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Abstract

Sclerotinia Head Rot (SHR), a disease caused by Sclerotinia sclerotiorum, is one of the

most limiting factors in sunflower production. In this study, we identified genomic loci asso-

ciated with resistance to SHR to support the development of assisted breeding strategies.

We genotyped 114 Recombinant Inbred Lines (RILs) along with their parental lines (PAC2

–partially resistant–and RHA266 –susceptible–) by using a 384 single nucleotide polymor-

phism (SNP) Illumina Oligo Pool Assay to saturate a sunflower genetic map. Subse-

quently, we tested these lines for SHR resistance using assisted inoculations with S.

sclerotiorum ascospores. We also conducted a randomized complete-block assays with

three replicates to visually score disease incidence (DI), disease severity (DS), disease

intensity (DInt) and incubation period (IP) through four field trials (2010–2014). We finally

assessed main effect quantitative trait loci (M-QTLs) and epistatic QTLs (E-QTLs) by

composite interval mapping (CIM) and mixed-model-based composite interval mapping

(MCIM), respectively. As a result of this study, the improved map incorporates 61 new

SNPs over candidate genes. We detected a broad range of narrow sense heritability (h2)

values (1.86–59.9%) as well as 36 M-QTLs and 13 E-QTLs along 14 linkage groups

(LGs). On LG1, LG10, and LG15, we repeatedly detected QTLs across field trials; which

emphasizes their putative effectiveness against SHR. In all selected variables, most of the

identified QTLs showed high determination coefficients, associated with moderate to high

heritability values. Using markers shared with previous Sclerotinia resistance studies, we

compared the QTL locations in LG1, LG2, LG8, LG10, LG11, LG15 and LG16. This study

constitutes the largest report of QTLs for SHR resistance in sunflower. Further studies

focusing on the regions in LG1, LG10, and LG15 harboring the detected QTLs are
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necessary to identify causal alleles and contribute to unraveling the complex genetic basis

governing the resistance.

Introduction

Sclerotinia sclerotiorum (Lib.) de Bary is a widespread fungal pathogen in sunflower regions of

the world [1]. It produces head rot, stalk rot, and wilt, among other diseases. Sclerotinia Head

Rot (SHR) is one of the most common and damaging diseases in Argentina, Canada, China,

Europe, South Africa and the United States. This disease accounts for 10 to 20% of average

yield reduction in sunflower production, while in a season where humidity and temperature

are both favorable for disease progression, SHR can produce the loss of the entire harvest [2].

Integrated management programs have been proposed to control S. sclerotiorum diseases in

sunflower, including biological, chemical and physical control methods. However, total immu-

nity has not been found in sunflower, and all improvement strategies rely on genomic tools

such as molecular markers [3]. In this regard, the genetic basis of SHR resistance has been

described as consisting of many genes of small quantitative effects whose expressions are

highly dependent on the environment with different mechanisms involved in resistance at

each phase of the disease in sunflower [4].

Sunflower genotyping tools have evolved over the years from restriction fragment length

polymorphisms (RFLP), amplified fragment length polymorphism (AFLP), simple sequence

repeat (SSR), sequence-tagged-site (STS) to single nucleotide polymorphism (SNP). Several

genetic linkage maps have been published in the last 20 years [5–10]. Also, recent reports

describe the development of medium to high throughput SNP panels and highly dense genetic

maps [11–16].

Multiple traits (such as disease incidence, incubation period, lesion size, etc.) can be used to

characterize quantitative trait loci (QTL) in SHR. A quantitative feature that can be reliably

measured is essential for QTL mapping accuracy [17].

Several groups have studied QTLs for SHR resistance on diverse biparental populations

using assisted ascospore inoculations [18–21]. QTLs have been reported on different linkage

groups (LGs), corroborating the polygenic nature of inheritance. In most cases, the identified

QTLs explains only a low percentage of phenotypic variation, within a range of 23% [21] to

44% [22]. Comparisons of QTLs among studies were limited because of the lack of shared

markers and sequence information associated with the QTLs.

In recent years, the decrease in genotyping costs has motivated the development of new

breeding strategies, which complements the classical QTL mapping techniques. Therefore, it is

interesting to compare QTLs found through biparental mapping with those genomic regions

associated with trait variations identified by association mapping (AM) [23,24]. In this regard,

Fusari et al. [25] reported for the first time the use of AM to study SHR in inbred lines of

sunflower from the breeding program of the National Institute of Agricultural Technology

(INTA, Argentina) by using a candidate gene approach. They identified a significant associa-

tion of the candidate gene HaRIC_B with SHR incidence. In addition, Talukder et al. [14]

identified two candidate genes (HaCOI1-1 and HaCOI1-2) that were significantly associated

with Sclerotinia basal stalk rot resistance and that explained 7.4% of phenotypic variation.

In the research that we report here, we developed a new saturated AFLP-SSR-SNP linkage

map for a population of sunflower recombinant inbreed lines derived (RILs) from a cross

between PAC2 (partially resistant parental line) and RHA266 (susceptible parental line). We
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assessed the disease resistance level during the growing seasons of 2010 to 2014. Finally, the

main-effect QTLs (M-QTLs), epistatic QTLs (E-QTLs) and the QTL × Environment interac-

tion for the resistance traits disease incidence (DI), disease severity (DS), disease intensity

(DInt), and incubation period (IP) were analyzed.

Materials and methods

Sunflower genotypes

A biparental mapping population (BMP) of 114 sunflower recombinant inbred lines (RILs)

and the corresponding parental lines were used in the study. The BMP, and the parental lines,

partially resistant PAC2 (PR) and the susceptible RHA266 (PS) [26], were provided by Dr.

Gentzbittel and Dr. Langlade, from Institut National de la Recherche Agronomique (INRA,

France).

Disease assessment

Four field trials (FT) were carried out at the INTA Balcarce Experimental Station (Province of

Buenos Aires, Argentina). The RILs and the two parental lines were sown in four growing sea-

sons using a randomized complete block design with three replicates. The different trials were

identified as FT1 (sowing date October 19th, 2009); FT2 (sowing date December 5th, 2011);

FT3 (sowing date December 5th, 2012) and FT4 (sowing date December 9th, 2013). The experi-

mental unit consisted of one row (10 m long and 0.7 m width) with 25 plants.

