high number of parameters and 
coefficients that must be calibrated/adjusted 
using empirical information not always available. 
Hence, the use of those models is restricted 
to trained users and require complicated 
calibration/adjustment. Using simulation models 
as tools to help management by farmers and/or 
consultants implies that they ought to be both 
simple and based on input information easily 
available (Studdert et al. 2011).

The AMG model (Andriulo et al. 1999) is 
simple, requires information easily available, 
and uses few parameters. It considers only 
three SOC compartments: the active fraction 
(that is affected by mineralization), the stable 
fraction (that is assumed to be not affected by 
mineralization or management), and C input 
through crop residues (that transforms into the 
active fraction when humified). Due to the few 
parameters it uses, calibration can be performed 
rapidly and easily if information is available. This 
confers a flexibility to the model that allows it 
to be used with acceptable confidence under 
different conditions. After calibration, AMG 
successfully simulated SOC stock changes 
under different environmental conditions (soil 
type, surface texture, initial SOM stock, mean 
annual rainfall and temperature, among others) 
(Andriulo et al. 1999; Piccolo et al. 2008; Saffih-
Hdadi and Mary 2008; Milesi-Delaye et al. 2013; 

Irízar et al. 2015). However, AMG has neither 
been calibrated/adjusted nor validated for soils 
with a loamy surface texture and high original 
SOM stock such as those of the Southeastern 
Buenos Aires Province, Argentina (SEBA). 

Given its simplicity, AMG could be used by 
farmers and/or consultants as a tool to help 
decide on management practices that lead to 
the preservation and/or increase of SOC stocks. 
Therefore, it is necessary to know whether 
AMG is able to simulate SOC stock changes 
under different managements for the SEBA. 
We hypothesized that AMG would satisfactorily 
simulate SOC stock changes in soils with loamy 
surface textures and a high original SOM stock. 
The aims of this work were: 1) to adjust the AMG 
model for different tillage systems, nitrogen 
(N) fertilization levels and types of crops using 
data generated in different long-term soil 
management experiments carried out at the 
SEBA; 2) to validate AMG for Mollisols of the 
SEBA; 3) to simulate future SOC changes in the 
long term at the SEBA under different production 
scenarios.

2. Materials and methods

2.1. Experimental site

Data were used from three long-term soil 
management experiments carried out in the 
experimental field of the Unidad Integrada 
Balcarce, Balcarce, Buenos Aires Province, 
Argentina (37º 45' S, 58º 18' W, 138 m over sea 
level) between 1976 and 2012. The experiments 
were set in a soil complex of Typic Argiudoll (Soil 
Survey Staff 2014) (Mar del Plata series (INTA 
1979)) and Petrocalcic Argiudoll (Soil Survey 
Staff 2014) (Balcarce series, with petrocalcic 
horizon below 0.7 m depth (INTA 1979)). Clay, 
silt, sand and SOM concentrations of the soil 
complex surface horizon (0-20 cm depth) are 
231, 340, 429, and 57.4 g kg-1, respectively, 
and the texture class is loam (INTA 1979). The 

[ SOIL ORGANIC CARBON CHANGES SIMULATED WITH THE AMG MODEL IN A HIGH-ORGANIC-MATTER MOLLISOL ]
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slope is less than 2% and therefore soil water 
erosion could be considered negligible. Climate 
is mesothermal sub-humid to humid (according 
to Thornthwaite) or temperate-humid without a 
dry season (according to Köppen). The median 
annual rainfall is 939 mm yr-1 and annual mean 
daily temperature is 13.9 °C (Agri-weather 
Station, Unidad Integrada Balcarce, located 
~1000 m away from the experiments). 

2.2. Experiment description

Information from three long term experiments 
was used: 

1) “Continuous Cropping”: carried out between 
1984 and 1995 with 16 crop sequences 
including wheat (Triticum aestivum L.), soybean 
(Glycine max (L) Merr.), maize (Zea mays L.), 
and sunflower (Helianthus annuus L.) under 
conventional tillage (CT, moldboard plow, disk 
harrow, and field cultivator) and with and without 
N (WN and WON, respectively). The experiment 
was laid out with a randomized complete block 
design with a split-plot treatment arrangement 
and four replications. This experiment is 
thoroughly described in Studdert and Echeverría 
(2000).

2) “Crop-pasture Rotations”: carried out between 
1976 and 2006 with different combinations of 
periods under cropping (wheat, soybean, maize, 
sunflower, potato (Solanum tuberosum L.), and 
oat (Avena sativa L.) and vetch (Vicia sativa L) 
or red clover (Trifolium pratense L.) as green 
manures) with and without N (WN and WON, 
respectively), and periods under grass-based 
pastures. Between 1976 and 1993 the tillage 
system was CT and between 1994 and 2006 
some treatments were under CT and some 
others under no-tillage (NT). The experiment 
was laid out with a randomized complete block 
design with a split-plot treatment arrangement 
and three replications. Additional information 
about this experiment between 1976 and 1993 
can be found in Studdert et al. (1997). The phase 
between 1994 and 2003 has been described 
in Eiza et al. (2005). Between 2004 and 2006 
treatments and tillage systems were the same 
as described by Eiza et al. (2005). 

