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ABSTRACT.— Agricultural expansion and intensification resulted in important changes in the agri-
cultural landscape of the Pampas region, Argentina. We used linear mixed models to analyze the
relationship between environmental variables associated to land use/cover, productivity and climate
and changes in densities of two bird species, the Fork-tailed Flycatcher (Tyrannus savana) and the
White-browed Blackbird (Sturnella superciliaris). The study area  in central Argentina was divided
in three agroproductive sub-regions: (1) predominantly agricultural, (2) mixed agricultural–
rangeland and (3) mixed agricultural–forested rangeland. Bird populations were sampled annually
during 2003–2011 using point-transects along secondary roads (48 transects). Mean estimated
density for Fork-tailed Flycatcher was 0.132 ind/ha, increased in the agricultural sub-region and
was associated with decreasing forest cover and increasing fallow and weedy fields cover. Mean
density of the White-browed Blackbird was 0.045 ind/ha, decreased in the agricultural-rangeland
sub-region and increased in landscapes with more perennial pastures, fallow and weedy fields
and annual pastures, avoiding sites with more forest cover. Productivity and climatic variables
only showed a strong association with White-browed Blackbird density. Our results suggest that
land use/cover, productivity and climatic factors are important variables when planning strate-
gies to conserve bird population at a regional level in agroecosystems of Argentina.
KEY WORDS: Argentina, biological monitoring, bird population trends, density, EVI, land use, rainfall,
temperature.

RESUMEN. ASOCIACIÓN A LARGO PLAZO DE LA DENSIDAD DE TYRANNUS SAVANA Y STURNELLA SUPERCILIARIS
CON VARIABLES DE COBERTURA DE LA TIERRA Y CLIMÁTICAS EN AGROECOSISTEMAS DE ARGENTINA.— La
expansión e intensificación agrícolas resultaron en importantes cambios en el paisaje agrícola de
la Región Pampeana Argentina. Se utilizaron modelos lineales generalizados mixtos para anali-
zar la relación entre la densidad de dos especies de aves, la Tijereta (Tyrannus savana) y el Pecho
Colorado (Sturnella superciliaris), y variables ambientales asociadas a la cobertura, los usos de la
tierra, la productividad vegetal y las condiciones climáticas. El área de estudio en la región central
de Argentina se dividió en tres subregiones: (1) predominantemente agrícola, (2) agrícola–ganadera
y (3) agrícola–ganadera bajo bosque nativo. Las aves fueron muestreadas anualmente durante
2003–2011 en 48 transectas de puntos localizadas en caminos secundarios. La densidad prome-
dio de la Tijereta fue de 0.132 ind/ha, se incrementó significativamente en la subregión agrícola,
y estuvo asociada a la disminución en la cobertura de bosque y al incremento en la proporción de
cobertura de rastrojo y campo en descanso. La densidad del Pecho Colorado fue de 0.045 ind/ha,
decreció en la subregión agrícola-ganadera y se incrementó en paisajes con mayor proporción de
pasturas perennes, cobertura de rastrojo, campos en descanso y pasturas anuales, evitando sitios
con mayor cobertura de bosque. La productividad y las variables climáticas solamente mostraron
una asociación fuerte con la densidad del Pecho Colorado. Nuestros resultados sugieren que la
cobertura de usos de la tierra, la productividad y los factores climáticos son importantes al plani-
ficar estrategias de conservación de aves a escala regional en los agroecosistemas de Argentina.
PALABRAS CLAVE: Argentina, densidad, EVI, monitoreo biológico, precipitaciones, temperatura, tendencia
poblacional de aves, uso de la tierra.
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The simplification of agricultural landscapes,
associated with habitat loss and agricultural
intensification, has been shown to reduce the
availability of resources for many bird species
with specific requirements (Benton et al. 2003,
Vickery et al. 2009, Guerrero et al. 2012) and,
consequently, the abundance of these species
(Chamberlain et al. 2000, Donald et al. 2006).
The decreases on bird abundance are related
to local changes in vegetation cover, structure
and diversity (Heikkinen et al. 2004, Filloy and
Bellocq 2007). Simplification of agricultural
landscapes also produces changes in temporal
population dynamics of bird species (Bou-
linier et al. 1998, 2001).