S. sclerotiorum ascospores were obtained from apothecia developed by inducing carpogenic

germination of sclerotia, as described by Escande et al. [27]. Individual capitula at R5.2—R5.5

stage [28] were directly inoculated by mechanical spray with 1 ml of a suspension containing

2,500 ascospores ml-1. After inoculation, the capitula were covered with paper bags for 10 days

[29]. The capitula were spray-irrigated, daily at noon for 20 min, to maintain humid condi-

tions until physiological maturity. A susceptible cultivar was simultaneously inoculated with

the population at every inoculation date to check the efficacy of the inoculation procedure.

Phenotypic evaluation and statistical analysis

The phenotypic evaluation was carried out on individual capitula. SHR measures were recorded

as disease incidence (DI), disease severity (DS), disease intensity (DInt), and incubation period

(IP) in each plot. DI was registered as the maximum measured ratio of symptomatic capitula

among the total number of inoculated plants per plot, DS as the average proportion of the rot-

ted receptacle area of all diseased capitula at 21 DPIs, DInt as the average proportion of rotted

receptacle area of all inoculated capitula at 21 DPIs, and IP as the average DPIs in which the

symptoms appear of all symptomatic capitula assessed at 10, 14, 17, 19, 21, 24 and 28 DPIs.

To avoid inter-rater errors, the same observer conducted all assessments.

A generalized mixed linear model (GMLM) or a linear mixed-effects model (LMEM) was

fitted for each disease variable depending on the variable distribution and according to Filippi

et al. [30].

DI value, as the number of diseased plants over a total of inoculated plants, follows a bino-

mial distribution. It was analyzed according to the following model:

log
pijkl

1 � pijkl

 !

¼ mþ li þ cj þ fkj þ lfikj þ blj ð1Þ

where πijkl represents the probability of a plant becoming infected if it belongs to the inbred

line i (λi), evaluated in the field trial j (cj), inoculated in date k at the field trial j (fkj), and located
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in block l at the field trial j (blj). The term λfikj refers to the interaction between line and date of

inoculation.

DS, DInt, and IP were analyzed using LMEM, after verifying normality, according to the

following model:

Yijkl ¼ mþ li þ cj þ fkj þ lfikj þ blj þ eljkl ð2Þ

where Yijkl represents the disease measure for the inbred line i (λi), evaluated in the field trial

j (cj), inoculated in date k at the field trial j (fkj), and located in block l at the field trial j (blj).
The term λfikj refers to the interaction between line and date of inoculation, and εijkl is the nor-

mal error term for the observation Yijkl.

The inclusion of the line date-of-inoculation interaction term in models (1) and (2) is due

to the broad diversity in flowering time among the RILs. To include this term we take care that

effects of line and flowering time were not confounded.

Pearson correlation coefficients (r) were calculated from adjusted means to evaluate the

associations of SHR traits. Narrow sense heritability (h2) was estimated for each trial by intro-

ducing the “inbred line” as a random effect in models (1) and (2). Thus, the percentage of

genotypic contribution to total phenotypic variation explained (PVE) was used to estimate the

corresponding heritability [31]. All the statistical analyses were conducted using InfoStat statis-

tical software [32], which uses nlme [33] and lme4 [34] R packages [35] for model fitting.

DNA preparation and SNP genotyping

Total genomic DNA was extracted from 20 mg of 3-weeks-old lyophilized leaves collected

from 114 RILs and both parental lines with the NucleoSpin Plant II system (Macherey-Nagel,

Düren, Alemania). DNA quality was assessed using electrophoretic analysis, while DNA

concentration was determined with spectrofluorometer Nanodrop ND 3300 (NanoDrop

Technologies, Wilmington, DE, US) and the Quant-iT PicoGreen dsDNA reagent (Invitrogen,

Carlsbad, CA, US). Genomic DNA was normalized to 50 ng/μl.

Genotyping was performed using a custom-designed 384 Illumina Sunflower Oligo Pool

Assay (SOPA) [36,37]. The SOPA design was based on the sunflower unigene collection [38].

Briefly, in silico SNP markers were identified using the CAP3 assembly outputs as the input

of an in-house pipeline that finds biallelic positions in sequence alignments of Expressed

Sequence Tag (EST) markers. The selection criteria applied for SNP calling was at least two

distinct alleles in EST alignments with a minimum of five sequences, and no flanking polymor-

phism (50 bp up/downstream). Additional sequences of pre-validated SNPs from Fusari et al.
[25,39] and Kolkman et al. [40] were included in the SOPA design process. A total of 2,867

sequences containing SNPs were submitted to the Assay Design Tool (ADT, Illumina, San

Diego, CA, US), that uses information on the flanking sequences to identify loci with high like-

lihood of success [41]. SNPs with ADT score� 0.6 and a designability score ranging 0.5 to 1

were pre-selected. Finally, the last filter applied for the selection of 384 SNPs was the functional

annotation assigned to each unigene [38] (atgc-sur.inta.gob.ar, choosing those related to biotic

and abiotic stress).

Genotyping was performed on an Illumina, BeadXpress reader (Illumina, San Diego, CA,

US) at the Biotechnology Institute of INTA Castelar (Province of Buenos Aires, Argentina)

using the manufacturer’s protocol [41]. To evaluate the assay reproducibility, we included in

each plate eight replicated samples of PR, seven replicated samples of PS and negative controls.

SNP intensities per sample were normalized and assigned to a cluster position. According to

Illumina recommendation, the quality value for samples, i.e., "call rate" was > 0.70. Samples

below this value were discarded. A GenCall cutoff of 0.25 and a value < 0.40 for a GenTrain

QTL mapping for Sclerotinia Head Rot resistance in sunflower
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Score were set to determine reliable allele calling at each SNP, following the recommendations

from previous studies [42,43].

When automated cluster separation was not apparent (i.e. presenting overlapping clusters,

unassigned samples, and apparently heterozygous genotypes), clusters were manually edited to

identify SNPs as polymorphic or monomorphic unambiguously.

Genetic map construction

Informative SNPs were incorporated into a previous genetic mapping matrix [10,44,45]. SNP

segregation in the progeny was assessed with the program GQMOL [46] to identify significant

deviations (p� 0.05) of observed frequencies from the expected Mendelian segregation using

False Discovery Rate (FDR) correction [47].

The genetic map was constructed using the software package JoinMap, version 3.0 [48].