3) “Tillage systems”: carried out between 1997 
and 2012. Crop sequence was maize-sunflower-
wheat under two tillage systems (CT and NT) 
and two N fertilization levels (WN and WON). 
The experiment was laid out with a randomized 
complete block design with a split-plot treatment 
arrangement and three replications. Additional 
details on these experiments can be seen in 
Diovisalvi et al. (2008).

Soil organic C concentration at 0-20 cm depth 
determined in the fall, was available for many of 
the years of each experiment: 1) “Continuous 
cropping”: most of the years for the treatments 
WON and only since 1990 for the treatments WN; 
2) “Crop-pasture Rotations”: between 1976 and 
1993, most of the years for the treatments WON 
and only since 1981 for the treatments with N, and 
between 1994 and 2006, all of the years under 
both fertilization treatments; 3)“Tillage System”: 
data available from both fertilization situations 
and from samples taken in 1998, 2000, 2003, 
2006, and 2012. Soil organic C concentration had 
been determined by wet combustion (oxidation 
with potassium dichromate and sulphuric acid) 
with maintenance of the reaction temperature 
(120 °C) for 90 min to assure complete oxidation 
(a variant of the Walkley-Black method, 
Schlichting et al. 1995). Concentration of SOC 
was converted to stock (Mg C ha-1) using bulk 
density measured or estimated as described by 
Studdert et al. (2011). Briefly, bulk density was 
measured in all experimental units of experiment 
3 (“Tillage Systems”) and between 1997 and 
2006, in all experimental units of experiment 2 
(“Crop-pasture Rotations”) through the method 
proposed by Doran and Mielke (1984). For the 
rest of the experimental units we used the mean 
measured bulk density (1.25 Mg m-3).

2.3. Model description

The AMG model (Andriulo et al. 1999) simulates 
SOC stock variation with time, using a year time 
step. The model considers that SOC can be split 
in three compartments (Figure 1).

[ MORENO R., STUDDERT G. A., MONTERUBBIANESI M. G.& IRIGOYEN A. I. ]
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Basic model equations are: where SOCt is total SOC at time t  
(Mg C ha-1); SOCi is SOC stock at the beginning 
of simulation (Mg ha-1) (Initial Soil Carbon in 
Figure 1); t is time (yr). In summary, the second 
term of equation (3) accounts for the decay of 
the active fraction of the old SOCa (i.e. that 
existing at the beginning of the simulation). On 
the other hand, the third term accounts for the 
incorporation of C to the active fraction due to 
humification of plan residues or new SOCa (i.e. 
the one that is incorporated from the beginning 
of the simulation until time t).

To calculate C input, wheat, soybean, sunflower 
and maize grain yields, potato tuber yield, 
and oat and vetch aboveground dry matter 
production, were used. The calculation of 
residue input mass by wheat, soybean, 
sunflower, maize, and potato, was done using 
the grain or tuber yield, and harvest indexes (HI) 
and the below- (root biomass + rhizodeposition)/
aboveground biomass (RB/TAB) relationship 
used by Studdert et al. (2011). For oat and vetch, 
RB/TAB was assumed the same as for wheat 
(Studdert et al. 2011). Pasture aboveground dry 
matter production was estimated as reported 
by Agnusdei et al. (2001) for similar pastures. 
Pasture RB/TAB was estimated according to 

 

Figure 1. Diagram of AMG model (adapted from Andriulo et al. 1999). k1: humification constant of fresh crop residues; k: annual 
mineralization coefficient of the active fraction of soil organic carbon.

(Eq.1) SOC = SOCs + SOCa

(Eq.2) δSOC⁄δt = m . k1 - k  SOCa

where SOC is total SOC stock (Mg C ha-1); 
SOCs is stable SOC stock (Mg C ha-1) (Stable 
Soil Carbon in Figure 1) which is considered 
biologically inert or with an extremely low 
decay (Mg C ha-1); SOCa is active SOC stock  
(Mg C ha-1) (Active Soil Carbon in Figure 1); 
δSOC/δt is the partial derivative of SOC respect 
to time (Mg C ha-1 yr-1); m is annual C input  
(Mg C ha-1 yr-1) and represents all residues 
(below- and aboveground) left by crops (Crop 
Residues in Figure 1); k1 is the humification 
coefficient (unitless); and k is the annual SOCa 
mineralization coefficient (yr-1).

When C input is constant, Eq. 1 and 2 can be 
integrated as follows:

(Eq.3) SOCt = SOCs + (SOCi - SOCs) e-kt + m k1⁄k (1- e-kt)

[ SOIL ORGANIC CARBON CHANGES SIMULATED WITH THE AMG MODEL IN A HIGH-ORGANIC-MATTER MOLLISOL ]
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Bélanger et al. (1992). Carbon content of plan 
tissues was assumed as 0.43 kg C kg-1 (Sánchez 
et al. 1996).

