
SOIL, 4, 173–193, 2018
https://doi.org/10.5194/soil-4-173-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

SOIL

No silver bullet for digital soil mapping: country-specific
soil organic carbon estimates across Latin America

Mario Guevara1, Guillermo Federico Olmedo2,3, Emma Stell1, Yusuf Yigini3, Yameli Aguilar Duarte4,
Carlos Arellano Hernández5, Gloria E. Arévalo6, Carlos Eduardo Arroyo-Cruz7, Adriana Bolivar8,

Sally Bunning9, Nelson Bustamante Cañas10, Carlos Omar Cruz-Gaistardo5, Fabian Davila11,
Martin Dell Acqua11, Arnulfo Encina12, Hernán Figueredo Tacona13, Fernando Fontes11,

José Antonio Hernández Herrera14, Alejandro Roberto Ibelles Navarro5, Veronica Loayza15,
Alexandra M. Manueles6, Fernando Mendoza Jara16, Carolina Olivera17, Rodrigo Osorio Hermosilla10,

Gonzalo Pereira11, Pablo Prieto11, Iván Alexis Ramos18, Juan Carlos Rey Brina19, Rafael Rivera20,
Javier Rodríguez-Rodríguez7, Ronald Roopnarine21,22, Albán Rosales Ibarra23,

Kenset Amaury Rosales Riveiro24, Guillermo Andrés Schulz25, Adrian Spence26, Gustavo M. Vasques27,
Ronald R. Vargas3, and Rodrigo Vargas1

1University of Delaware, Department of Plant and Soil Sciences, Newark, DE, USA
2INTA EEA Mendoza, San Martín 3853, Luján de Cuyo, Mendoza, Argentina

3FAO, Vialle de Terme di Caracalla, Rome, Italy
4Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Mérida, Mexico

5Instituto Nacional de Estadísitica y Geografía, Aguascalientes, Mexico
6Zamorano University of Honduras and Asociación Hondureña de la Ciencia del Suelo, Tegucigalpa, Honduras

7National Commission for the Knowledge and Use of Biodiversity, Mexico City, Mexico
8Subdirección Agrología, Instituto Geográfico Agustín Codazzi, Bogotá, Colombia

9Oficina Regional de la FAO para América Latina y el Caribe, Santiago de Chile, Chile
10Servicio Agrícola y Ganadero, Santiago de Chile, Chile

11Direccion General de Recursos Naturales, Ministerio de Ganaderia,
Agricultura y Pesca, Montevideo, Uruguay

12Facultad de Ciencias Agrarias de la Universidad Nacional de Asunción, Asunción, Paraguay
13Land Viceministry, Ministry of Rural Development and Land, La Paz, Bolivia

14Universidad Autónoma Agraria Antonio Narro Unidad Laguna, Torreón, Mexico
15Ministerio de Agricultura y Ganaderia, Quito, Ecuador

16Universidad Nacional Agraria, Managua, Nicaragua
17Oficina Regional de la FAO para América Latina y el Caribe, Bogotá, Colombia

18Instituto de Investigación Agropecuaria de Panamá, Panamá, Panama
19Sociedad Venezolana de la Ciencia del Suelo, Caracas, Venezuela

20Ministerio de Medio Ambiente, Santo Domingo, Dominican Republic
21Department of Natural and Life Sciences, COSTAATT, Port of Spain, Trinidad and Tobago
22University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
23Instituto de Innovación en Transferencia y Tecnología Agropecuaria, San José, Costa Rica

24Ministerio de Ambiente y Recursos Naturales de Guatemala, Ciudad Guatemala, Guatemala
25INTA CNIA, Buenos Aires, Argentina

26International Centre for Environmental and Nuclear Sciences,
University of the West Indies, Kingston, Jamaica

27Embrapa Solos, Rio de Janeiro, Brazil
Correspondence: Rodrigo Vargas (rvargas@udel.edu)

Received: 15 December 2017 – Discussion started: 25 January 2018
Revised: 15 June 2018 – Accepted: 24 June 2018 – Published: 1 August 2018

Published by Copernicus Publications on behalf of the European Geosciences Union.



174 M. Guevara et al.: No silver bullet on digital soil mapping

Abstract. Country-specific soil organic carbon (SOC) estimates are the baseline for the Global SOC Map of the
Global Soil Partnership (GSOCmap-GSP). This endeavor is key to explaining the uncertainty of global SOC es-
timates but requires harmonizing heterogeneous datasets and building country-specific capacities for digital soil
mapping (DSM). We identified country-specific predictors for SOC and tested the performance of five predictive
algorithms for mapping SOC across Latin America. The algorithms included support vector machines (SVMs),
random forest (RF), kernel-weighted nearest neighbors (KK), partial least squares regression (PL), and regres-
sion kriging based on stepwise multiple linear models (RK). Country-specific training data and SOC predictors
(5× 5 km pixel resolution) were obtained from ISRIC – World Soil Information. Temperature, soil type, vege-
tation indices, and topographic constraints were the best predictors for SOC, but country-specific predictors and
their respective weights varied across Latin America. We compared a large diversity of country-specific datasets
and models, and were able to explain SOC variability in a range between ∼ 1 and ∼ 60 %, with no universal
predictive algorithm among countries. A regional (n= 11 268 SOC estimates) ensemble of these five algorithms
was able to explain∼ 39 % of SOC variability from repeated 5-fold cross-validation. We report a combined SOC
stock of 77.8± 43.6 Pg (uncertainty represented by the full conditional response of independent model residu-
als) across Latin America. SOC stocks were higher in tropical forests (30± 16.5 Pg) and croplands (13± 8.1 Pg).
Country-specific and regional ensembles revealed spatial discrepancies across geopolitical borders, higher ele-
vations, and coastal plains, but provided similar regional stocks (77.8± 42.2 and 76.8± 45.1 Pg, respectively).
These results are conservative compared to global estimates (e.g., SoilGrids250m 185.8 Pg, the Harmonized
World Soil Database 138.4 Pg, or the GSOCmap-GSP 99.7 Pg). Countries with large area (i.e., Brazil, Bolivia,
Mexico, Peru) and large spatial SOC heterogeneity had lower SOC stocks per unit area and larger uncertainty
in their predictions. We highlight that expert opinion is needed to set boundary prediction limits to avoid unre-
alistically high modeling estimates. For maximizing explained variance while minimizing prediction bias, the
selection of predictive algorithms for SOC mapping should consider density of available data and variability of
country-specific environmental gradients. This study highlights the large degree of spatial uncertainty in SOC
estimates across Latin America. We provide a framework for improving country-specific mapping efforts and
reducing current discrepancy of global, regional, and country-specific SOC estimates.

1 Introduction

Soils store around 1500 Pg of carbon and represent the
largest terrestrial carbon pool (Jackson et al., 2017); thus,
it is critical to accurately quantify the variability of soil or-
ganic carbon (SOC) from local to global scales. During the
fourth session of the Global Soil Partnership (GSP) Plenary
Assembly held in May 2016 in Rome, it was agreed to de-
velop a Global Soil Organic Carbon Map (GSOCmap) (FAO,
2017). The overarching goal is that a Global SOC Map of the
Global Soil Partnership (GSOCmap-GSP) will be developed
using a distributed approach relying on country-specific SOC
maps. Country-specific maps represent a valuable source of
information to explain the high discrepancy of current global
SOC estimates such as the SoilGrids250m system and the
Harmonized World Soil Database (Tifafi et al., 2018). The
Food and Agriculture Organization (FAO) recently compiled
how different statistical methods (e.g., regression kriging and
machine learning) could be used to generate country-specific
SOC maps and calculate uncertainty (Yigini et al., 2018).
All these approaches consider the reference framework of
the Soils, Climate, Organisms, Parent material, Age and (N )
space or spatial position (SCORPAN) model for digital soil
mapping (DSM) (McBratney et al., 2003). In the SCORPAN
reference framework, a soil attribute (e.g., SOC) can be pre-

dicted as a function of the soil-forming environment, in cor-
respondence with soil-forming factors from the Dokuchaev
hypothesis and Jenny’s soil-forming equation based on cli-
mate, organisms, relief, parent material, and elapsed time of
soil formation (Florinsky, 2012). The SCORPAN reference
framework is an empirical approach that can be expressed as
in Eq. (1):