Marker grouping was performed using likelihood odds (LOD) ratios with a LOD threshold of

4.0 and a maximum recombination fraction threshold of 0.35 [49]. The order obtained in pre-

vious mapping efforts was kept unchanged for map calculations of the groups by specifying a

starting order in the corresponding JoinMap tabsheet. Similarly, the remaining ungrouped loci
were then assigned to LGs according to previously published genetic maps by using the “move

selected loci” function from the “Grouping” menu reducing LOD stringency to 1.0.

Recombination frequencies were transformed into centiMorgans (cM) by using Kosambi’s

mapping function [50] and corrected by the factor that considers multiple generations of mei-

osis in RIL populations [7,51].

Finally, the LGs were plotted with the software Mapchart 2.2 [52].

QTL mapping

For QTL mapping, we used the adjusted means per RILs and the built genetic map. Single-

locus QTL mapping was performed using the software QTL Cartographer 2.5 [53] applying

the method of composite interval mapping (CIM) with cofactors [54] to detect, map and char-

acterize the main effect QTLs (M-QTLs). “Method 6” and a maximum of five markers were

automatically selected as cofactors over a window size of 10 cM by the forward and backward

regression method with both, probabilities-to-enter and to-delete = 0.1. The chosen walk

speed was 0.5 cM. A LOD score threshold to declare a putative QTL as significant was chosen

by performing 1000 permutations for α = 0.05 [55]. QTL position was determined by the max-

imum LOD value within the region under analysis while confidence intervals were obtained

using positions ± 1 LOD away from the peak. PVE by a given QTL was estimated by its deter-

mination coefficient (R2).

QTL Cartographer output file was employed to conduct two-locus analysis with QTLNet-

work 2.1 [56], which is performed on mixed-model-based composite interval mapping

(MCIM) [57]. This program identifies epistatic QTLs (Ep-QTLs) and M-QTLs. Critical F-val-

ues were calculated through a 1000 permutation test. M-QTLs and Ep-QTLs were declared as

putative with a significance level of 0.05. A Monte Carlo Markov Chain approach was used to

estimate QTL effects.

QTLs detected here were generically designated as “qVARIABLE-LG” [58], for genomic

regions detected with both QTL Cartographer and QTLNetwork. A letter was added at the end

of the name for differentiating all the QTLs found in the same LG. QTLs and confidence inter-

vals were plotted on the genetic map with the software Mapchart 2.2 [52].

Parent allele contributions to resistance were evaluated by taking only locus-specific mark-

ers near maximum LOD values (defining M-QTLs). Therefore, AFLP markers (names starting

with “E”) were not considered. Finally, maps from previous QTL analysis for Sclerotinia
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resistance in sunflower were cross-referenced with the current map through shared markers to

compare the chromosomal positions of M-QTLs from different studies.

Results

Statistical analysis of SHR-related phenotypic variables

Table 1 displays the general statistics for the four SHR-related phenotypic variables. We

analyzed the selected phenotypic variables of 99 RILs of a total of 114. We discarded the

remaining 15 RILs because we were unable to obtain phenotypic data mainly due to low seed

germination.

The heritability (h2) values were moderate for all traits across trials, except for DI in FT2

and DInt in FT1 and FT2.

Table 1. Statistical analysis for four disease resistant traits of RIL population and parents in multiple environments.

Trait Field Trial IDa Biparental Mapping Population h2 (%)

Min Max Mean SD Skewness Kurtosis CV (%)

DI

FT1 0.00 1.00 0.51 ± 0.02 0.27 -0.17 -0.95 52.95 45.61

FT2 0.00 0.75 0.11 ± 0.01 0.18 1.78 2.26 161.56 7.34

FT3 0.00 1.00 0.65 ± 0.02 0.25 -0.54 -0.24 37.97 34.98

FT4 0.00 1.00 0.48 ± 0.02 0.29 0.09 -0.99 60.14 31.49

AFT 0.00 1.00 0.45 ± 0.01 0.32 0.01 -1.23 70.67 N/A

DS

FT1 0.01 1.00 0.18 ± 0.01 0.14 3.18 13.52 79.40 20.40

FT2 0.01 1.00 0.30 ± 0.03 0.27 0.90 -0.10 92.76 43.36

FT3 0.01 1.00 0.51 ± 0.01 0.21 0.04 -0.23 41.08 20.49

FT4 0.01 0.80 0.29 ± 0.02 0.18 0.27 -0.56 62.04 50.52

AFT 0.01 1.00 0.35 ± 0.01 0.24 0.59 -0.37 68.64 N/A

DInt

FT1 0.00 0.36 0.04 ± 0.0038 0.05 3.90 20.14 131.87 1.86

FT2 0.00 0.36 0.03 ± 0.0044 0.06 3.01 9.93 220.20 2.87

FT3 0.00 0.88 0.28 ± 0.01 0.19 0.60 -0.31 67.99 26.49

FT4 0.00 0.70 0.12 ± 0.01 0.14 1.41 1.75 112.52 59.90

AFT 0.00 0.88 0.13 ± 0.01 0.17 1.56 1.89 130.24 N/A

IP

FT1 16.00 42.00 27.91 ± 0.31 4.43 -0.01 0.02 15.88 13.74

FT2 14.00 28.00 20.26 ± 0.41 3.56 0.39 -0.51 17.57 45.48

FT3 14.00 28.00 19.49 ± 0.19 2.75 0.32 -0.24 14.08 37.94

FT4 14.00 28.00 20.91 ± 0.25 2.86 -0.12 -0.48 13.67 52.45

AFT 14.00 42.00 22.63 ± 0.20 5.13 0.77 0.16 22.66 N/A

aField Trial ID FT1-4 and AFT represent: Balcarce October 2009; Balcarce December 2011; Balcarce December 2012; Balcarce December 2013; Across

Field Trials, respectively.

DI = Disease Incidence

DS = Disease Severity

DInt = Disease Intensity

IP = Incubation Period

SD = Standard Deviation

CV = Coefficient of variation

N/A = not assigned

https://doi.org/10.1371/journal.pone.0189859.t001
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Correlations among the phenotypic adjusted means are presented in S1 Table. For example,

DI and DInt showed an expected positive correlation. By contrast, the correlations between IP

and DS (r = -0.67, p< 0.0001), IP and DInt (r = -0.64, p< 0.0001) and IP and DI (r = -0.45,

p< 0.0001) were negatives. Finally, the correlations between DI and traits DS and DInt

(r = 0.41 and r = 0.64, respectively, p< 0.0001) were moderate.