The value of k under CT (0.07 yr-1) was calculated 
according to Saffih-Hdadi and Mary (2008) using 
soil clay content and mean annual temperature 
(Agri-weather Station, Unidad Integrada 
Balcarce). We used the values of k1 under CT 
proposed by Saffih-Hdadi and Mary (2008) for 
wheat and maize residues (0.21) and by Milesi-
Delaye et al. (2013) for soybean residues (0.29). 
For potato (0.136), oat (0.21), oat+vetch (0.076), 
oat+red clover (0.076), and pastures (0.18) we 
used the values of k1 under CT proposed by 
Ancelin et al. (2007). No values of k1 were found 
in the literature for sunflower residues under CT 
and, therefore, it had to be adjusted.

Under NT values of both k and k1 are lower 
than under CT (Andriulo et al. 1999; Mary and 
Wylleman 2001; Milesi-Delaye et al. 2013). 
No information was available about k and k1 
decrease under NT nor about SOCs in soils of 
the SEBA, and they had to be adjusted. The 
values of k and k1 during the periods under 
pasture were assumed the same as under NT.

2.4. Adjustment 

To adjust the unknown parameters in the model 
(Equation 3), we used observed SOC stocks at 
0-20 m depth from “Continuous cropping” and 
“Crop-pasture Rotations” experiments. Data was 
split up in two groups: a) adjustment group, and 
b) validation group. The former was the largest 
with approximately 70% of all the data available 
(n = 1227 and n = 506 for adjustment and 
validation groups, respectively). The adjustment 
data group included data from three of the four 
blocks of the “Continuous Cropping” experiment 
(75% of the data) and the data from two of the 
three blocks of the “Crop-pasture Rotations” 
experiment (66% of the data). Data to include 
in the groups was randomly selected for each 
experiment, treatment and year. 

The adjustment of the unknown parameters was 
done by using the Solver complement, Excel 
Program (Microsoft 2013), with the criterion 

of minimizing root mean square error (RMSE,  
Mg C ha-1) over the execution of Equation 3, 
leaving the unknown parameters as adjusting 
variables one at a time. For SOCs stock 
adjustment, observed SOC stocks from crop 
sequences not including sunflower and under 
CT, were used. The starting point of the iterations 
was calculated from the average of the relations 
SOCs/SOCi reported by Andriulo et al. (1999) 
(0.66) and Saffih-Hdadi and Mary (2008) (0.65). 
Given the average of SOCi stock of “Continuous 
Cropping” (91.5 Mg C ha-1 in 1984, Studdert and 
Echeverría 2000) and “Crop-pasture Rotations” 
(94.3 Mg C ha-1 in 1976, Studdert et al. 1997) 
experiments was 92.9 Mg C ha-1, the SOCs 
stock value used to start the iteration was 60.8 
Mg C ha-1 (92.9 Mg C ha-1 * 0.655). For k1 of 
sunflower residues, observed SOC stocks from 
crop sequences including sunflower under CT 
and estimated SOCs stock, were used. To start 
iterations, we used k1 for soybean residues under 
CT (0.29, Milesi-Delaye et al. 2013). To adjust 
the changes in k and k1 under NT, observed 
SOC stocks from the situations under NT, 
and estimated k1 for sunflower residues under 
CT and SOCs stock, were used. The criteria 
followed for this adjustment was the proportion 
of reduction of k and k1. To start the iterations, 
we used reductions of k and k1 of 27 and 42%, 
respectively, as reported by Milesi-Delaye et 
al. (2013) for soils of the Northeastern Buenos 
Aires Province. 

2.5. Model performance evaluation

The evaluation of the adjustment was done 
through “cross validation” using the validation 
data group. A second evaluation was done 
using all the data from the “Tillage Systems” 
experiment. This data had not been used for 
the parameter adjustment and, therefore, this 
validation result was totally independent from 
the adjustment. 

Model performance evaluation was done 
through statistical indicators based on the 
difference between the observed and simulated 
SOC values. These statistical indicators were: 
mean of the differences between observed and 
simulated values (bias error, BE, Mg C ha-1), 
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mean of those differences relative to the observed 
values (bias relative error, BRE, %), root mean 
square variation (RMSV, Mg C ha-1) (Kobayashi 
and Salam 2000) and RMSE expressed as stock  
(Mg C ha-1) (Fox 1981) and as percentage 
respect to the mean of the observed SOC 
values (RMSEp, Smith et al. 1997). Root mean 
square variation represents error dispersion 
around its mean (BE) and RMSE represents 
error dispersion around zero. The comparison 
between RMSV and RMSE evaluates the 
magnitude of under- or overestimation of the 
model and the similarity between observed and 
simulated values. 

Equality of BE and BRE to 0 was evaluated 
through t tests with an amalgamated error 
assuming a linear model describing changes 
in those indicators and the coefficient of 
determination (CD) (Loague and Green 1991) 
was calculated. This CD is a generalization 
of the coefficient of determination of a linear 
regression model (R2) and may show values 
greater than 1. Values of CD close to 1 indicate 
that the variability of simulated values adequately 
describe the variability of the observed ones. 