Species may respond differently to land use
and climatic factors (Firbank et al. 2008, Karsh
and MacIver 2009, Concepción and Díaz 2010).
Some species may be negatively affected,
eliciting negative population trends, and some
others may be positively affected, with result-
ing increases in their population abundance
(Holt 2003, Both and te Marvelde 2007, Angert
2009, Both et al. 2010). However, some other
species may not be affected and maintain their
abundance relatively stable, at least in the
short term (Siriwardena et al. 1998, Fewster
et al. 2000), because they may have been able
to exploit alternative food supplies or search
for food over a wide area for a period of time
(Chamberlain et al. 2000). In any case, bird
responses are thought to be determined by
life-history characteristics such as regional
abundance or the tolerance range to environ-
mental factors (climatic, topographic or bio-
logical factors; Brown and Lomolino 1998,
Newbold et al. 2013, Bradshaw et al. 2014,
Bregman et al. 2014). Consequently, an impor-
tant challenge for biodiversity conservation is
to determine species responses to annual vari-
ations in land use and climatic conditions, in
order to improve assessments of impacts and
risks and thus develop appropriate mitigation
strategies. Interannual variations in climate is
another factor known to influence reproduc-
tion and survival of songbirds (Newton 1998).
In particular, temperature and precipitation
can influence directly bird survival and breed-
ing success via inclement weather and indi-
rectly through its effects on food abundance
(Newton 1998, Morrison and Bolger 2002,
Wilson et al. 2011).

During the last half-century (1950–2000), the
increasing worldwide demand for food,

important key technological advances in the
agricultural sector, and high national and
international competitiveness, have triggered
agricultural expansion and intensification in
regions of Argentina such as the Pampas,
Espinal and Chaco (Viglizzo et al. 2004, Grau
et al. 2005, Zak et al. 2008, Gasparri and Grau
2009). In these regions, native cover types
(grasslands and forests) have been extensively
replaced by annual crops (Viglizzo et al. 1997,
Paruelo et al. 2005, Baldi and Paruelo 2008).
Additionally, the excessive and extensive use
of agrochemicals, soil degradation and habitat
loss and fragmentation, have strongly degra-
ded remaining original vegetation (Zaccagnini
and Calamari 2001, Paruelo et al. 2005, Boletta
et al. 2006, Baldi and Paruelo 2008, Codesido
et al. 2008, Oesterheld 2008, Gasparri and
Grau 2009). Consequently, habitat quality for
resident biota has been affected, influencing
the abundance and persistence of birds on
those regions (Fernández et al. 2003, Filloy and
Bellocq 2007, Codesido et al. 2008, Cerezo et
al. 2011, Gavier-Pizarro et al. 2012, Macchi et
al. 2013).

Given that incorporation of new lands to
agricultural production on those regions is
expected to continue in the following decades
(Zak et al. 2008, Baldi and Paruelo 2008, Nori
et al. 2012), potentially affecting habitat quan-
tity and quality for avian populations, it is
important to determine bird population status
and to evaluate the influence of environmen-
tal factors on bird populations at a regional
level for developing management and conser-
vation strategies for birds and their habitats.
A previous study conducted in central Argen-
tina showed that relationships between bird
densities and land use types depended on bird
feeding guild, with insectivorous birds rely-
ing either in annual crop area or non-plowed
fields, and granivorous birds having a weak
relationship with land use (Gavier-Pizarro et
al. 2012). However, the study only evaluated
these relationships using data from 2007–2009,
trading space for time through a gradient of
land use/cover transformation from totally
transformed areas to those dominated by
natural vegetation, but did not evaluate tem-
poral trends. Variations in environmental fac-
tors in agroecosystems (e.g., diminished food
supplies as a result of climatic events, less suit-
able nesting habitat as a result of land use
change) and their influence on bird popula-
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tion assessed during short-term periods
would not reflect a potential time lag induced
by the life history of species, which can be
observed in long-term studies (Chamberlain
et al. 2000, Bennet et al. 2006, Cueto et al. 2008).

In this study, we explored bird-habitat rela-
tionships for two common insectivorous bird
species from the Neotropics (Stotz et al. 1996),
the Fork-tailed Flycatcher (Tyrannus savana)
and the White-browed Blackbird (Sturnella
superciliaris), during the austral breeding sea-
son (Fraga 2016, Mobley and Garcia 2016). The
Fork-tailed Flycatcher is an austral migrant
species member of the South American
Temperate–Tropical migratory system (SATT;
Joseph 1997, Jahn et al. 2013). It inhabits open
habitats, preferring savannas and pastures
with scattered trees and bushes where this
species builds nests (Mobley and Garcia 2016).
White-browed Blackbird is a resident species
distributed along central-east South America,
where it prefers lush wet meadows and
humid grasslands, nowadays particularly
common in agricultural fields or pastures with
wheat, oat, alfalfa and others (Fraga 2016). This
species nest on the ground within grasslands,
pastures or crops (Fraga 2016). The study
extended for nine years, from 2003–2011. The

consideration of a longer time span compared
to the previous study (three years in Gavier-
Pizarro et al. 2012) allowed us to evaluate bird
population trends and spatial patterns of bird-
habitat relationships over time, within specific
sub-regions. This more comprehensive analy-
sis would allow us to corroborate or refute
short-term bird-habitat relationships found in
Gavier-Pizarro et al. (2012). Knowledge of
population trajectory and status of the Fork-
tailed Flycatcher and the White-browed
Blackbird and their associations with environ-
mental factors at a regional scale on a long-
term span also could be useful to support
conservation initiatives for these species.