SNP genotyping assay and genetic map construction

For the SOPA design, we selected a total of 384 loci, out of the 537 putative SNP that matched

the optimal designability criteria suggested by Illumina. The dataset includes 97 SNP polymor-

phisms previously validated by re-sequencing different sunflower genotypes [25,39,40] and

287 in silico SNP coming from EST functionally annotated as related to stress response accord-

ing to Gene Ontology (see atgc-sur.inta.gob.ar).

The SOPA was assayed using the BMP 114 RILs giving good quality scores for 108 RILs

(call rate� 0.8%). The genotyping assay reproducibility was 100% for all replicated samples.

Sixty-four (17%) of SNP were polymorphic, 218 (57%) were monomorphic, and 102 (26%)

failed. The conversion rate, corresponding to the number of polymorphic SNPs divided by

the total number of SNPs in the assay, was 0.17 (64/384). A total of 64 SNPs was available for

mapping.

No significant deviations from Mendelian segregation ratios were observed for SNP mark-

ers from BMP RILs. The 64 polymorphic SNPs were incorporated into a previous genetic map-

ping matrix, rendering a final matrix composed of 114 RILs and 706 markers.

The genetic map developed here for detecting SHR resistance QTLs contains 61 new SNPs

from the SOPA (names starting with “HeAn”), eight SNPs from candidate genes, 327 AFLPs,

229 SSRs, eight EST-SSRs and two InDels (Figs 1–4 and Table 2). All loci were placed into 17

LGs, matching the expected chromosome number (n = 17). The map spanned 2,823.30 cM

with an average density of one marker per 4.45 cM. The average size of LGs was 166.11 cM

and ranged from 88.31 (LG13) to 276.64 cM (LG10), while the greatest length between two

markers was 44 cM (LG17).

The S2 Table provides a detail of the mapped SNPs.

Main effect QTLs for SHR phenotypic variables

A total of 36 M-QTLs (34 detected by single-locus analysis and five identified by two-locus

analysis; three in common) were associated with SHR resistance. Figs 1–4, Tables 3 and 4 dis-

play detailed information about location, R2, and the additive effect of M-QTLs detected for

SHR-related phenotypic variables. For DI, we found six M-QTLs located on LG1, LG7, LG13,

LG14 and LG15 (six detected by single-locus analysis and one by two-locus analysis; one in

common). R2 values ranged from low to moderate, explaining from 12.45% to 23.87% of the

phenotypic variance. Resistance alleles came from the PR except for qDI-7a, which came from

PS. All but three M-QTLs (qDI-13a, qDI-7a, and qDI-1a) presented significant negative addi-

tive effects.

In this work, we identified nine M-QTLs for DS located on LG1, LG2, LG9, LG10 and

LG16, eight detected by single-locus analysis and two by two-locus analysis; one shared

between both approaches. For this variable, the range of R2 values was the widest observed

across all analyzed variables, ranging from 0.08% to 29.65%. PR provided resistance alleles for

all M-QTLs detected for DS, except for qDS-16a. All but two M-QTLs, qDS-10d and qDS-16a,

presented significant negative additive effects.

For DInt, we found 12 M-QTLs located on LG1, LG8, LG10, LG11, LG12, LG13 and LG15,

11 detected by single-locus analysis and one by two-locus analysis; none in common. R2 values
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Fig 1. Genetic linkage map of BMP showing locations on LG1-5 of different types of QTLs and interactions detected through

single- and two-locus QTL analyses for resistance traits. Mapped markers are listed on the left. Underlined markers correspond to the

61 SNPs mapped in this work. Lengths of confidence Interval (CI) for the M-QTL and the Ep-QTL are denoted by full lines and dashed lines,

respectively. Epistatic interaction between QTLs is represented with arrows. SHR QTLs coincident with previous reported QTLs are in bold.

*QTLs detected using QTL Cartographer. **QTLs detected using QTLNetwork. ***QTLs detected using both programs.

https://doi.org/10.1371/journal.pone.0189859.g001
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Fig 2. Genetic linkage map of BMP showing locations on LG6-9 of different types of QTLs and interactions detected

through single- and two-locus QTL analyses for resistance traits. Mapped markers are listed on the left. Underlined

markers correspond to the 61 SNPs mapped in this work. Lengths of confidence Interval (CI) for the M-QTL and the Ep-QTL are

denoted by full lines and dashed lines, respectively. Epistatic interaction between QTLs is represented with arrows. SHR QTLs

coincident with previous reported QTLs are in bold. * QTLs detected using QTL Cartographer. ** QTLs detected using

QTLNetwork. *** QTLs detected using both programs.

https://doi.org/10.1371/journal.pone.0189859.g002
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Fig 3. Genetic linkage map of BMP showing locations on LG10-13 of different types of QTLs and interactions detected through single-

and two-locus QTL analyses for resistance traits. Mapped markers are listed on the left. Underlined markers correspond to the 61 SNPs

mapped in this work. Lengths of confidence Interval (CI) for the M-QTL and the Ep-QTL are denoted by full lines and dashed lines, respectively.

Epistatic interaction between QTLs is represented with arrows. SHR QTLs coincident with previous reported QTLs are in bold. * QTLs detected

using QTL Cartographer. ** QTLs detected using QTLNetwork. *** QTLs detected using both programs.

https://doi.org/10.1371/journal.pone.0189859.g003
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Fig 4. Genetic linkage map of BMP showing locations on LG14-17 of different types of QTLs and interactions detected through single-

and two-locus QTL analyses for resistance traits. Mapped markers are listed on the left. Underlined markers correspond to the 61 SNPs

mapped in this work. Lengths of confidence Interval (CI) for the M-QTL and the Ep-QTL are denoted by full lines and dashed lines, respectively.

Epistatic interaction between QTLs is represented with arrows. SHR QTLs coincident with previous reported QTLs are in bold. * QTLs detected

using QTL Cartographer. ** QTLs detected using QTLNetwork. *** QTLs detected using both programs.

https://doi.org/10.1371/journal.pone.0189859.g004
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ranged from 6.20% to 23.45%. Resistance alleles came from the PR except for qDInt-15b that

came from PS. All but four M-QTLs, qDInt-11a, qDInt-12a, qDInt-13a, and qDInt-15b, showed

significant negative additive effects.