For the complementary independent validation 
(i.e. with data from the “Tillage Systems” 
experiment) the RMSE at 95% probability 
(RMSE95%; Mg C ha-1) and the RMSE95% relative 
to the mean observed value (RMSEp95%; %) 
(Smith et al. 1997), were calculated. The 
comparison of RMSE and RMSEp with RMSE95% 

and RMSEp95%, respectively, shows whether 
simulated values are, on average, within the 95% 
confidence interval of observed SOC stocks. 

Simple regression analyses between observed 
and simulated SOC values (Piñeiro et al. 2008) 
were performed. The joint hypothesis of equality 
of intercept and slope of each simple linear 
regression to 0 and 1 respectively was evaluated 
through F tests. All statistical analyses were 
performed with the R statistical package (R Core 
Team 2015).

2.6. Simulation of future scenarios

Eighteen different scenarios were defined to 
perform 30-yr simulations. Three SOCi were 
considered: 1) high (94.0 Mg C ha-1): close 
to SOC stock of a pristine soil of the SEBA 
(Studdert et al. 1997; Studdert and Echeverría 
2000; Sainz-Rozas et al. 2011), 2) medium  
(77.6 Mg C ha-1): representing approximately 
50% of SOC stock loss surveyed by Sainz-Rozas 
et al. (2011) in the SEBA and close to SOC stock 
assumed by Domínguez and Studdert (2006) 
as the minimum for soil functions, and 3) low  
(61.1 Mg C ha-1): representing a 35% loss from 
pristine SOC stock (Sainz-Rozas et al. 2011). For 
each SOCi stock, six crop rotations with different 
indexes of sequence intensification (ISI, Caviglia 
and Andrade 2010) and/or different yield levels 
were regarded. All crops were assumed as 
cropped under NT. Table 1 shows crop rotations 
and some of their agronomic characteristics. 

Crop rotation
Yield level ISI CI

ID Rotation
1) Continuous Sb Usual 45.8 2.48

2) M-Sb-W Usual 44.5 4.79

3) M-Sb-W/Sb Usual 56.9 5.17

4) M-Sb-W/Sb (2) Improved 56.9 6.80

5) M-Sb-W-Pp3 Improved 70.8 7.18

6) M-Sb-W/Sb-M-S-W-Pp3 Improved 65.3 6.89

Table 1. Crop rotation scenarios for 30-yr simulations with AMG. ID: crop rotation identification number; 
ISI: index of sequence intensification (%) (proportion of time occupied by living crops on a monthly 
basis, Caviglia and Andrade 2010); CI: mean annual carbon input (Mg C ha-1 yr-1); Sb: soybean; M: 
maize; W: wheat; W/Sb: wheat and double-cropped soybean; Pp3: grass-based pasture for three 

years; Usual: yield level obtained by farmers with an average technology level; Improved: yield level 
obtained by farmers with high technology level
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Indexes of sequence intensification were 
expressed as the percentage of total time of 
simulation occupied by crops with living roots 
colonizing the depth of simulation (0-20 cm 
depth) (adapted from Novelli et al. 2011). 
Indexes of sequence intensification were 
calculated assuming that maize, soybean, 
wheat and wheat/double-cropped soybean had 
living roots occupying soil during 165, 165, 150, 
and 285 d, respectively. Usual yield (Table 1) 
was assumed as that obtained with average 
technology (neither completely balanced 
fertilization, nor completely effective pest, weed, 
and disease control): 9000, 2900, 6800, and  
1750 kg grain ha-1 for maize, soybean, wheat 
and double-cropped soybean, respectively 
(Andrade, pers. comm.). Improved yield  
(Table 1) was assumed as that obtained with 
high technology (balanced fertilization, effective 
pest, weed, and disease control, supplementary 
irrigation, adequate cultivar, seed rate, row 
spacing, and planting/seeding rate): 13000, 
3750, 8000, and 2200 kg grain ha-1 for maize, 
soybean, wheat and double-cropped soybean, 
respectively (Andrade, pers. comm.) and  
14000 kg dry matter ha-1 for pastures (Marino, 
pers. comm.). For the first year of pastures it 
was assumed that living roots occupied soil for 
300 d and for the second and third years, 360 
d. Likewise, it was assumed that pastures were 
neither grazed nor harvested for hay and/or silage 
and therefore that all aboveground dry matter 
produced was returned to the soil. Carbon input 
produced by crops and pastures was estimated 
as indicated before. Effects linked to expected 
global climate change (i.e. atmospheric CO2 
concentration and air temperature increases) 
were not taken into account for simulations.

The AMG model was run for each SOCi-crop 
rotation combination using parameters from 
the literature and those adjusted as described 
above. In order to estimate an annual rate of 
SOC stock variation, simple linear regressions 
of simulated SOC stock vs. year were performed 
(R Core Team 2015). For all simulations, SOC 
stock at equilibrium (SOCe) was calculated as 
follows:

where mm is mean annual C input (Mg C ha-1 yr-1); 
k1m is the mean humification coefficient (unitless); 
and km is the mean annual SOCa mineralization 
coefficient (yr-1).

3. Results and discussion

3.1. Adjustment and cross validation

The value of k1 under CT obtained for sunflower 
residues was 0.28. The adjusted value of SOCs 
was 60.4 Mg C ha-1. The k and k1 under NT 
represented 84% and 71% respectively, of those 
under CT. 