Sa[x;y t] = f
(
S[x;y t],C[x;y t],O[x;y t],R[x;y t],

P[x;y t],A[x;y t]
)
, (1)

where Sa is the soil attribute of interest at a specific location
N (represented by the spatial coordinates of field observa-
tions x; y) and at a specific period of time (t); S is the soil
or other soil properties that are correlated with the soil at-
tribute of interest (Sa); C is the climate or climatic properties
of the environment;O is the organisms, vegetation, fauna, or
human activity; R is topography or landscape attributes; P
is parent material or lithology; and A is the substrate age or
the time factor. To generate predictions of Sa across places
where no soil data are available, N should be explicit for
the information layers representing the soil-forming factors.
These predictions will be representative of a specific period
of time (t) when soil available data were collected. There-
fore, the prediction factors ideally should represent the con-
ditions of the soil-forming environment for the same period
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of time (as much as possible) when soil available data were
collected. In Eq. (1), the left side is usually represented by the
available geospatial soil observational data (e.g., from legacy
soil profile collections) and the right side of the equation is
represented by the soil prediction factors. These prediction
factors are normally derived from four main sources of infor-
mation: (a) thematic maps (i.e., soil type, rock type, land use
type); (b) remote sensing (i.e., active and passive sensors);
(c) climate surfaces and meteorological data; and (d) digital
terrain analysis or geomorphometry. The SCORPAN refer-
ence framework is widely used, but one critical challenge is
to quantify the relative importance of the soil-forming factors
(i.e., prediction factors) that could explain the underlying soil
processes controlling the spatial variability of a specific soil
attribute (i.e., SOC).

Arguably, there are two approaches for statistical model-
ing (Breiman, 2001) that influence the predictions of the spa-
tial variability of SOC. One assumes that the variability of
observations can be reproduced by a given stochastic data
model (e.g., with hypotheses about the spatial structure of
the variable). The other approach uses algorithms and treats
as unknown the mechanisms generating the structure of val-
ues in available datasets (e.g., with hypothesis about the sta-
tistical distribution and moments of the variable). For SOC
modeling, the accuracies of global models compared with
country-specific estimates have not been systematically eval-
uated on detail. While globally available SOC predictions
rely on large and complex multivariate spaces to represent the
soil-forming environment, local (i.e., more simple) models
may be useful for validation purposes and required to mea-
sure the bias of global SOC estimates, specifically, at particu-
lar sites/countries (well represented by available data), where
SOC drivers may be easier to identify due to a smaller range
of SOC variance. In addition, the assumptions of global mod-
els compared with local efforts may be different, and local
datasets could complement global information sources. Be-
cause different mapping approaches use available informa-
tion (i.e., training data and predictors) in different ways, com-
paring several approaches and methods is useful to quantify
the relative importance of prediction factors across data con-
figurations and distributional properties. We argue that a sys-
tematic analysis of predictive algorithms and consequently
selection of predictors (by each one of the algorithms) could
provide insights about the underlying factors that control the
spatial variability of SOC.

The last decade has seen an increasing diversity of ap-
proaches for DSM. Data mining techniques have been suc-
cessfully used to model and predict the spatial variability
of soil properties (Rossel and Behrens, 2010; Hengl et al.,
2017; Shangguan et al., 2017) and generate site-specific and
country-specific SOC maps (Viscarra Rossel et al., 2014; Ad-
hikari et al., 2014). The combination of regression modeling
approaches with geostatistics of independent model residu-
als (i.e., regression kriging) is a combined strategy that has
been widely used to map SOC (Hengl et al., 2004; Mishra

et al., 2009; Marchetti et al., 2012; Kumar et al., 2012; Peng
et al., 2013; Adhikari et al., 2014; Yigini and Panagos, 2016;
Nussbaum et al., 2014; Mondal et al., 2017). Machine learn-
ing algorithms such as random forests or support vector ma-
chines have also been used to increase statistical accuracy of
soil carbon models (Martin et al., 2011; Hashimoto et al.,
2017; Hengl et al., 2017) including applications for SOC
mapping (Grimm et al., 2008; Sreenivas et al., 2016; Yang
et al., 2016; Hengl et al., 2017; Delgado-Baquerizo et al.,
2017; Ließ et al., 2016; Viscarra Rossel et al., 2014). Ma-
chine learning methods do not necessarily allow to extract
information about the main effects of prediction factors in the
response variable (e.g., SOC); consequently, a variable selec-
tion strategy is always useful to increase the interpretability
of machine learning algorithms. With this diversity of ap-
proaches, one constant question is if there is a method that
systematically improves the prediction capacity of the others
aiming to predict SOC across large geographic areas (e.g.,
Latin America). We postulate that probably there is no uni-
versal method (i.e., silver bullet) for DSM, but both global
and country-specific efforts are needed to test a variety of
predictive algorithms including variable and parameter se-
lection strategies for maximizing explained variance while
minimizing prediction bias.

To minimize bias in SOC predictions, it is required to build
baseline reference estimates to quantify SOC stocks and con-
tribute to better parameterization for projections of SOC un-
der future soil weathering conditions and land degradation
scenarios. Therefore, SOC estimates based on statistical pre-
dictions should be ideally based on all available information
for specific countries or regions of interest, from both na-
tional and global information sources. However, the avail-
ability of public SOC information is limited across large ar-
eas of Latin America and large discrepancies exist in cur-
rent global SOC estimates (Tifafi et al., 2018). Thus, there
is a pressing need to validate the accuracy of global SOC
estimates, improve interoperability (Vargas et al., 2017) and
contribute to the capacity of countries to meet the Global-
SoilMap specifications (Arrouays et al., 2017) to inform pol-
icy decisions around climate change mitigation strategies.

This study focuses on Latin America, where site- or
region-specific modeling efforts report high explained vari-
ance when mapping SOC (Reyes-Rojas et al., 2018). Accu-
rate SOC maps are required to identify areas with the poten-
tial for soil carbon sequestration, and distinguish them from
areas with high SOC. However, site-specific efforts to map
SOC across Latin America highlight the challenge of predict-
ing pedologically sound soil maps due to the complexity of
SOC spatial variability (Angelini et al., 2016), including the
inconsistencies of using simple linear approaches to explain
soil and depth interrelationships (Angelini et al., 2017). Site-
specific SOC mapping efforts across Latin America also sug-
gest that variable selection and the spatial detail of SOC pre-
diction factors also contribute to discrepancies of SOC pre-
dictions (Samuel-Rosa et al., 2015). To increase the accuracy
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of SOC predictions, the use of high-performance comput-
ing through open-source platforms (i.e., Google Earth) rep-
resents a valuable resource to make and continuously update
(as new and better data become available) country-specific
SOC maps (Padarian et al., 2017). The constant challenge is
how to increase SOC prediction accuracy while also reducing
the uncertainty and granularity of SOC grids.

The overarching goal of this study is to compare differ-
ent predictive algorithms across 19 data/country scenarios
with publicly available information to support the develop-
ment of country-specific SOC maps to be included in the
GSOCmap-GSP. Currently, SOC information across Latin
America has been derived from global models such as the
SoilGrids system or the Harmonized World Soil Database
(Hengl et al., 2017; Köchy et al., 2015), which lack quan-
tification of uncertainty and where large areas remain pa-
rameterized with limited country-specific information. This
challenge is not unique for Latin America as many regions
around the world (e.g., Africa, Siberia) have limited SOC in-
formation to parameterize models to estimate the SOC pool.
To inform future SOC mapping efforts, this study addresses
two specific questions: (a) which environmental variables
(derived from publicly available information) have the high-
est correlations with country-specific SOC information, and
(b) which method (i.e., predictive algorithm) is best to repre-
sent SOC across Latin America and within each country. We
assumed that methods could inform each other as they may
explain different aspects of SOC variability. The ultimate aim
of this study is to empower capacities for digital SOC map-
ping across Latin America and to contribute to the discussion
about the importance of integrating country-specific infor-
mation for representing and predicting soil-related variables
(e.g., SOC) to improve regional-to-global SOC predictions.

2 Methods

We based our methodological approach on public sources of
information and methods implemented in open-source plat-
forms for statistical computing. Thus, our framework for
modeling SOC stocks (Fig. 1) could be reproduced across
the world for comparative purposes between country-specific
and global estimates.