For IP, nine M-QTLs located on LG1, LG2, LG3, LG8, LG12, LG15, LG16 and LG17, nine

detected by single-locus analysis and one by two-locus analysis; one in common, were identi-

fied. R2 values ranged from 9.81% to 29.05%. Resistance alleles came from the PR and all but

two M-QTLs, qIP-2a and qIP-12a, presented significant positive additive effects.

Interestingly, over the distal region of LG1, three markers from the SOPA, HeAn_C_10493.1,

HeAn_C_8647.2 and HeAn_C_1638.1, were statistically associated with four M-QTLs, one for

each tested variable, qDI-1b, qDS-1b, qDInt-1a and qIP-1a, being three of them consistently

detected for FT2. Additionally, since qDS-1b and qIP-1a showed R2 values of up to 29.12%, they

should be considered major M-QTLs. On LG10, two sets of M-QTLs, qDS-10a and qDInt-10b,

and qDS-10b and qDInt-10c respectively, were consistently present in AFT and FT3 analyses.

Also, over the distal region of LG10, the major M-QTL qDS-10d, which was associated with

GLP_4 marker, showed the highest R2 value (29.65%) across the study. Finally, qDI-15a on

LG15 showed moderate R2 values and was consistently detected across three field trials over the

candidate gene clusters composed by HeAn_R_534.1, HeAn_R_174.2, HeAn_C_11434.1, and

HeAn_C_12025.1.

Figs 1–4 show all M-QTLs that co-located with QTLs from earlier maps in bold. This is the

first report on SHR-related QTLs on LG11 and LG15; consequently, the seven M-QTLs identi-

fied in this work for these LGs, qDInt-11a, qDInt-11b, qDInt-15a, qDInt-15b, qIP-15a, qDI-15a,

qIP-15b, are new.

Table 2. Marker density and marker distribution on sunflower linkage groups (LGs).

LG # AFLP # SSR # EST-SSR # InDel # SNPa # HeAnb # loci Length (cM) Density (cM/locus)

1 15 8 - - - 3 26 120.34 4.63

2 16 14 - - - 7 37 157.11 4.25

3 19 13 - - - 3 35 143.77 4.11

4 20 7 2 - - 1 30 143.50 4.78

5 16 12 - - - 4 32 176.26 5.51

6 15 7 - - 2 2 26 125.55 4.83

7 16 8 - - - 1 25 103.15 4.13

8 19 20 1 - - 3 43 183.59 4.27

9 27 18 - - 1 4 50 239.35 4.79

10 50 20 1 1 2 7 81 276.64 3.42

11 14 7 - - 1 4 26 107.86 4.15

12 17 17 - - 1 5 40 178.00 4.45

13 9 6 - - 1 - 16 88.31 5.52

14 19 19 - 1 - 7 46 181.63 3.95

15 11 14 1 - - 4 30 113.79 3.79

16 21 26 2 - - 5 54 214.61 3.97

17 23 13 1 - - 1 38 270.34 7.11

Total 327 229 8 2 8 61 635 2,823.80 -

Mean 19.24 13.47 0.47 0.12 0.47 3.59 37.35 166.11 4.45

aSNPs previously mapped [25,44–45]
bHeAn-SNPs identified and mapped in this work.

https://doi.org/10.1371/journal.pone.0189859.t002
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Table 3. Parameters associated with main effect QTLs detected in BMP by single-locus analysis using QTL Cartographer.

Trait QTL Field

Triala
LG Markerb Position on

LG (cM)

LOD

score

Additive

effect (a)

% Phenotypic

Variation Explained

(R2)

Confidence

interval (cM)

Parental

contribution

DI

qDI-1a FT3 1 E40M62_4 48.60 3.71 0.08 13.61 8.30 N/A

qDI-1b FT2 1 HeAn_C_10493.1 96.70 4.30 -0.04 15.15 3.30 PR

qDI-7a FT1 7 ORS1041 42.10 3.70 0.09 12.45 12.20 PS

qDI-

13a

AFT 13 E33M48_20 27.50 4.43 0.08 15.94 9.70 N/A

qDI-

14a

FT3 14 ORS301 143.40 4.11 -0.04 16.06 4.20 PR

qDI-

15ac
AFT 15 HeAn_R_534.1 80.20 7.25 -0.09 22.63 4.50 PR

FT3 15 HeAn_C_12025.1/

HeAn_C_11434.1

85.00 6.15 -0.10 19.77 4.00 PR

FT4 15 ORS1242 87-0 4.10 -0.10 14.71 3.30 PR

AFT 15 ORS687 90.80 6.87 -0.09 23.87 4.50 PR

DS

qDS-

1a

FT1 1 E37M47_15 35.40 5.36 -0.04 24.92 2.20 N/A

qDS-

1bc
FT2 1 HeAn_C_8647.2 99.30 5.67 -0.19 29.12 11.00 PR

FT2 1 HA77 104.80 4.63 -0.19 28.10 11.00 PR

qDS-

2a

AFT 2 E40M62_17 102.80 3.41 -0.05 12.05 7.70 N/A

qDS-

9a

FT4 9 E38M48_5 164.40 4.86 -0.07 20.84 2.30 N/A

qDS-

10a

AFT 10 ORS591 124.40 4.57 -0.06 16.97 6.60 PR

qDS-

10b

FT3 10 E41M50_3 150.40 4.22 -0.08 16.20 0.70 N/A

qDS-

10d

FT2 10 GLP_4 271.10 4.94 0.16 29.65 6.00 PS
NS

qDS-

16a

FT1 16 HA4222 142.10 3.44 0.04 13.90 5.40 PS

DInt

qDInt-

1a

FT2 1 HeAn_C_8647.2 98.70 4.25 -0.02 15.65 11.90 PR

FT2 1 ORS662 106.80 4.52 -0.02 18.66 11.90 PR

qDInt-

8a

FT3 8 E37M61_7 54.50 4.00 -0.06 16.17 10.70 N/A

qDInt-

8b

FT4 8 HA3278 167.70 3.78 -0.05 14.76 13.20 PR

qDInt-

10a

FT3 10 E32M61_7 76.10 4.27 -0.07 20.14 10.80 N/A

qDInt-

10b

AFT 10 SSL39 121.80 3.81 -0.03 14.87 3.00 PR

qDInt-

11a

FT1 11 E32M49_2 41.30 3.73 0.02 15.23 2.50 N/A

qDInt-

11b

FT1 11 E35M48_3 54.80 4.25 -0.02 17.38 2.00 N/A

qDInt-

12a

FT1 12 E33M48_22 103.00 6.13 0.02 23.45 5.20 N/A

qDInt-

13a

FT2 13 E33M48_20 24.30 4.71 0.02 20.50 10.70 N/A

(Continued )
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Epistatic QTLs and environmental interactions for SHR-related

phenotypic variable

Two-locus analysis detected 13 Ep-QTLs involved in seven significant digenic epistatic interac-

tions on LG2, LG3, LG7, LG8, LG9, LG10, LG11, LG15, LG16 and LG17 (Figs 1–4 and

Table 5, arrows points from QTLi to QTLj).