METHODS

Study area

The study area comprised 128200 km2 of the
Pampas and Espinal ecoregions (Cabrera 1976)
in central Argentina (Fig. 1). Temperatures in
the area vary between 13 °C (annual mean
minimum) and 23 °C (annual mean maxi-
mum) (Soriano et al. 1991), and mean annual
precipitation is about 1000 mm (Brescia et al.
1998, Messina et al. 1999). A portion of the area
corresponds to the Espinal ecoregion, which

Figure 1. Map of the study area showing the productive sub-regions and location of sampling transects
along secondary and tertiary roads in agroecosystems of central Argentina. The black line separates
Espinal (north) and Pampa (south) ecoregions (adapted from Matteucci 2012a).



100 CALAMARI ET AL. Hornero 31(2)

extends from the center of Santa Fe Province
to northeastern Córdoba and northern Entre
Ríos provinces (Fig. 1). The Espinal is charac-
terized by remnants of xerophytic forest domi-
nated by species such as Prosopis spp., Acacia
spp., Celtis ehrenbergiana and Geoffroea decorti-
cans, immersed in an agricultural matrix
(Lewis et al. 2009, Matteucci 2012a). Another
portion of the area corresponds to the Pampas
ecoregion, which extends from southern
Santa Fe Province to southeastern Córdoba
and southern Entre Ríos provinces (Fig. 1).
The Pampas were originally characterized by
grasslands dominated by Stipa spp., Bromus
spp. and Poa spp. (Cabrera 1971, Matteucci
2012b). However, grasslands have been
modified and in many cases replaced by agri-
cultural and cattle production activities
(Matteucci 2012b). Agricultural crops cover the
largest percentage of the area, including
soybean, wheat, corn, sunflower and sor-
ghum, in order of importance.

Sampling design

The area was stratified into three sub-
regions, based on the predominant produc-
tion activity: (1) agriculture (agricultural
sub-region), (2) mixed agriculture and cattle-
ranching activities (agricultural–rangeland),
and (3) mixed agriculture and cattle-ranching
activities with forest understories incorpo-
rated into cattle rangelands (agricultural–
forested rangeland). This stratification was
made based on the 1993 national agricultural
and livestock survey, in which the central
region of Argentina was divided into zones
according to dominant productive activities
(INDEC 1995). Additionally, we placed a grid
with a cell size of 30×30 km over the complete
study area using a Geographical Information
System. In each sub-region, we selected grid
cells using a systematic design (one of every
two) with a random start (Canavelli et al. 2003,
2004). On each cell, we randomly selected a
secondary or tertiary road as a survey route
for bird observation.

Each survey route (48 in total) contained 30
points, separated by a distance of 1 km. On
each point, the abundance of bird species was
recorded during 3 min using distance sam-
pling methods (Bibby et al. 2000, Buckland et
al. 2001). Routes were sampled once a year
(January) during 2003–2011, and between
06:00–11:00 or 15:00–20:00 h, by two experi-

enced observers previously trained in the field
sampling protocol. January was selected for
field sampling due to biological reasons,
including breeding season and presence of
migratory species, potential greater risks of
birds to agrochemical exposure and, finally,
for logistic reasons (extended observation
period due to sunlight hours). Further sam-
pling details can be found in Canavelli et al.
(2003) and Zaccagnini et al. (2010).

Estimation of bird density

Density for each species was estimated using
the software Distance (version 5.0; Buckland
et al. 2001, Thomas et al. 2002). We first con-
ducted exploratory analyses to detect and
correct the presence of clustering, evasive
movements and extreme values (Buckland et
al. 2001, Thomas et al. 2002). We then trun-
cated and eliminated data for both species
beyond 250 m of each observation (90% of
detections were made within this distance).
Additionally, we manually defined seven dis-
tance classes (0–30, 30–50, 50–75, 75–100,
100–150, 150–200 and 200–250 m) to improve
data organization and model adjustment to
data.

Species density was estimated using a com-
bination of three models (uniform, half-
normal and hazard rate), and two adjustment
terms (cosine and polynomial). Model fit was
evaluated using q-q plots, Kolmogorov-
Smirnov and Cramer-von Mises tests, as well
as visual analysis of the detection probability
function. The most parsimonious models
were selected using the Akaike Information
Criterion (AIC; Akaike 1974, Buckland et al.
2001, Burnham and Anderson 2002). The AIC
selection considers the fit as well as the com-
plexity of the model, and allows comparison
of several models simultaneously (Johnson
and Omland 2004). The AIC values reflect the
amount of “information” lost when a model
is used to approximate conceptual reality;
thus, the model with the lowest AIC value is
selected as the best model (Burnham and
Anderson 1998).