2.1 SOC observations

Soil organic carbon information was extracted from the
World Soil Information Service (WoSIS) soil profile
database. This dataset represents a great harmonization ef-
fort in which a large number of national legacy datasets have
been compiled. It includes local-to-national soil profile col-
lections with a sampling strategy generally based on mor-
phological soil attributes (Batjes et al., 2017). The goal of
the GSOCmap-GSP is to produce global information for the
first 30 cm; thus, we generated synthetic horizons for this
depth using a mass-preserving spline approach (Bishop et al.,

1999). We applied a pedotransfer function based on organic
matter (OM) if the bulk density (BLD) information was miss-
ing: BLD is 1/(0.6268+0.0361×OM) (Yigini et al., 2018).
We decided to use this equation because it showed less ex-
treme values than other available pedotransfer functions dur-
ing preliminary discussion and training exercises (data not
shown). Another reason is that there is not a single pedo-
transfer function applicable to all conditions across Latin
America. This equation is representative for soils with or-
ganic matter content between 0.17 and 13.5 % (Drew, 1973).
For coarse fragments (CRFVOL), a value of 0 % was used
for missing information prior to the mass-preservative spline
modeling. SOC estimates (0 to 30 cm) were derived fol-
lowing a standardized SOC calculation method (Nelson and
Sommers, 1982) (Eq. 2):

SOCstock =
ORCDR

1000
×
H

100
×BLD×

(100−CRFVOL)
100

, (2)

where ORCDR is SOC density (gkg−1) and H is soil depth
(30 cm).

Because of the limitations and uncertainty in the available
BD and CRFVOL data, we also included an error approxima-
tion of SOC estimates. This error was derived using Global
Soil Information Facilities (GSIF; Hengl, 2017) as explained
in the next section.

2.2 SOC error estimates

The GSIF approach for estimating SOC (function OC-
SKGM) includes an approximate error which we used to
quantify the reliability of SOC estimates (Hengl et al., 2017).
This error was approximated using the Taylor series method,
by a truncated Taylor series centered by the means explained
previously (Heuvelink, 2018). We mapped the error trend of
SOC estimates by interpolating the values on a per country
basis using the generic framework for predictive modeling
based on machine learning and buffer (geographical) dis-
tances (Hengl et al., 2018). We followed this method to pro-
vide a spatial explicit measure of the SOC estimation error.
We used this method because it can be implemented without
prediction factors (e.g., only buffer distances) and because it
is practically free of assumptions but considers the geograph-
ical proximity to and composition of the sampling location
points as explained by its developers (Hengl et al., 2018).
SOC error estimates represent a component of uncertainty of
the overall quality of country-specific input data.

2.3 SOC training data and exploratory analysis

Each country-specific SOC dataset was transformed to its
natural logarithm to reduce the right-skewed distribution of
SOC values and because exploratory analysis showed that
this transformation can improve the prediction capacity of
further modeling methods. To analyze the statistical distribu-
tion of SOC values, a probability distribution function was
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Figure 1. Flow diagram of the main methodological steps that we performed in order to generate country-specific and regional SOC predic-
tions. The World Soil Information Service (WoSIS) dataset was harmonized with the http://worldgrids.org (last access: 20 February 2018)
environmental data using 5× 5 km grids. SOC stocks were calculated at points and correlated predictors identified. Five methods were pa-
rameterized and we created an ensemble of using a generalized linear approach. Accuracy of models and the ensembles was assessed with re-
peated cross-validation. Country-specific and regional (Latin America) ensembles were compared with global models. KK is kernel-weighted
nearest neighbors, SVM is support vector machines, RF is random forests, PL is partial least squares regression, and RK is regression kriging.

plotted and a Shapiro–Wilk test of normality was conducted
on each dataset. The units of the SOC estimates are kgm−2.
Our global (Latin America) dataset of 11 268 SOC estimates
was divided using a simple bootstrapping technique (Kuhn
et al., 2017) and 25 % of data were used for independent val-
idation purposes, and the remaining 75 % of data for training
prediction models. We coupled this information with a public
source of prediction factors; see Sect. 2.4.

2.4 Soils prediction factors

We used environmental information from WorldGrids
(worldgrids.org), which is an initiative of ISRIC-World
Soil Information. We downloaded and masked 118 environ-
mental layers (i.e., prediction factors) for each country to
quantitatively represent the soil-forming environment (http:
//worldgrids.org/doku.php/wiki:layers, last access: 20 Febru-
ary 2018). The prediction factors were harmonized into a
1× 1 km global grid by the WorldGrids project from three
main information sources: remote sensing, climate surfaces,
and digital terrain analysis. Additional terrain parameters

(e.g., terrain slope, aspect, catchment area, channel network
base level, terrain curvature, topographic wetness index, and
length–slope factor) from elevation data were calculated
in the System for Automated Geoscientific Analyses geo-
graphic information system (SAGA GIS) for each country
following the standard implementation for basic terrain pa-
rameters (Conrad et al., 2015). We resampled the prediction
factors into a 5× 5 km pixel size grid to reduce the computa-
tional demand required to make predictions and facilitate the
reproducibility of this DSM framework without the need for
high-performance computing.

2.5 Prediction of SOC

We made predictions on a country-specific and on a regional
(Latin American) basis. We based our prediction framework
on the following six steps:

– First, the relationship between SOC and prediction fac-
tors was explored using simple correlation analysis.

www.soil-journal.net/4/173/2018/ SOIL, 4, 173–193, 2018
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– Second, the 10 prediction factors with highest correla-
tions with SOC data were identified for each country
and used for further analyses.

– Third, we explored, parameterized, and compared five
statistical methods with different assumptions to model
SOC variability across Latin America: regression krig-
ing (based on a multiple linear regression model (RK)
and partial least squares (PLS) regression, support vec-
tor machines (SVMs), random forests (RF), and kernel-
weighted nearest neighbors (KK). A brief explanation
for each modeling approach is provided in Appendix A.

– Fourth, we used a five times repeated 5-fold cross-
validation strategy of the aforementioned models to es-
timate the RMSE. Then, we used the caretEnsemble
tools for stacking the five predictions (Deane-Mayer and
Knowles, 2016; Kuhn et al., 2017). The caretEnsemble
approach uses the RMSE to weight and create ensem-
bles of regression models under a generalized approach
to create a linear blend of predictions.

– Fifth, we calculated independent model residuals (by
predicting the 25 % of data not used for model pa-
rameterization). For each 5× 5 km pixel, we estimated
the full conditional response of these residuals to the
SOC prediction factors following the quantile regres-
sion method available within the quantregForest mod-
eling framework (Meinshausen, 2017, 2006). We used
this map as a surrogate of model uncertainty comple-
mentary to the approximated error trend of SOC esti-
mates.

– Sixth, we used all Latin American data in the WoSIS
system to repeat the fourth and fifth steps of our model-
ing framework, generating regional predictions of SOC
and comparing with country-specific results and global
SOC estimates. We also evaluated the prediction capac-
ity of these models.

2.6 Model evaluation and accuracy

First, we selected the optimal parameters for each
model/country by the means of a 10-fold cross-validation
strategy following a generic recommendation (Borra and
Di Ciaccio, 2010) (see parameter description in Ap-
pendix A). For each model, the train function of the caret
package (Kuhn et al., 2017) included simple resampling
techniques for automatic model parameter selection. Thus,
we obtained unbiased residuals for each model/country that
we compared using Taylor diagrams (Carslaw and Ropkins,
2012). A Taylor diagram summarizes multiple aspects of
model performance, such as the agreement and variance be-
tween observed and predicted values (Taylor, 2001). In a
Taylor diagram, each model is represented by a point in the

plot describing how well the patterns of observed and mod-
eled values match each other. Two models have a similar pre-
dictive capacity if they overlap across the intersection of an
error vector, a variance ratio, and a correlation vector.