None of the Ep-QTLs involved in Q × Q interactions showed main-effects. Epistasis con-

tributed 0.72% (DI), 10.04% (DS), 9.8% (DInt) and 10.94% (IP) of the total PVE. Mostly for all

Ep-QTLs, recombinant two-locus combinations enhanced resistance. However, for DI only

one parental two-locus combination enhanced resistance.

Finally, we detected three QTL × QTL × Environment interactions for DS and IP and these

interactions involved FT2 and FT3.

Discussion

Screening for disease resistance in inbred lines and commercial hybrids is performed periodi-

cally as part of the ongoing sunflower breeding programs and annual variety trials. Assisted

Table 3. (Continued)

Trait QTL Field

Triala
LG Markerb Position on

LG (cM)

LOD

score

Additive

effect (a)

% Phenotypic

Variation Explained

(R2)

Confidence

interval (cM)

Parental

contribution

qDInt-

15a

FT1 15 SSU25 24.60 3.08 -0.01 12.05 4.80 PR
NS

qDInt-

15b

FT1 15 ORS401 46.50 5.33 0.02 23.05 6.80 PS

IP

qIP-1a AFT 1 HA77 102.30 7.35 1.25 29.05 2.10 PR

qIP-2a FT3 2 E41M62_28 17.90 4.64 -1.17 17.39 6.50 N/A

qIP-3a FT1 3 HeAn_R_283.1 123.70 4.23 1.27 16.76 7.50 PR

qIP-

8ac
FT2 8 HA911 50.00 4.26 1.86 21.92 5.10 PR

qIP-

12a

FT4 12 E33M48_22 105.00 3.65 -1.02 14.94 10.90 N/A

qIP-

15a

AFT 15 HA4239 71.70 4.26 1.02 19.95 11.60 PR

qIP-

15b

FT4 15 E38M48_4 99.40 5.35 1.17 20.70 3.00 N/A

qIP-

16a

AFT 16 ORS788 157.70 4.37 0.92 15.61 4.70 PR

qIP-

17a

FT1 17 E41M62_19 201.00 4.59 1.55 24.15 6.00 N/A

aFT1 = Balcarce October 2009, FT2 = Balcarce December 2011, FT3 = Balcarce December 2012, FT4 = Balcarce December 2013, AFT = across field

trials, pooled data from all the trials.
bMarker defining QTL, closer to the highest LOD value.
cQTL detected by both QTL Cartographer and QTLNetwork.

DI = Disease Incidence

DS = Disease Severity

DInt = Disease Intensity

IP = Incubation Period

N/A = not assigned

https://doi.org/10.1371/journal.pone.0189859.t003
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inoculation with ascospores, like the one used in this work, is preferable since natural infec-

tions are affected by the presence of sclerotia in the soil and weather conditions, which vary

between years and regions [29,59]. Assisted inoculation is also highly reproducible and suited

for revealing the variability in disease resistance response in sunflower [60]. We performed the

inoculation of each capitula with 2,500 ascospores and analyzed four phenotypic variables, DI,

DS, DInt and IP to differentiate between susceptible and highly resistant sunflower RILs. In

this study, the amount of ascospores used in assisted inoculation was 10-fold less than in Cas-

taño et al. [61], Van Becelaere and Miller [29] and Vear et al. [62] and the levels of disease var-

ied between 0 to 100%.

SHR disease develops in stages, starting with the infection during flowering, followed by

mycelium invasion in the parenchyma tissues during the grain-filling, and ending with sclero-

tia formation at maturity [63]. The phenotypic variables measured in this work allow the eval-

uation of the RIL’s performance during the different stages of the disease development. DI

and IP measure the resistance to pathogen penetration and the delay in the initial mycelium

growth. Whereas, DS and DInt account for disease resistance in intermediate and final phases

of SHR development [64].

We found a significant correlation between DS and DInt (r = 0.8). It was expected because

both variables consider the proportion of infected area in their assessments. Despite the rela-

tionship between these indicators, we still consider both as separate variables because the likeli-

hood of finding different QTLs for SHR resistance was increased when both variables were

Table 4. Parameters associated with main-effect QTLs and those involved in interaction with the trial (environment) detected in BMP by two-locus

analysis using QTLNetwork.

Trait QTL LG Markera Position on LG

(cM)

Confidence interval

(cM)

Additive effect

(a)

h2a

(%)b
QTL × Environment interactions

Field Trialc Additive effects

(ae)

h2ae (%)d

DI

qDI-

15ae
15 HeAn_R_534.1 80.70 8.00 -0.08 15.32 - - -

DS

qDS-

1be
1 HeAn_C_8647.2 99.30 2.60 -0.06 7.43 FT1, FT2 -0.09 to 0.05 1.22 to

4.63

qDS-

10c

10 E40M50_16 214.30 4.50 -0.01 0.08 FT2, FT3 -0.04 to 0.06 1.22 to

2.81

DInt

qDInt-

10c

10 E41M50_3 150.30 1.90 -0.03 6.20 FT1, FT2,

FT3

-0.03 to 0.02 1.56 to

2.22

IP

qIP-8ae 8 HA911 51.90 8.60 0.88 9.81 - - -

aMarker defining QTL, closer to the highest LOD value.
bPercentages of the phenotypic variations explained by additive effects.
cField trial in which Q × E was detected for the particular QTL. FT1 = Balcarce October 2009, FT2 = Balcarce December 2011, FT3 = Balcarce December

2012, FT4 = Balcarce December 2013, AFT = across field trials, pooled data from all the trials.
dPercentage of the phenotypic variations explained by the additive effect of the QTL × environment interaction.
eQTL detected by both QTL Cartographer and QTLNetwork.