Cross validation yielded promising statistical 
indicators when all the data was taken into 
consideration. Bias error (0.17 Mg C ha-1) and 
BRE (-0.36%) were not significantly different 
from zero (P > 0.05) and RMSE, RMSV, and 
RMSEp were 6.0, 6.0 Mg C ha-1 and 7.5% 
respectively. These values are higher than those 
reported by Milesi-Delaye et al. (2013) and Irízar 
et al. (2015) for silty-loam soils, but within the 
range (6-10 Mg C ha-1 and 5-8 %) reported as 
acceptable (Smith et al. 1997). Simple linear 
regression between all observed and simulated 
values was highly significant (P < 0.01) and 
the joint hypothesis of intercept equal to 0 and 
slope equal to 1 could not be rejected (P = 0.72). 
Despite the R2 being relatively low (0.40), linear 
regression showed that simulated SOC stocks 
acceptably reflected the variation in observed 
SOC stocks. 

To evaluate model performance, data of the 
validation data group were re-grouped through 
the tillage system and N fertilization levels.  
Table 2 shows the validation statistical indicators 
after re-grouping.

(Eq.4) SOCe = SOCs + mm k1m ⁄ km 
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In general, statistical indicators of model 
performance were adequate. There were no 
trends of under- or overestimation associated 
with any of the tillage system-N fertilization 
combinations. Equality of BE and BRE to 0 
(only one case of each variable was significantly 
different (P < 0.05) from 0), and similarity 
between RMSE and RMSV as well as RMSEp 
values indicate good model performance (Smith 
et al. 1997). However, RMSE values (Table 2) 

were higher than those reported by Irízar et al. 
(2015) (below 2 Mg C ha-1), for silty-loam soils 
of the Northeastern Buenos Aires Province. 
Coefficients of determination (Loague and 
Green 1991) were low (0.3, Table 2) indicating 
that only 30% of the variation of simulated values 
was explained by the variation in observed ones. 
Simple linear regression analysis results are 
shown in Figure 2.

Tillage
system

Nitrogen  
fertilization

Number of
observations BE BRE RMSE RMSV RMSEp CD

CT
WON 248 -0.5 -1.2* 6.3 6.3 7.8 0.3

WN 144 0.5 0.02 6.3 6.3 7.8 0.3

NT
WON 62 1.5* 1.5 5.1 4.9 6.6 0.3

WN 52 0.8 0.8 4.3 4.2 5.6 0.3

* significantly different from zero (P < 0.05).

Table 2. Statistical indicators of AMG performance grouping data in the validation data group according 
to tillage system and nitrogen fertilization level. CT: conventional tillage; NT: no-tillage; WON: without 
nitrogen fertilizer; WN: with nitrogen fertilizer; BE: mean bias error (Mg C ha-1); BRE: mean bias relati-

ve error (%); RMSE: root mean square error (Mg C ha-1); RMSV: root mean square variation  
(Mg C ha-1); RMSEp: relative RMSE (%); CD: coefficient of determination
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Figure 2. Simple linear regressions between observed soil organic carbon stocks (Obs SOC) and simulated soil organic carbon 
stocks (Sim SOC) of the validation data group under two tillage systems (conventional tillage (a, b), and no-tillage (c, d)) and two 
nitrogen fertilization levels (without nitrogen (a, c) and with nitrogen (b, d)). I: intercept; S: slope. The dotted line represents the 
1:1 line.
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Only the regression for NT-WN treatments 
was not significant (P > 0.05) (Figure 2d). On 
the other hand, the regression of observed vs. 
simulated SOC stocks under NT-WON (Figure 
2c) was the only highly significant (P < 0.01) 
one for which the joint hypothesis of intercept 
equal to 0 and slope equal to 1, was rejected 
(P < 0.05). These results appear to indicate 
that model performance was not completely 
acceptable under NT, especially WN. It is worth 
recalling that situations under NT showed the 
least number of cases (Table 3). 

Model performance evaluation showed 
acceptable statistical indicators both for all 
the data, and when the data was grouped by 
tillage system and N fertilization level (Table 2). 
Root mean square errors were mostly around 
or below 6 Mg C ha-1 and, in general, RMSEp 
were not higher than 8%, considered acceptable 
by Smith et al. (1997). However, for silty-loam 
soils of the Northeastern Buenos Aires Province 
under different crop sequences and tillage 
systems, Irízar et al. (2015) reported RMSE 
below 2 Mg C ha-1 and RMSEp between 0.7 and 
4.1%, which were considerably lower than those 
obtained in our experiment (Table 2). Those 
authors and Milesi-Delaye et al. (2013) adjusted 
the value of SOCs for each treatment evaluated 
and this could have led to an improved model 
performance. Andriulo et al. (2012) indicated 
that AMG is very sensitive to SOCs. We used 
a unique SOCs stock since we understand that 
the most stable SOC fraction is not dependent 
on management (Six et al. 2002) unless it 
produced different soil erosion rates, which is 
not the case in our experiments. SOCs was not 
determined using the 13C/14C natural abundance 
method which is the most recommendable for 
determining SOCs (Andriulo et al. 2012), and 
this could have led to misleading simulations.