We analyzed the overall ratio (ECr) between model errors
(RMSE) and the correlation between observed and predicted
values (corr) for each model across all countries. We pro-
pose this ratio ECr as an approach to better understand the
agreement between the correlation (calculated by the means
of cross-validation) and the RMSE (derived from the un-
biased residuals of cross-validation). Before calculating the
RMSE / correlation ratio, the RMSE and the correlation be-
tween observed and predicted values were standardized (by
its maximum and minimum values) to a range between 0 and
1 using

RMSESD =
RMSEi −min(RMSE)

range(RMSE)
(3)

corrSD =
corri −min(corr)

range(corr)
(4)

ECr =
RMSESD

corrSD
, (5)

where ECr is the proposed ratio between errors and correla-
tion between observed and predicted values; RMSEi is the
observed RMSE for the ith model; min(RMSE) is the mini-
mum observed value of RMSE, and range(RMSE) is the dif-
ference between the maximum and minimum observed val-
ues of RMSE; corri is the observed correlation for the ith
model; min(corr) is the minimum observed value of correla-
tion, and range(corr) is the difference between the maximum
and minimum observed values of correlation

If the value of the ECr was close to 0, then there was a
stronger agreement between high RMSE and low correla-
tion, or low RMSE and high correlation. If this value devi-
ated from 0 (up to 1 or more), then the RMSE would tend to
be high while the correlation was also high, suggesting that
the method represented the variability of SOC but with high
bias.

Model accuracy (also represented by the RMSE and R2)
was assessed for the model ensembles with a more strict
(but computationally expensive) 5-fold and five times re-
peated cross-validation strategy. This model refitting allowed
more stable accuracy results with the ultimate goal of com-
paring country-specific and regional (Latin America) esti-
mates. Repeated 10- and 5-fold cross-validation have been
used to compare both machine learning and geostatistical ap-
proaches for mapping soil properties from book examples
to real applications at the global scale (Hengl et al., 2018,
2017). In addition, independent model residuals were also
obtained from the 25 % of data not used for the country-
specific and regional ensembles to estimate a spatially ex-
plicit measure of uncertainty (as explained in step five of our
prediction framework).

SOIL, 4, 173–193, 2018 www.soil-journal.net/4/173/2018/



M. Guevara et al.: No silver bullet on digital soil mapping 179

Figure 2. Spatial distribution of available SOC in WoSIS for Latin America. SOC estimates are calculated for each point using Eq. (2) (a).
The approximated error is based on Taylor series as implemented in the R-GSIF package, as is explained in Heuvelink (2018) (b). Thus,
panel (b) represents the uncertainty of SOC estimates at each point. The values of this map could be associated with data limitations and
missing information for BLD and CRFVOL.

2.7 SOC stocks

First, we analyzed the influence of the maximum allowed
prediction limits for each prediction algorithm. We harmo-
nized the units of our SOC estimates with global datasets
in Mgha (megagrams per hectare at 30 cm depth). The
sensitivity of the total SOC stock to the model prediction
limit was tested by increasing (every 10 Mgha) the maxi-
mum prediction limit from 0.5 Mgha. until finding a sta-
ble rate. Geopolitical limits were obtained from the Global
Administrative areas project (https://gadm.org/, last access:
16 July 2018). Using these country limits we report our
country-specific and Latin American SOC estimates. For
comparative purposes, we also extracted for each country
the global SOC estimates from the SoilGrids system (Hengl
et al., 2017), the Harmonized World Soil Database (Köchy
et al., 2015), and the GSOCmap-GSP (see http://54.229.242.
119/apps/GSOCmap.html, last access: 16 July 2018). We
also report stocks across the land cover classes derived from
the Latin American Network for Monitoring and Studying
of Natural Resources, a product with an estimated accuracy
of 84 % (Blanco et al., 2013). We report the overall uncer-
tainty of these stocks with the independent model residuals
map and the approximated error trend of the SOC estimates.
Some countries with no data were filled with the average of
the surrounding extent of the SOC predictions. All analyses
were performed using the R software (R Core Team, 2017).

3 Results

3.1 Descriptive statistics

SOC across different countries showed a wide diversity
of data scenarios (Table 1). Costa Rica (with a mean of
11.05 kgm2), Chile (with a mean of 9.88 kgm2), and Colom-
bia (with a mean of 8.15 kgm2) are the countries with the
highest SOC mean values. Brazil (n= 5616) and Mexico
(n= 4321) were the countries with highest data availability.
In contrast, Honduras (n= 11), Guatemala (n= 20), and Be-
lize (n= 21) were the countries with lowest density of SOC
estimated values (Table 1). With the original (untransformed)
dataset, the only countries that showed a normal distribution
after the Shapiro–Wilk test of normality with an α of 0.05
were Belize, Guatemala, Honduras, and Suriname.

3.2 Spatial distribution and point error estimates

There were large areas of Latin America with no available
SOC observational data in the WoSIS system (e.g., the south
of Chile, Argentina, or across large areas of Central Amer-
ica). We found substantial error estimates across large areas
with high density of SOC data but low carbon contents, such
as northern Mexico or the Brazilian semiarid savanna located
at the eastern side of that country (Fig. 2).

3.3 Correlation of SOC and its predictors

Best correlated predictors were not the same across coun-
tries. We found higher correlations with the original datasets
transformed to their natural logarithm, as data had a right-
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Table 1. Descriptive statistics of SOC estimates (in kgm2) and total land area for each analyzed country. n is the number of observations. We
provide quantiles, median, mean, and the standard deviation of SOC data. The columns p and p log represent the probability values derived
from the Shapiro–Wilk test of normality before p and after p log the log transformation of SOC values. When p is larger than p log, the
log transformation of the data did not increase the probability of normality in the dataset. For comparative purposes, we provide (Fig. S1
in the Supplement) the probability distribution functions of available data before and after the log transformations. ARG is Argentina, BLZ
is Belize, BOL is Bolivia, BRA is Brazil, CHL is Chile, COL is Colombia, CRI is Costa Rica, CUB is Cuba, ECU is Ecuador, GTM is
Guatemala, HND is Honduras, JAM is Jamaica, MEX is Mexico, NIC is Nicaragua, PAN is Panama, PER is Peru, SUR is Suriname, SLV is
El Salvador, URY is Uruguay, and VEN is Venezuela.

Country n Land area (km2) Min. First Q Med. Mean Third Q Max. SD p/p log

ARG 231 2 736 690 0.34 1.88 3.21 5.65 5.96 86.85 9.33 < 0.001/0.03
BLZ 21 22 970 1.84 4.49 6.72 7.71 9.99 19.48 4.32 0.08/0.99
BOL 76 1 083 301 0.64 1.83 2.56 2.64 3.20 7.65 1.21 < 0.001/0.08
BRA 5616 8 358 140 0.07 1.99 2.67 3.23 3.34 573.76 9.18 < 0.001/ < 0.001
CHL 44 743 812 0.43 3.58 5.19 9.88 16.52 31.87 8.86 < 0.001/0.01
COL 166 1 038 700 0.66 3.44 5.78 8.15 9.95 52.62 7.35 < 0.001/0.96
CRI 43 51 060 2.27 4.07 7.23 11.05 10.85 82.57 14.90 < 0.001/0.001
CUB 48 109 820 0.36 2.85 3.61 4.32 5.73 10.98 2.23 0.004/ < 0.001
ECU 77 276 841 0.99 2.37 3.65 5.15 4.36 24.36 5.15 < 0.001/ < 0.001
GTM 20 107 159 2.60 5.66 8.48 7.73 9.75 12.41 3.11 0.14/0.007
HND 11 111 890 2.69 5.25 6.48 6.71 8.32 12.38 2.78 0.72/0.39
JAM 76 10 831 1.29 3.01 3.99 4.35 4.83 12.90 1.99 < 0.001/0.72
MEX 4321 1 943 945 0.00 1.73 2.49 2.56 3.25 35.55 1.49 < 0.001/ < 0.001
NIC 26 119 990 2.93 3.94 7.31 7.50 9.04 15.91 3.78 0.05/0.09
PAN 25 74 177 3.39 4.90 7.53 7.59 9.13 19.89 3.76 0.003/0.49
PER 145 1 279 996 0.19 1.89 2.93 2.92 3.55 8.35 1.42 0.005/ < 0.001
SUR 27 156 000 1.38 2.60 3.35 3.37 4.07 6.01 1.20 0.69/0.51
URY 130 175 015 0.82 2.70 3.38 4.34 3.90 46.54 4.67 < 0.001/ < 0.001
VEN 164 882 050 0.31 2.58 4.14 5.92 6.57 44.35 6.37 < 0.001/0.11

skewed distribution and did not follow a normal distribu-
tion (i.e., log normal). Highest correlations of available SOC
data and their environmental predictors were associated with
temperature-related variables across Honduras, Costa Rica,
Peru, Chile, Guatemala, and Suriname (the r2 varied from
0.35 to 0.58). However, there were a low number of avail-
able SOC observations across these countries in the WoSIS
system (between 11 to 34). Similarly, across countries with
high data availability (e.g., Mexico and Brazil), the strongest
correlations between SOC and prediction factors were as-
sociated with temperature-related variables (Table 2). In all
cases, the relationship between SOC and temperature-related
variables was negative. In contrast, SOC had a positive rela-
tionship with elevation-derived terrain parameters (r2 varied
from 0.43 to 0.59) such as terrain curvature, potential incom-
ing solar radiation, and slope of terrain.