DI = Disease Incidence

DS = Disease Severity

DInt = Disease Intensity

IP = Incubation Period

https://doi.org/10.1371/journal.pone.0189859.t004
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included in the analysis. All other variables showed a moderate to low correlation between

them. These results suggest that different genetic bases (partially shared among variables) are

involved in SHR resistance, as proposed by Bioley et al. [65].

The high sensitivity of genotype response to environmental conditions became apparent

in the present work where DI and DInt means for FT2 differed from those of the other field

trials. Indeed, the FT2 showed the highest average daily temperature during the RILs inocu-

lation period (23.7˚C vs. 21.8˚C average for the others FTs). The inhibitory effect of higher

temperatures on fungal pathogenicity is reflected on the positive skewness, kurtosis and CV

values registered during FT2 (Table 1). Filippi et al. [30], who studied SHR resistance with

association mapping in the same location, also observed that the DI and DS values were

below the overall mean in an assay conducted in 2011/2012. In agreement with our findings,

Abawi and Grogan [66] found a negative correlation between temperature and SHR disease

levels. They reported that the average temperatures for proper growth of the Sclerotinia

mycelia were between 16 and 22˚C. Similarly, Vear et al. [67] described a lower level of attack

by ascospores in a variety field trial conducted in Clermont-Ferrand in 2003 than in previous

trials in the same location. In their study, temperatures ranged from 25˚C at night to 40˚C at

day time.

Moreover, inoculation dates also seem to affect the disease response. For instance, FT1

sown in October showed longer IP (and consequently lower disease levels at 21 DPIs) than the

other three FTs, which were sown in December of each year.

In this study, we applied the mixed model approach to work with complex data. The effect

of different inoculation dates on disease response was solved by including this variable as a

random effect in the statistical models. Also, the adjusted means calculated for the four pheno-

typic variables, allowed us to test the genotype-by-environment interactions G × E, i.e. the dif-

ferential genotypic response to different environments.

We observed a broad range of h2 values, ranging from 1.86% to 59.9%. DI and DInt dis-

played the lowest h2 values during FT2. This finding was expected due to the unfavorable envi-

ronmental conditions for the development of the disease during this trial. These values are

comparable to those obtained by Filippi et al. [30] using the same approach. The moderate h2

values suggest that marker assisted selection, using either the AM or the BMP approach, may

be the method of choice when breeding for resistance to SHR, instead of conventional pheno-

typic selection.

The PAC2 × RHA266 BMP is a reference population used in many QTL studies for differ-

ent traits [68–71]. Despite that, the available reference maps for this population are based on

AFLP and SSR markers. Indeed, the use of new generation genotyping platforms to saturate

the PAC2 × RHA266 map has not been reported yet.

By using a custom-made SOPA (Illumina), we incorporated 61 new SNP markers into an

already existing genetic map, thus giving an average of one marker per each 4.45 cM. This map

updates the previous linkage map published by Talia et al. [10], built using 94 RILs from the

same population. In comparison, Flores Berrios et al. [71], Bert et al. [21] and Rönicke et al.
[72] described slightly shorter maps with sizes of 2,558 cM, 2,318 cM, and 2,273.5 cM, respec-

tively. Extreme caution must be taken when comparing maps, because different software and

the adjustment of various parameters (e.g. LOD, recombination frequency) can influence the

length of the map. Furthermore, this variation can result from marker clusters or different dis-

tribution patterns among types of markers, the effects of distorted segregation markers and

population sizes [73,74].

We observed a uniform distribution of the added SNP markers in the sunflower genome.

Eight markers, HeAn_R_149.1, HeAn_C_10204.1, HeAN_R_RGEF_A1.2, HeAn_C_4023.2,

HeAn_C_11741.1, HeAn_R_204.1, HeAn_C_12910.1 and HeAn_C_5433.3, mapped on the
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telomeric positions on LG2, LG4, LG9, LG11 and LG17. We obtained good marker saturation

with only three gaps greater than 25 cM located on LG9 and LG17.

The large number of detected main effects QTLs (36) supports a polygenic inheritance and

a substantial influence of environmental factors on resistance to SHR. Moderate additive

effects were detected for alleles for most of the evaluated variables (Tables 3 and 4). For all the

detected M-QTLs, the R2 and additive effects values found in were similar to those reported by

Bert et al. [21,75]et al., Rönicke et al. [72] and Yue et al. [20].

Some RILs produced a lower SHR disease level when compared to their parents, while oth-

ers produced higher levels. This finding suggests transgressive segregation for resistance in this

cross. This was supported by QTL mapping since the alleles conferring increased resistance

against SHR were originated from the partially resistant parental line (PR, PAC2) for the 85%

of the detected M-QTLs. Several researchers have previously reported trangressive segregation

in sunflower for partial resistance to S. sclerotiorum stem rot [76,77] and SHR [22].

To analyze the genetic basis of SHR resistance we assessed the co-localization of the

detected QTLs for the four phenotypic variables across FTs, as well as conserved collinearity

regions among reported QTLs contributing to resistance to different forms of Sclerotinia

resistance in sunflower. Identification of overlapping QTLs could increase the efficiency of

marker-assisted selection and enhance genetic progress [78]. In this work, we detected clus-

tered M-QTLs on LG1 (eight), LG10 (five) and LG15 (eight). M-QTLs for maximum inci-

dence was consistently present on the distal region of LG15 across field trials, suggesting that

their expression may not be sensitive to environmental conditions. No previous QTLs for

SHR resistance seemed to be on LG15. However, Micic et al. [79] found statistically signifi-

cant clustered QTLs for midstalk-rot accounting for the speed of fungal growth and size of

the lesion in both, leaf and stem, in this linkage group. The QTLs for fungal’s growth speed

described by Micic et al. [79] co-locate with the genomic region that we studied on LG1. Sim-

ilarly, most M-QTLs on LG10 could be associated with the section harboring the branching

gene (b1) close to the SSR marker ORS437 [22]. In agreement with previous studies carried

out on PAC2, this branched line may have a fixed favorable allele for Sclerotinia resistance

near to, or in the same zone, as that of the recessive apical branching gene b1 [22,80].

Bert et al. [75] and Yue et al. [20] identified other QTLs in the same chromosomal region.

According to our results, M-QTLs located on LG1, LG10 and LG15 have good reproducibil-

ity, high R2 values and seemed to be involved with common resistance responses (Figs 1–4,

Tables 3 and 4). Thus, these genomic regions must be considered as candidate regions for

breeding programs.