The statistical indicators show that the adjustment 
procedure of the unpublished parameters was, in 
general, adequate. Nevertheless, the observed 
vs. simulated linear regressions did not always 
show the same trend as the statistical indicators 
based on the difference in observed - simulated 
values. Linear regression with all data together 
was acceptable despite the low R2. However, 
when treatments were grouped by the tillage 
system and N fertilization level (Figure 2), 
regressions were not always good. 

The poorest regressions were under NT and 
especially for WN treatments, however, in our 
experiments (“Crop-pasture Rotations”), NT 
started after 18 yr of crop rotations under CT. 
Therefore, SOC stocks were low and with a 
relatively narrow range of variation (Figure 2c, 
d) especially in the treatments WN (Figure 2d). 
Errors in simulations could also have arisen from 
C input estimation (unique HI and RB/TAB for 
each crop, and using estimated pasture yields), 
the variability among replications of observed 
SOC values (Studdert et al. 1997; Studdert 
and Echeverría 2000), the narrowness of its 
range, the way some of the parameters were 
estimated (e.g. SOCs), among others. Validation 
with independent data would help to confirm 
the apparent good performance for high-SOM-
concentration Mollisols of the SEBA, 

3.2. Independent validation 

Statistical indicators obtained in this validation, 
both in general and for each individual treatment 
of the “Tillage Systems” experiment, are shown 
in Table 3. Although CD was low, results for 
all data were as good as those observed for 
cross validation. Both BE and BRE were low 
and not statistically different from 0. Root mean 
square errors and RMSEp were within the range 
considered acceptable by Smith et al. (1997). On 
the other hand, RMSE and RMSEp were lower 
than RMSE95% and RMSEp95%, respectively, 
indicating that simulated values were within the 
95% probability confidence interval. 

Statistical indicators for individual treatments 
were also acceptably good. All BE were below 5 
Mg C ha-1 although two of them were statistically 
different (P < 0.05) from 0. Likewise, two BRE 
were statistically different (P < 0.05) from 0 
and only one was slightly out of the ± 5% 
range (-5.68%, CT-WON, Table 3). Differences 
between RMSE and RMSV were relatively high 
in two cases (1.71 and 1.74 Mg C ha-1 for CT-
WON and NT-WN, respectively). Root mean 
square errors and RMSEp were within or close to 
the range considered acceptable by Smith et al. 
(1997). All RMSE and RMSEp were lower than 
RMSE95% and RMSEp95%, respectively, indicating 
that simulated values were acceptable. Only one 
CD was extremely low (CT-WN, Table 3), but two 
of them were close to 1 (CT-WON and NT-WN, 
Table 3) and the other (NT-WON, Table 3) was 
acceptable (0.59). 
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Linear regression analyses were significant 
in most cases (P < 0.05 for four of them and  
P = 0.07 for the fifth, Figure 3), even though R2 
values were low (ranging 0.22-0.35 for individual 
treatments and 0.28 for all data together (Figure 
3)). Intercept and slope of linear regression 
including all data (Figure 3a) and of two 

individual treatments (CT-WN (Figure 3c) and 
NT-WON (Figure 3d)) were jointly statistically 
equal (P > 0.05) to 0 and 1, respectively. All 
statistical indicators based on the differences 
observed - simulated values (Table 3) and 
of linear regressions observed vs simulated 
values (Figure 3) confirm the good performance 

Treat. Num.  
obs. BE BRE RMSE RMSV RMSEp RMSE95% RMSEp95% CD

GENERAL 60 0.56 0.36 4.53 4.50 5.83 4.79 6.17 0.18

CT-WON 15 -3.92* -5.68* 5.34 3.63 7.35 7.15 9.84 1.07

CT-WN 15 0.33 0.23 3.25 3.23 4.17 6.66 8.55 0.20

NT-WON 15 1.88 2.24 3.73 3.22 4.75 6.86 8.73 0.59

NT-WN 15 3.96* 4.67* 5.40 3.66 6.61 8.26 10.11 1.07

* significantly different from zero (P < 0.05).

Table 3. Statistical indicators of AMG performance in an independent validation with data from the “Ti-
llage Systems” experiment. Treat.: treatment; Num. obs: number of observations; BE: mean bias error 

(Mg C ha-1); BRE: mean bias relative error (%); RMSE: root mean square error (Mg C ha-1); RMSV: 
root mean square variation (Mg C ha-1); RMSEp: relative RMSE (%); RMSE95%: RMSE at 95% probabi-
lity (Mg C ha-1); RMSEp95%: relative RMSE at 95% probability (%); CD: coefficient of determination; CT: 

conventional tillage; NT: no-tillage; WON: without nitrogen fertilization; WN: with nitrogen fertilization
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Figure 3. Simple linear regressions between observed soil organic carbon stocks (Obs SOC) and simulated soil organic carbon 
stocks (Sim SOC) of the “Tillage Systems” experiment (overall (a)) under two tillage systems (conventional tillage (b, c), and no-
tillage (d, e)) and two nitrogen fertilization levels (without nitrogen (b, d) and with nitrogen (c, e)). I: intercept; S: slope. The dotted 
line represents the 1:1 line.
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of AMG for Mollisols of the SEBA with the 
adjusted parameters. Likewise, these results 
show no clear better or worse performance in 
relation to any N fertilization and tillage system 
combination. 