Lower correlations of SOC data with prediction factors
were found across Brazil, Bolivia, Uruguay, Cuba, Panama,
Venezuela, and Argentina (e.g., r2< 0.2). The correlation
analysis was useful to formulate a working hypothesis
about the major drivers of the spatial variability of SOC
across countries based on our DSM conceptual framework
(e.g., SOCARG= f [px4wcl3a+ px3wcl3a+ evmmod3a
+ l07igb3a+ px2wcl3a+ . . . ]). For example, the best
correlated predictors with SOC for Argentina were

precipitation-related variables (px4wcl3a, px3wcl3a,
px2wcl3a), remote-sensing-based vegetation indexes
(evmmod3a), and a probability-based shrubland map
(l07igb3a) (Table 2) (see sources of these maps in
http://worldgrids.org/doku.php/wiki:layers, last access:
20 February 2018).

3.4 SOC-related properties

Correlations between SOC density (ORCDR) and prediction
factors were higher with maximum and mean nighttime tem-
perature, where Costa Rica and Chile had the highest correla-
tions (r2 varied from 0.61 to 0.71). The best correlated vari-
ables with BLD were terrain parameters: relative slope posi-
tion, vertical distance to channel network, flow accumulation
areas, and potential incoming solar radiation. These corre-
lations were stronger across Guatemala, Belize, and Panama
(r2 varied from 0.52 to 0.67). We found that terrain slope and
the standard deviation of temperature were the variables with
highest correlations with CRFVOL, where Nicaragua, Hon-
duras, and Argentina had the highest correlations (r2 varied
from 0.40 to 0.55). We did not find a dominant algorithm to
predict ORCDR, BLD, and CRFVOL. Slightly higher corre-
lations between observed and predicted values were achieved
with RF, but in most cases different methods showed similar
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Table 2. Best correlated predictors and their frequency across the analyzed data country scenarios, given available data in the WoSIS system;
see predictor codes in http://worldgrids.org/doku.php/wiki:layers (last access: 20 February 2018). ARG is Argentina, BLZ is Belize, BOL is
Bolivia, BRA is Brazil, CHL is Chile, COL is Colombia, CRI is Costa Rica, CUB is Cuba, DOM is Dominican Republic, ECU is Ecuador,
GTM is Guatemala, HND is Honduras, JAM is Jamaica, MEX is Mexico, NIC is Nicaragua, PAN is Panama, PER is Peru, SUR is Suriname,
SLV is El Salvador, URY is Uruguay, and VEN is Venezuela.

Var Factor Subfactor Freq. Country

gachws3a Soil Soil type 2 CUB, SUR
garhws3a Soil Soil type 2 PER, URY
ghshws3a Soil Soil type 2 BLZ, URY
gphhws3a Soil Soil type 2 CUB, JAM
gplhws3a Soil Soil type 2 BLZ, BOL
gvrhws3a Soil Soil type 2 JAM, URY

tdmmod3a Climate Temperature 11 ARG, BOL, BRA, CHL, COL, CRI, CUB, ECU, MEX, PER, VEN
tx1mod3a Climate Temperature 10 ARG, BOL, BRA, COL, CUB, ECU, JAM, NIC, PER, URY
tx4mod3a Climate Temperature 10 BRA, CHL, CRI, CUB, ECU, GTM, JAM, MEX, PER, VEN
tx5mod3a Climate Temperature 9 BOL, BRA, CHL, CUB, ECU, JAM, MEX, PER, VEN
tx6mod3a Climate Temperature 9 ARG, BOL, BRA, CHL, COL, CRI, ECU, MEX, VEN
tnhmod3a Climate Temperature 8 BLZ, COL, CRI, GTM, HND, JAM, PAN, VEN
tnmmod3a Climate Temperature 8 BLZ, COL, CRI, GTM, HND, PAN, URY, VEN
tx3mod3a Climate Temperature 7 BRA, CHL, CUB, ECU, PAN, PER, VEN
tdhmod3a Climate Temperature 6 ARG, CUB, ECU, JAM, MEX, URY
tdlmod3a Climate Temperature 6 BRA, CHL, COL, ECU, GTM, JAM
tnsmod3a Climate Temperature 5 ARG, MEX, NIC, PAN, SUR
tx2mod3a Climate Temperature 4 ARG, ECU, PER, URY
tdsmod3a Climate Temperature 3 MEX, PAN, SUR
tnlmod3a Climate Temperature 3 BLZ, COL, GTM
px2wcl3a Climate Precipitation 2 BOL, PAN
px3wcl3a Climate Precipitation 2 CHL, MEX
px4wcl3a Climate Precipitation 2 BRA, CHL
etmnts3a Climate ET 2 ARG, MEX

evmmod3a Organism Vegetation 5 ARG, ECU, HND, MEX, VEN
l07igb3a Organism Vegetation 2 ARG, CHL

DEMSRE3a Topography 5 COL, CRI, GTM, HND, SUR
twisre3a Topography 5 BRA, JAM, NIC, PAN, SUR
ChannNetworkBLevel Topography 4 COL, HND, PAN, SUR
l3pobi3b Topography 4 COL, CRI, PAN, VEN
inssre3a Topography 3 BLZ, HND, SUR
opisre3a Topography 3 CRI, NIC, SUR
SLPSRT3a Topography 3 CRI, NIC, SUR
AnalyticalHillshading Topography 2 BLZ, CUB
Aspect Topography 2 BLZ, BOL
CovergenceIndex Topography 2 BOL, HND
inmsre3a Topography 2 CRI, GTM
ValleyDepth Topography 2 BLZ, JAM

geaisg3a Age 3 CHL, NIC, SUR

prediction capacity. The highest prediction error was found
with RK for CRFVOL, but for all other output variables all
prediction algorithms had a similar range of errors (Fig. 3).
The PLS and SVM had the lowest variance for prediction of
each one of the four soil properties. The r2 values for predict-
ing the combined SOC-related properties (i.e., ORCDR, CR-
FVOL, and BLD) for each prediction algorithm were RK (r2

0.67 to 0.76), RF (r2 0.56 to 0.74), SVM (r2 0.32 to 0.71), PL
(r2 0.46 to 0.69), and KK (r2 0.19 to 0.64). Across countries
with lower data availability and sparse distribution, SVM and
RK algorithms resulted in lower model performance.
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Figure 3. Taylor diagrams showing the performance of the five models evaluated. SOC stock (a), ORCDR (b), BLD (c), and CRFVOL (d).
This analysis is based on all available data across Latin America. Although RF tends to generate higher correlation, it also shows high
variance in predictions. The points are close to each other and the differences in accuracy between them generally fall within the same
intersection of error, variance, and correlation, suggesting a similar prediction capacity by the implemented approaches.

3.5 Country-specific SOC predictions

We did not find a dominant algorithm to predict SOC on
a country-specific basis (Fig. 4). Overall, machine learn-
ing prediction algorithms generated similar results. Higher
agreement of machine learning prediction algorithms was
found in small countries where environmental conditions and
land cover/use characteristics tend to be more homogeneous
(e.g., Jamaica, Suriname). RK showed higher discrepancies
in countries where data distribution was sparse (e.g., Suri-
name, Chile, Guatemala) but effective across countries with
higher and/or well-distributed data availability (e.g., Mexico,
Brazil). Machine learning SOC predictions were conserva-
tive compared with RK (RK generated the higher density of
extreme and unreliable SOC values). PL had comparable re-
sults with machine learning algorithms (i.e., KK, SVM, RF).
From the cross-validation strategy, higher r2 values between
observed and predicted data were found for Costa Rica (0.58;
n= 21) using SVM, while the lowest error was found in
Suriname (0.36 kg m−2; n= 37) using PL. In contrast, algo-
rithms had lower prediction capacity for countries with large
areas (e.g., Brazil, Mexico) despite the large data availability.