Our results support the putative role of candidate regions on LG1, LG10 and LG15 during

the SHR disease. However, M-QTLs were also detected in agreement with another authors on

LG2 [20], LG8 [75], LG10 [19,20,72,75], LG11 [79], LG15 [21] and LG16 [79]. Through an

AM approach, we also identified one QTL, supported by the marker HA1848 on LG7 signifi-

cantly associated with resistance to SHR [81]. The genomic region of this QTL is large (3.3 and

7.7 cM at both sides of the marker HA1848) and consequently, makes it difficult to determine

which genes are involved in this resistance. However, HA1848 is a promising marker for use

in breeding programs since both approaches have validated it and also because it was located

on LG7, which was already mentioned in several QTL mapping papers on for S. sclerotiorum
resistance, including SHR in sunflower [20,21,75].

When we analyzed the Ep-QTLs, none of them had main effects. However, previous

researches have reported the identification of loci with no main effect but with the ability to

influence a variable through their interactions with other loci. This suggests that epistatic inter-

actions between minor Ep-QTLs may play a significant role in enhancing overall resistance

[82]. No hub regions associated with resistance variables were identified.
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We identified a low number of both QTL × Environment interactions and QTL × QTL ×
Environment interactions. This finding could either be explained because parental QTL alleles

interacting with the environment do not differ, or because these characters are stable and inde-

pendent of environmental influence. This result is desirable since the use of QTLs not involved

in interactions for molecular-assisted selection (MAS) guarantees a better performance of the

breeding materials in different environments.

This study constitutes the most extensive report of QTLs for resistance to SHR up to the

present. The relatively moderate number of RILs used in our study may have had an adverse

influence on the accuracy of the calculated QTL effects and the ability to detect QTLs with

small effects [83]. However, this was compensated by the higher precision of the phenotypic

data estimation and the use of a new saturated map with 635 markers. In this regard, while

the development of closely linked markers and the validation of most of the detected QTLs is

required, major candidate regions on LG1, LG10 and LG15 were also identified in different

independent studies. Thus, these regions are candidates to breeding programs through MAS.

MAS involve a limited number of QTLs to be transferred from one genetic background to

another (therefore pyramiding all minor QTLs is not possible). Alternative approaches like

marker-assisted recurrent selection (MARS) or genome-wide selection (GWS) allow selection

for several QTLs with small effects [84].

Conclusion

The wide distribution of the QTLs identified here confirmed the vast and complex genetic

basis of sunflower resistance to SHR. This work deepens the knowledge of genomic regions

associated with SHR resistance in sunflower and highlights the importance of the reduced

groups of QTLs on LG1, LG10, and LG15. These genomic intervals are presented as candi-

dates. Progress could be achieved by applying different approaches in genomics and genetics,

both to locate functional components responsible for the expression of resistance and to con-

tribute to the understanding of the complexity of resistance. The improved genetic map

includes 61 SNP markers over candidate genes providing strong evidence of the power of

biparental populations in the genetic study of disease resistance and establish an appropriate

platform for detecting QTLs. Finally, the QTL associated markers described here could be

transferred to breeding programs to accelerate the process of obtaining genotypes with better

performance against SHR.
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17. Roux F, Voisin D, Badet T, Balagué C, Barlet X, Huard-Chauveau C, et al. Resistance to phytopatho-

gens e tutti quanti: placing plant quantitative disease resistance on the map. Mol Plant Pathol. 2014; 15:

427–32. https://doi.org/10.1111/mpp.12138 PMID: 24796392

18. Gentzbittel L, Mouzeyar S, Badaoui S, Mestries E, Vear F, Tourvieille De Labrouhe D, et al. Cloning of

molecular markers for disease resistance in sunflower, Helianthus annuus L. Theor Appl Genet.

Springer; 1998; 96: 519–525. https://doi.org/10.1007/s001220050769 PMID: 24710892

19. Maringolo C. Regiones Cromosómicas Asociadas a Resistencia a Podredumbre Húmeda del Capı́tulo

de Girasol (Sclerotinia sclerotiorum (Lib.) de Bary). Posgrado en Producción Vegetal. Universidad

Nacional de Mar del Plata. Facultad de Ciencias Agrarias, Unidad Integrada Balcarce Argentina. 2007.

20. Yue B, Radi SA, Vick BA, Cai X, Tang S, Knapp SJ, et al. Identifying quantitative trait loci for resistance

to Sclerotinia Head Rot in two USDA sunflower germplasms. Phytopathology. 2008; 98: 926–31.

https://doi.org/10.1094/PHYTO-98-8-0926 PMID: 18943211

21. Bert PF, Dechamp-Guillaume G, Serre F, Jouan I, de Labrouhe DT, Nicolas P, et al. Comparative

genetic analysis of quantitative traits in sunflower (Helianthus annuus L.). Theor Appl Genet. 2004; 109:

865–874. https://doi.org/10.1007/s00122-004-1701-1 PMID: 15141292

22. Mestries E, Gentzbittel L, Tourvieille de Labrouhe D, Nicolas P, Vear F. Analyses of quantitative trait

loci associated with resistance to Sclerotinia sclerotiorum in sunflowers (Helianthus annuus L.) using

molecular markers. Mol Breed. 1998; 4: 215–226. https://doi.org/10.1023/A:1009694626992

23. Ingvarsson PK, Street NR. Association genetics of complex traits in plants. New Phytol. 2011; 189:

909–922. https://doi.org/10.1111/j.1469-8137.2010.03593.x PMID: 21182529
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31. Gonçalves E, Carrasquinho I, St. Aubyn A, Martins A. Broad-sense heritability in mixed models for

grapevine initial selection trials. Euphytica. 2013; 189: 379–391. https://doi.org/10.1007/s10681-012-

0787-9

32. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. InfoStat. Version

2015. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.; 2015. http://www.infostat.
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34. Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using lme4. J Stat Softw.

2015; 67. https://doi.org/10.18637/jss.v067.i01

35. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria; 2016. http://

www.r-project.org/

36. Zubrzycki J, Filippi C, Fusari C, Puebla A, Fernandez P, Hopp H, et al. Desarrollo e implementación de

un ensayo de genotipificación masiva de SNPs en girasol. Procedimiento del XV Congreso Latinoamer-
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