Figure 4 shows simulated and observed 
SOC stocks vs. year for the “Tillage Systems” 
experiment. In all cases, simulated SOC stocks 
were close to mean observed ones. Standard 
deviations of observed values were always 
higher than those of simulated ones and in most 
cases the means of simulated values were within 
the variability range of the observed ones (Figure 
4). Similar results were reported by Piccolo et al. 
(2008) for Oxisols of the Northeastern Argentina 
(Misiones Province) and Milesi-Delaye et al. 
(2013) for Mollisols of the Northeastern Buenos 
Aires Province.

In summary, even though some statistical results 
of cross validation were disappointing when 
grouped through management combinations 
(Table 2, Figure 2), independent validation 

(Table 3, Figures 3 and 4) confirmed the 
results of cross validation for all data together. 
Likewise, independent validation also showed 
no clear association of AMG performance 
with any management combination analyzed. 
Although for most cases of both cross (Table 
2, Figure 2) and independent (Table 3, Figure 
3) validations, CD and R2 were low, the rest of 
statistical indicators of both validations were 
acceptable. This encourages the use of AMG as 
a valuable tool to simulate SOC stock changes 
for different managements with a mean relative 
error (RMSEp) of about 6%. 

3.3. Simulation of future scenarios

Table 4 shows SOCe and SOC stock at the end 
of simulations of future scenarios, and the rate of 
variation obtained by simple linear regressions 
of simulated SOC vs. years. Comparing Tables 
1 and 4, results of these simulations agreed in 
general with some other authors who worked 
with soils of the SEBA (Domínguez and Studdert 
2006; Domínguez et al. 2009).
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Figure 4. Observed and simulated soil organic carbon stocks as a function of time under two tillage systems (conventional tillage 
(a, b) and no-tillage (c, d)) and two nitrogen fertilization levels (without nitrogen (a, c) and with nitrogen (b, d)) for the “Tillage 
Systems” experiment. Vertical bars in each symbol indicate standard deviation.
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Domínguez and Studdert (2006) reported that 
an average C input of 3.8 Mg C ha-1 yr-1 led to 
an equilibrium of approximately 77.4 Mg C ha-1 
(considered as the minimum value to grant an 
adequate soil functioning in the SEBA). Higher 
and lower C inputs would increase and decrease 
SOCe, respectively (Domínguez and Studdert 
2006). However, our simulations showed that 
higher C inputs would be needed to reach 
SOCe even lower than the equilibrium level 
indicated by Domínguez and Studdert (2006) 
(rotations 2 and 3, Tables 1 and 4). This agrees 
with Domínguez et al. (2009) who showed that 
regardless of tillage system (CT or NT), C inputs 
between 5.5-6.0 Mg C ha-1 maintained SOC at 
approximately 78.0 Mg C ha-1 at 0-20 cm depth. 
Our simulations yielded that C inputs between 
6.8 and 7.2 Mg C ha-1 (rotations 4-6, Table 1) 
would have led to SOCe between 78.3 and  
79.7 Mg C ha-1 (Table 4). 

When SOCi was high (SOCi1, Table 4), SOC 
stocks decreased in all rotations, even though 
the loss rate decreased with increasing C 
input. On the other hand, when SOCi was low 
(SOCi3, Table 4), SOC stocks increased in all 
simulations, with gain rates increasing with 
C input. However, when SOCi was medium 
(SOCi2, Table 4), mixed results were obtained: 
decreases in SOC stocks in rotations 1 and 2, 
and increases in rotations 3-6. In general, when 
expected SOCe was below SOCi, SOC losses 
would occur. Conversely, when expected SOCe 
was above SOCi, SOC increase would occur. 

This could be attributed to the degree of soil 
C storage capacity saturation (Six et al. 2002). 
High SOCi indicates C storage capacity is 
close to or at saturation and that SOCa is large. 
Estimated SOCs stock through the adjustment 
performed (60.4 Mg C ha-1) represents ~64 and 
~99% of high and low SOCi, respectively. When 
SOCi is low, only slight reductions of old SOCa 
(second term of Eq. 3) would occur. Therefore, 
even with low C input (rotation 1, Table 1), 
enough new SOCa (third term of Eq. 3) would be 
produced to overcome old SOCa decrease and 
lead to increase SOC stock. In contrast, when 
soil C storage capacity is close to saturation, 
a much higher C input would be needed to 
produce enough new SOCa to avoid SOC stock 
loss. Much higher C inputs would be needed to 
pursue higher SOCe. This could be achieved 
through even higher crop yields, increasing 
the frequency of high-residue-producing crops 
(e.g. maize), using organic manure, and/or 
intensifying crop sequence (i.e. increasing ISI: 
double cropping, using cover crops, including 
pastures in the rotation) (Caviglia and Andrade 
2010; Quiroga and Studdert 2015).