The simple correlation (main effect) between the r2 and
RMSE for RF, PL, KK, and RK was positive (0.18, 0.35,
0.32, and 0.1, respectively). In contrast, this correlation was
stronger for SVM (but negative;−0.65) where increasing the
explained variance resulted in a lower error. Thus, we found
a low level of agreement between these two information cri-
teria (r2 and RMSE) commonly used in DSM to assess per-
formance of prediction algorithms.

Agreement between the RMSE and r2 was found only in
12 of the 19 countries, resulting in country-specific “recom-
mended” prediction algorithms. Here, we list the prediction
algorithms that generated the best correlation and the best
RMSE for each country: ARG (RK, RK), BLZ (RF, RK),
BOL (SVM, KK), BRA (RF, RF), CHL (PL, PL), COL (RF,
RF), CRI (SVM, SVM), CUB (PL, PL), ECU (RK, RK),
GTM (KK, RF), HND (SVM, KK), JAM (RF, RF), MEX
(RK , RK), NIC (RF, RF), PAN (PL, KK), PER (KK, KK),
SUR (SVM, PL), URY (RF, RK), and VEN (RK, RK) (see
country codes in Table 1). Brazil and Mexico had the high-
est number of observations (nearly 80 % of the total) and the
same method yielded the highest r2 and the lowest RMSE.
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Figure 4. Taylor diagrams showing the performance of the five models evaluated for country-specific SOC estimates across Latin America.
The position of each point/method varies from each dataset to another, suggesting that the predictive capacity changes when data character-
istics are different.

We clarify that the best within-country method was not the
same for every country. The higher ECr was found with PL
(0.96), followed by RF (0.54) and KK (0.43), informing that
these predictive algorithms did not minimize prediction bias
while increasing the explained variance. SVM (with 0.008)
and RK (with 0.003) had the lowest ECr, as they maximize
the explained variance while minimizing prediction bias.

3.6 Model ensembles and SOC maps

High discrepancy was found among country-specific SOC
predictions and between country-specific and regional SOC
predictions. Although both maps predict SOC following
a similar general pattern, the country-specific ensemble

showed a higher density of unrealistic patterns across
Guatemala, Venezuela, northern Brazil, and the surroundings
of Uruguay (Fig. 5a). These areas correspond to areas where
we report both higher SOC calculation errors and model un-
certainty (Fig. 6).

Compared with the country-specific ensemble, the re-
gional model showed spatial differences predicting higher
SOC across the highlands of the Southern Andes and bound-
aries of the Amazon Basin (Fig. 5b). As expected, the
country-specific model showed spatial artifacts associated
with country geopolitical borders. Based on the repeated 5-
fold cross-validation, we report a r2

= 0.39 for the regional
model and r2 values for the country-specific approach that
vary from 0.01 to 0.55.
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Figure 5. Country-specific (a) and regional (Latin America) (b) predictions of SOC based on a linear ensemble of methods. We present
the units as Mgha for visualization purposes. These units were used to reduce the digits of the value range and highlight larger differences
between SOC maps.

Figure 6. The full conditional response of residuals to the prediction factors on a country-specific basis (a). The full conditional response of
residuals to the SOC prediction factors in the regional (Latin America) model (b). The trend of the approximated error of SOC estimates is
derived from buffer distances and the random forest spatial framework (c).

High uncertainty in our modeling framework was found
across tropical, arid, and semiarid regions of Latin America
(Fig. 6a, b). Residual uncertainty from independent valida-
tion in the country-specific ensemble showed higher errors
across geopolitical borders (in Chile, Argentina, Colombia,
Ecuador, Venezuela, and the Brazilian savanna), while the
residual uncertainty map from the regional model had higher
uncertainty across ecologically meaningful transitions, with
no evident effect of geopolitical borders. The trend of the
mean approximated error suggests high uncertainty in the
SOC calculation method (Fig. 6c). We used this map just to
visualize the general trend of error estimates based only on
geographical buffer distances.

Primarily, the Pacific coastal plains, the delta of the Ama-
zon river, some closed watersheds and wetlands across Mex-
ico, and some sparse points across Central America showed
the higher discrepancies. Mexico and Brazil, with higher

density of SOC data, were the countries with less discrep-
ancy between country and global models (Fig. 7a). We report
that the geographical areas where country-specific models
tend to predict higher SOC values than the regional ensem-
ble (Fig. 7b). However, we report a similar SOC stock from
both modeling approaches (country-specific and global) as
we explain in Sect. 3.7.

3.7 SOC stocks and model uncertainties

For comparative purposes with previous reports (i.e., the
SoilGrids system and the Harmonized World Soil Database),
we harmonized the units of our maps to Mgha, which was
also useful for visualization purposes. For our models, the
uncertainty of the maximum prediction limit was estimated
to be ±10 Pg, which was the variance of the SOC stock by
increasing the prediction limit from 1 to 700 Mgha (Fig. 8).
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Figure 7. The absolute distance (Mgha) between the country-
specific and the regional ensemble (a). The areas in white are ar-
eas where the country-specific modeling is predicting higher SOC
than the regional estimate (i.e., country-specific is greater than re-
gional) (b).

This relationship showed a stable (close to 0) trend after
200 Mgha. A larger density of extreme values was found
with the regional model, and we calculated a maximum pos-
sible SOC stock of 83.62 Pg with this model.

Despite the spatial differences reported for the country-
specific and regional ensembles, we report a similar stock
between both approaches (77.8± 42.2 and 76.8± 45.1 Pg,
respectively). We found that the global ensemble yields
a slightly higher uncertainty. Our country-specific ensem-
bles suggested that countries with highest SOC stocks were
Brazil, Argentina, Colombia, Mexico, Peru, and Venezuela
(Table 3).

Consistently, all models showed that tropical broadleaf ev-
ergreen forests, croplands, and temperate shrublands were
the land cover classes that had higher SOC across all SOC
available estimates (Table 4). However, using only the dataset
contained in the WoSIS system, we predict nearly the half of
SOC compared with previously reported SOC estimates such
as the SoilGrids system (Table 3).

The model variance of predicted SOC reached values over
300 % for countries such as Mexico and Bolivia. In contrast,
countries with higher SOC per unit area and relatively low
prediction variances were Panama, Guatemala, Costa Rica,
Nicaragua, and Belize. Overall, we found a median model
prediction variance of 53 % across countries in Latin Amer-
ica. Areas with high uncertainty and model variance were
across northern Mexico, Central America, limits between
Colombia and Brazil, and the border between Chile and Ar-
gentina.

Figure 8. Relationship between the SOC stock and the prediction
limit. The average breakdown points of this relationship are shown
in the vertical line at the right of the plot.

4 Discussion

We developed a DSM framework to characterize the spatial
variability of SOC across Latin America. Our results suggest
that a multi-model approach was suitable to better understand
modeling bias and uncertainty of SOC maps. We argue that
uncertainty on SOC mapping can be associated with (a) the
complexity of the property of interest (i.e., SOC), (b) the en-
vironmental heterogeneity within the area/country of inter-
est, and (c) the characteristics of available data (e.g., data
density, data quality, and data representativeness) to meet
model-specific assumptions. Thus, when legacy soil profile
collections that were collected for different purposes along
long periods of time (i.e., decades), a multi-model approach
(i.e., ensemble) would be convenient to maximize the predic-
tive capacity considering the available information.

To maximize accuracy of our models, we used a general-
ized linear approach to combine single predictions, and at the
continental scale we were able to explain 39 % of SOC vari-
ance using only information contained in the WoSIS system
for Latin America. This result was within the range of the
prediction capacity of country-specific models. Besides the
low density of observation points, the performance could be
partially affected by the generalization from the 1 : 1 scale
of a soil profile (or field SOC observation) to a 5× 5 km
grid, representing an additional source of uncertainty. Higher
discrepancy between country-specific and global efforts was
evident across Brazil, the largest country, where our mod-
els tend to predict nearly half of SOC compared to previous
efforts (e.g., the GSOCmap-GSP, the SoilGrids system, and
the Harmonized World Soil Database). The SoilGrids system
tends to predict the highest values, while our country-specific
ensemble predicts the lowest. The GSOCmap-GSP and our
ensembles predicted < 100 Pg of SOC across the analyzed
countries, while all other products suggest higher stocks (see
Tables 3 and 4).
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Table 3. SOC stocks (Pg) at the contextual resolution of 5× 5 km grids. The terms used are defined as follows: ens is country-specific,
regional is Latin America ensemble, sg is the SoilGrids system, GSOCmap-GSP is country-specific 1 km, and hw is the Harmonized World
Soil Database.

Country ens regional sg GSOCmap-GSP hw

1 Argentina 13.19 12.77 24.45 18.00 18.13
2 Belize 0.24 0.12 0.28 0.28 0.19
3 Bolivia 3.29 3.39 8.39 6.99 5.96
4 Brazil 26.82 27.16 68.45 42.79 47.20
5 Chile 6.31 7.20 15.15 1.93 8.28
6 Colombia 7.01 5.96 15.50 5.12 14.99
7 Costa Rica 0.56 0.34 0.83 0.83 0.71
8 Cuba 0.52 0.51 1.48 0.82 0.64
9 Ecuador 1.31 1.36 4.04 1.57 2.63

10 Guatemala 1.02 0.57 1.27 1.27 0.99
11 Jamaica 0.05 0.05 0.14 0.07 0.07
12 Mexico 5.98 6.12 14.43 9.04 17.59
13 Nicaragua 0.74 0.62 1.42 0.71 0.92
14 Panama 0.56 0.43 1.10 0.33 0.69
15 Peru 4.38 5.13 17.08 3.14 10.51
16 Suriname 0.56 0.51 1.20 0.45 1.33
17 Uruguay 0.92 0.88 1.99 0.84 2.27
18 Venezuela 4.71 3.77 9.39 5.28 5.64

Another source of discrepancy can be associated with the
lack of available data to represent the SOC stock at the
depth of interest (i.e., −30 cm of mineral soil). The predic-
tive performance of the mass-preservative spline to contin-
uously represent the SOC and depth relationships in some
cases could be strongly influenced by the lack of observations
across highly variable soil profiles. Some examples include
SOC-rich agricultural soil profiles constantly transformed for
food production purposes, or a volcanic setting. These high
levels of missing data lead the trend map of approximated er-
ror (Fig. 6), which provides an idea of the uncertainty in the
SOC estimates.

The GSOCmap-GSP, for example, was generated on a
country basis, but the amount of SOC observations used
for the countries to generate these maps was consider-
able higher than the available data in the WoSIS system
(> 1 000 000 points). Both of our models predicted more
conservative results than the GSOCmap-GSP, while at the
same time, the GSOCmap-GSP predicted less SOC than the
SoilGrids system and the Harmonized World Soil Database.
Respectively, the SoilGrids system relies on a multivariate
space suitable to represent the global soil-forming environ-
ment; however, a model would assume a similar relation of
each covariate with the response across all land area in the
world. The Harmonized World Soil Database may be a pedo-
logically sound product, but large areas of Latin America
have not been mapped at detailed scales (i.e., larger scales
than 1 : 1 million) and this results in a polygon-based ap-
proach relying on wide generalizations.

Despite the aforementioned limitations, across Latin
America, there is an increasing availability of relevant SOC

information across site- and country-specific regions (Reyes-
Rojas et al., 2018; Vasques et al., 2016; Angelini et al., 2017;
Samuel-Rosa et al., 2015; Angelini et al., 2016; Padarian
et al., 2017), which could serve for validating and calibrat-
ing global SOC estimates. Thus, regional approaches con-
sidering multiple Latin American countries and SOC mod-
els could be a valuable resource to explain discrepancies be-
tween site- or country-specific and global SOC models.

Our results incorporate a multi-model perspective for
quantifying/evaluating the spatial variability of SOC. The
model with higher predictive capacity in terms of cross-
validated r2 was RF, an ensemble of regression trees based
on bagging. However, this method yields high ECr, and
therefore it tends to capture the trend but with high bias.
Taylor diagrams show that RF in any case yield the lower
variance. SVM and RK were methods with higher agreement
between RMSE and corr, and therefore lower ECr. Large val-
ues of ECr represent an accuracy limitation that was evident
for RF, PL, and KK. To overcome these types of modeling
biases, previous studies have suggested that the theory of en-
semble learning applied to soil datasets could increase the ac-
curacy of results (Finke, 2012; Nussbaum et al., 2018). Fur-
thermore, recent studies highlight the applicability of selec-
tive ensembles across a large diversity of model algorithms
useful for digital soil mapping purposes (Møller et al., 2018).
Thus, our modeling approach included the combination of
multiple predictions by using a linear stack of models as im-
plemented in the caretEnsemble package of R (Deane-Mayer
and Knowles, 2016), with the ultimate goal of reducing the
uncertainty on SOC mapping efforts.
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Table 4. SOC stocks at the contextual resolution of 5× 5 km across land cover classes of Latin America for the 18 analyzed countries. The
terms used are defined as follows: ens is country-specific, regional is Latin America ensemble, sg is the SoilGrids system, GSOCmap-GSP
is country-specific 1 km, and hw is the Harmonized World Soil Database. These are the land cover classes described in Blanco et al. (2013).
This land cover product was generated using 500 m grids and has 84 % of accuracy.

Land cover ens GSOCmap-GSP hw sg regional

1 Tropical broadleaf evergreen forest 30.39 40.30 59.15 80.44 29.73
2 Tropical broadleaf deciduous forest 0.43 0.65 1.00 1.09 0.42
3 Subtropical broadleaf evergreen forest 2.38 3.91 4.51 6.57 2.25
4 Subtropical broadleaf deciduous forest 1.42 2.04 1.87 2.55 1.07
5 Temperate broadleaf evergreen forest 3.32 1.26 4.97 6.91 3.56
6 Temperate broadleaf deciduous forest 0.48 0.52 1.02 1.21 0.63
7 Subtropical needleleaf forest 0.00 0.01 0.00 0.01 0.00
8 Temperate needleleaf forest 0.23 0.36 0.45 0.54 0.24
9 Mixed forest 0.67 1.08 1.34 1.66 0.66

10 Tropical shrubland 4.25 6.58 6.98 10.30 4.18
11 Subtropical shrubland 3.17 4.18 6.62 6.33 2.90
12 Temperate shrubland 4.56 5.08 7.33 9.97 5.32
13 Tropical grassland 3.01 2.48 3.56 5.46 2.45
14 Subtropical grassland 1.15 1.35 2.28 2.58 1.12
15 Temperate grassland 2.75 3.31 4.86 5.92 3.04
16 Inland water bodies 1.21 1.37 2.07 3.45 1.21
17 Urban area 0.24 0.31 0.45 0.55 0.22
18 Permanent ice and snow 0.14 0.08 0.14 0.38 0.17
19 Barren land 1.74 2.38 2.43 2.95 1.70
20 Cropland 12.95 19.33 21.89 27.94 12.42
21 Wetland 0.37 0.56 0.66 1.24 0.35
22 Salt flat 0.13 0.17 0.16 0.18 0.10
23 Coastal areas 1.59 1.39 2.23 4.31 1.78

Across Latin America, we did not find a common predic-
tive algorithm for SOC. These results suggest that country-
specific environmental predictors and available data influ-
ence the applicability of different approaches. This as-
sessment is needed to address the requirements from the
GSOCmap-GSP with the official mandate to generate and
update country-specific soil information by the means of
DSM. Thus, we argue that the DSM form of each country
should assess and incorporate country-specific available data
and environmental predictors to select the best prediction al-
gorithm. The FAO SOC mapping cookbook explores possi-
bilities to derive country-specific SOC maps from a variety
of prediction algorithms (Yigini et al., 2018), and multiple re-
sources have described the state of the art of modeling meth-
ods focused on DSM of soil carbon (Minasny et al., 2013;
Malone et al., 2017) including geostatistics (Hengl, 2009,
2017). Thus, data characteristics (e.g., spatial structure, rep-
resentativeness) are specifically important for developing a
DSM framework as legacy soil profile collections, generated
with long-term soil inventory purposes, will determine data
availability and spatial distribution within a country.