However, even though rotations 5 and 6 had 
24.4 and 14.8% higher ISI (5.6 and 1.3%), 
respectively, and greater C inputs than rotation 
4 (Table 1), the SOCe expected with them were 
lower (Table 4). Figure 6 shows the evolution of 
simulated SOC stock for those rotations with all 
three SOCi. For soils of the SEBA, Studdert et 
al. (1997) demonstrated that SOC stock could 

Crop rotation
SOCe

SOC30 Slope

ID Rotation SOCi1 SOCi2 SOCi3 SOCi1 SOCi2 SOCi3

1) Continuous Sb 68.6 72.5 70.0 67.4 -0.66 -0.23 0.19

2) M-Sb-W 73.3 76.7 74.1 71.6 -0.56 -0.13 0.29

3) M-Sb-W/Sb 75.1 80.9 78.3 75.8 -0.50 -0.08 0.35

4) M-Sb-W/Sb (2) 79.7 83.9 81.4 78.8 -0.40 0.02 0.45

5) M-Sb-W-Pp3 78.3 81.1 78.6 76.0 -0.42 0.01 0.43

6) M-Sb-W/Sb-M-S-W-Pp3 78.5 80.4 78.6 76.9 -0.44 -0.02 0.41

Table 4. Soil organic carbon stock at equilibrium (SOCe, Mg C ha-1) and at the end of simulations with 
AMG (SOC30, Mg C ha-1), and slope of simple linear regression (Mg C ha-1 yr-1). ID: crop rotation iden-
tification number; SOCi1: high initial soil organic carbon stock (94.0 Mg C ha-1); SOCi2: medium initial 

soil organic carbon stock (77.6 Mg C ha-1); SOCi3: low initial soil organic carbon stock (61.1 Mg C 
ha-1); Sb: soybean; M: maize; W: wheat; W/Sb: wheat and double-cropped soybean; (2): higher yields; 

Pp3: grass-based pasture for three years
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be recovered by introducing a 3-yr grass-based 
pasture after 7 yr of conventional cropping. This 
is attributed to the continuous growing of dense 
and voluminous root systems together with 
the continuous aboveground biomass growth 
during most of pasture life, the reduction of 
tillage frequency, and the increase of time of soil 
occupation by living vegetation (i.e. increased 

ISI). Therefore, not only the C input/budget 
ratio is improved, but also its allocation in soil 
is enhanced (Follett 2001; Guzmán and Al-Kaisi 
2010; Quiroga and Studdert 2015). This would 
occur particularly in the absence of grazing 
occurred (Franzluebbers 2010), as assumed in 
our simulations. 
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Figure 5. Simulated soil organic carbon with AMG as a function of year of simulation for two rotations (Rotations 5 (a) and 6 (b), 
Tables 1 and 4) and three initial soil organic carbon (SOCi) stocks: high (94.0 Mg C ha-1), medium (77.6 Mg C ha-1), and low 
(61.1 Mg C ha-1). SOCe: soil organic carbon at equilibrium (Table 4).

The AMG model failed to simulate the expected 
effect of pasture when SOCi was high because a 
SOCe closer to SOCi could have been expected, 
especially for rotation 5 (Table 4). The simulation 
time step of AMG (one year) considers only total 
C input, but it does not reproduce how this input 
is distributed throughout the year. On the other 
hand, C provided from roots is responsible for 
much more SOC than C from aboveground 
residues (Kong and Six 2010), and the growth, 
distribution and residence time of pasture root 
systems are quite different from those of crops. In 

addition, C humification under pastures is likely 
to be higher than under crops. However, k1 used 
for all AMG runs was 0.18 (Ancelin et al. 2007) 
which is lower than k1 for soybean (0.29, Milesi-
Delaye et al. 2013), wheat and maize (0.21, 
Saffih-Hdadi and Mary 2008), and sunflower 
(0.28). Probably, the RB/TAB relation assumed 
for pastures according to the literature (Bélanger 
et al. 1992) is somewhat inappropriate for the 
pastures used in this work since it was lower 
than that for grain crops with dense root systems 
(0.34 (pastures) vs. 0.43 (oats and wheat)).
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4. Conclusions

With the information available, unknown 
parameters in the AMG model for loam-high-SOM 
soils could be easy and satisfactorily adjusted. 
Validation procedures performed (both cross and 
independent) showed acceptable performance 
of AMG with an admissible simulation error 
(RMSEp ~6%). As demonstrated for some 
other soils, AMG satisfactorily simulated SOC 
stock changes under different managements. 
Therefore, AMG appears to be an adequate 
tool to help management decisions also for 
loamy, high-SOM soils to pursue sustainable 
management. Its simplicity, the small amount 
of input information needed, and the fact that 
it can be run with simple computational tools 
(i.e. common spreadsheets), makes AMG very 
useful and feasible for use by producers and/or 
consultants without a special training.

However, results of validations and future 
scenarios simulations results suggest that further 
work needs to be done to confirm or adjust/
re-adjust some of the parameters in order to 
improve model performance. Stable SOC, k and 
k1 without distinguishing different N fertilization 
situations, and k1 and RB/TAB relation for grass-
based pastures, require attention to reduce 
simulation error.
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