This country-specific approach to map regional SOC
results in artifacts across geopolitical borders. Therefore,
data sharing, model validation, and calibration experiments
among countries are required to better capture the spa-

tial variability of SOC. The use of a natural-defined pre-
diction domain (e.g., ecoregional or physiographic map)
could reduce the border effects. However, we understand that
geopolitical borders are required for policy decisions around
country-specific needs. We highlight that there is a lack of
publicly available country-specific data that ultimately influ-
ence the performance of both country-specific to regional-to-
global SOC estimates.

To achieve the highest possible accuracy of country-
specific SOC estimates, the availability of point data sources
for SOC modeling and mapping is an important considera-
tion when selecting an efficient modeling strategy, especially
when dealing with legacy SOC datasets. Our results highlight
important uncertainty levels (> 100 %) across large areas of
Latin America (Table 6). The data contained in WoSIS have a
low-density distribution given the large area and environmen-
tal complexity of several countries analyzed. Thus, larger un-
certainty dominates countries with larger SOC pools proba-
bly because available data do not capture the large spatial
heterogeneity of SOC stocks. We highlight that the WoSIS
dataset is a unique and invaluable effort that has proven to
generate global SOC predictions (Hengl et al., 2017; Sander-
man et al., 2017), but there is a global need to increase infor-
mation and networking capabilities for SOC (Harden et al.,
2017).
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This study generated predictions of SOC across Latin
America but also provided information about the main re-
lationships driving the spatial distribution of SOC. Machine
learning (i.e., data-driven) models have proven to be more
efficient to model non-linear relationships of SOC (Hengl
et al., 2015), but our results suggest that linear-based mod-
els (e.g., RK) could outperform machine learning methods
under well-distributed and representative SOC data scenar-
ios. Similar results were found across productive landscapes
of Brazil (Bonfatti et al., 2016). We argue that our capacity
to meet modeling assumptions will determine the most suit-
able prediction algorithm or ensemble methods (i.e., stack,
blend, bucket of models). Machine learning models are usu-
ally conceived as black boxes and the influence of non-
informative SOC prediction factors on machine learning-
based SOC models has not been evaluated in detail. There-
fore, we propose that the use of simple linear methods (i.e.,
correlation of available data and their predictors) can be a
useful and parsimonious first step to inform data-driven ap-
proaches and enhance the interpretability of machine learn-
ing models to predict SOC. However, the simple selection of
prediction factors based on simple correlation analysis does
not prevent multi-collinearity, in which hypothesis-driven
methods (e.g., RK) may be at risk to fail, but provides useful
information about the main effects of the predictors on SOC.
Thus, the use of machine learning and other statistical models
(i.e., PL) is suitable to overcome the bias associated with the
potential statistical redundancy of our simple variable selec-
tion approach based on simple correlation analysis. Further-
more, our data suggest that country-specific predictor factors
are needed to better parameterize models but also could be
useful for country-specific model interpretation. These re-
sults have important implications because it has been pro-
posed that an extensive set of prediction factors is required
to capture the large variance of the global SOC pool (Hengl
et al., 2017). Thus, we propose that limited but informative
country-specific prediction factors could be jointly explored
to describe the local biophysical characteristics controlling
SOC variability.

This study is expected to increase the capacity of Latin
American institutions to provide accurate baseline estimates
of SOC with a country-specific perspective following rec-
ommendations of GSOCmap-GSP. Ultimately, these efforts
will enhance the development of new guidelines for measur-
ing, mapping, reporting, verification, and monitoring SOC
stocks (Vargas et al., 2013). Accurate country-specific DSM
frameworks for SOC are required to facilitate interoperabil-
ity and inform environmental policy across developing coun-
tries (Vargas et al., 2017). Our results highlight that attention
is needed to better understand the influence of model predic-
tion limits (e.g., the full conditional distribution) for the pre-
dicted SOC stocks. Setting an unreliable (excessive or low)
prediction limit can have important effects (under- or overes-
timating) on the overall estimated stocks (Fig. 8). Therefore,
we argue that data science systems for DSM focused on car-

bon assessments should be fundamentally based on SOC ex-
pert knowledge and informed by expert-based soil mapping
systems.

5 Conclusions

We provided a multi-model comparison approach to map
SOC stocks across Latin America and found that there is no
dominant best prediction algorithm given the available data.
The relative performance of the different methods varies
from one place to another as well as the relative correlation
of SOC with the prediction factors given the available data.
We compared and combined hypothesis-driven approaches
(e.g., linear geostatistics) and data-driven algorithms (e.g.,
machine learning), respectively, to generate interpretable and
predictable models of SOC variability. We argue that models
should not be conceived as competitors, because they have
different assumptions (about the data themselves or about the
empirical relationship between the response variable and its
predictors) as different models will capture different portions
of SOC variability. We highlight potential levels of uncer-
tainty in SOC stocks associated with the maximum allowed
prediction limit. Public data may not be representative across
large areas, and we call for all countries to strengthen digital
soil mapping capacity building initiatives, SOC research, and
data sharing. The use of country-specific information and the
use of different modeling approaches will enhance regional
SOC mapping efforts and will provide insights to identify
where and why different modeling approaches generate sim-
ilar SOC estimates.

Code availability. The codes used for this work
are available under the AGPL 3.0 license at
https://doi.org/10.5281/zenodo.1304392 (Guevara et al., 2018).

Working codes are also available at https://github.com/vargaslab/
SoilCarbon_Latin_America (last access: 16 July 2018).

Data availability. The soil dataset can be downloaded
from WoSIS at http://www.isric.org/explore/wosis (last ac-
cess: 16 July 2018) and corresponds to the July 2016 ver-
sion (Batjes et al., 2017). Soil covariates are available at
http://worldgrids.org (last access: 20 February 2018). A list of
the codes for the SOC prediction factors used here can be found
at https://docs.google.com/spreadsheets/d/1yr09cPDoSVdoahN_
fXcNLfgipQcCodRl66WCcj6hJ9A/edit?usp=sharing (last access:
16 July 2018).
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Appendix A

A1 Brief description of implemented methods

RK is a hybrid model with both a deterministic and a stochas-
tic component (Hengl et al., 2004). The regression part took
the form of a stepwise (backward and forward) multiple
linear regression to avoid statistical redundancy among the
best prediction factors. The residual kriging was ordinary.
The variogram parameters supporting the spatial interpola-
tion were automatically fitted using the framework proposed
by Hiemstra et al. (2008). RK was applied only to countries
with 10 or more available observations.

PLS is a common method to deal with the presence of
highly correlated predictors. The PLS algorithm integrates
the compression and regression steps and it selects succes-
sive orthogonal factors that maximize the covariance be-
tween predictor and response variables (Wold, 1983; Vis-
carra Rossel et al., 2014). Most of its development and appli-
cation are in the fields of chemometrics but it is used in sev-
eral research areas to effectively solve regression and classi-
fication problems.

SVM applies a simple linear method to the data but in a
high-dimensional feature space non-linearly related to the in-
put space (Karatzoglou et al., 2006). It creates a hyperplane
through n-dimensional spectral space. Then, SVM separates
numerical data based on a kernel function and parameters
(e.g., gamma and cost) that maximize the margin from the
closest point to the hyperplane that divides data with the
largest possible margin, being the support vectors the points
which fall within (Heumann, 2011). Then, linear models are
fitted to the support vectors. A radial general purpose ker-
nel was found optimal after the cross-validation strategy for
parameter selection.

RF is an ensemble of regression trees based on bagging
(Breiman, 1996). This machine learning algorithm uses a dif-
ferent combination of prediction factors to train multiple re-
gression trees. Each tree is generated using different subsets
of available data (Breiman, 2001). The number of prediction
factors to use on each tree is known as the mtry parameter.
The final prediction is the weighted average of all individual
trees.

KK is a pattern recognition technique which is based on
the distances to training examples in the feature space (Sil-
verman and Jones, 1989). The observations within the learn-
ing set, which are particularly close to the new observation
(y, x), should get a higher weight in the decision than such
neighbors that are far away from (y, x) (Hechenbichler and
Schliep, 2004). The parameter k determines the number of
neighbors from which information will be considered for
prediction, and a kernel function (e.g., triangular, Gaussian
among others) converts distances into weights which will be
used for regression problems. The Gaussian and (in less pro-
portion) the triangular kernels were the optimal options for
all countries.
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