The half-normal model with a cosine adjust-
ment was selected for both species based on
its consistently lower AIC value. For each spe-
cies, we estimated the detection probability
function globally (i.e., combining all years) and
bird density for each route and year by strati-
fying per year and post-stratifying per route,
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with conventional distance sampling proce-
dures (Buckland et al. 2001).

Environmental variables

Many studies have postulated that intensifi-
cation of agriculture through land use changes
or climatic factors may have contributed to
farmland bird decline (Chamberlain et al.
2000, Benton et al. 2003, Lemoine et al. 2007,
Cueto et al. 2008, Niven et al. 2009). Although
it is known that these factors have an impact
on birds, it is unclear which is currently most
important for the Fork-tailed Flycatcher and
the White-browed Blackbird at regional and
sub-regional scales. Climatic variables used in
models were temperature (annual mean mini-
mum and maximum) and rainfall (four-month
average; see below) (Table 1). Temperature
and rainfall were calculated for each route,
taken from the nearest meteorological station
of the National Institute of Agricultural Tech-
nology (INTA). Given that the bird breeding
season in central Argentina extends from Sep-
tember to January, we averaged monthly rain-
fall over this four-month period for each year,
with the assumption that species abundance
in January will be influenced by rainfall in the
four previous months to the sampling period
(first days of January). This relationship could
be based on the food availability for bird spe-
cies, given that phenology of plants and
insects observed in January can be associated
with rainfall occurred in previous months (De
Juana and García 2005). It also could be related
to bird’s breeding performance, because cli-

matic conditions can influence the metabolism
of bird females and also directly affect egg and
chick survival (Barkowska et al. 2003, Dunn
2004).

Some bird species depend on particular
environmental conditions along land use/
cover gradients and primary productivity
could have an influence (Fischer et al. 2006,
Schrag et al. 2009). Primary productivity, a
measure of the energy entering an ecosystem,
was measured using the Enhanced Vegetation
Index (EVI; Table 1). We selected this index
instead of NDVI (Normalized Difference
Vegetation Index), due to EVI is more respon-
sive to canopy structural variations, includ-
ing leaf area index, canopy type, plant
physiognomy, and canopy architecture (Gao
et al. 2000, Huete et al. 2002). EVI was develo-
ped to optimize the vegetation signal, improv-
ing sensitivity in high biomass regions and,
therefore, improving vegetation monitoring
through a decoupling of the canopy back-
ground signal and climatic influences (Matsu-
shita et al. 2007, Jiang et al. 2008). For each
route per year, we extracted EVI values from
a MODIS satellite image (mid-January) with
a 250 m resolution (EOS-Terra images/MODIS,
mid-January of each year). An EVI value was
estimated for each 250×250 m pixels centered
on the midpoint location of each route. Then,
EVI values were rescaled by dividing the
values by 10 000, assuming value in a 0–1
range. Low value areas indicate scarce or no
vegetation while high value areas indicate
vigorous vegetation.

Variable Definition 

Year Year of sample  
Pper Proportional cover of perennial pastures 

PC1 
Component 1 of PCA, representing a gradient of annual crops cover (+) vs. forests and fallow 
and weedy fields cover (-) 

PC2 Component 2 of PCA, representing a gradient of plowed fields cover and annual pastures cover (+) 
PC3 Component 3 of PCA, representing a gradient of plowed fields cover (+) vs. annual pastures cover (-) 
PC4 Component 4 of PCA, representing a gradient of fallow fields cover (-) vs. forests cover (+) 
EVI Enhanced Vegetation Index 
MinTemp Annual minimum temperature 
MaxTemp Annual maximum temperature 
Rain Mean monthly rainfall for the four previous months to the sampling period (September-January) 

Table 1. Description of predictive variables included in statistical models of bird-habitat relationship for
the Fork-tailed Flycatcher (Tyrannus savana) and the White-browed Blackbird (Sturnella superciliaris) in
agroecosystems of central Argentina.
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Land use/cover variables were obtained from
the field, based on the proportional cover of
land use classes visually estimated in a 200 m
radius circle around each sampling point. The
land use classes (each representing a variable)
were: annual crops (corn, soybean, sunflower
and sorghum-summer crops), annual pastures
(millet, oats), perennial pastures (alfalfa, clo-
ver), plowed fields (i.e., bare soil), fallow and
weedy fields, and forests (native, introduced,
or mixed). To have a unique value of propor-
tional cover for each class at the route level,
we averaged the proportion of each cover
class on each point over all the observations
points in a route. Variables of vegetation cover
were highly correlated (r ≥ 0.7, except for
perennial pastures cover), making difficult the
interpretation of relationships between indi-
vidual variables and bird abundance. There-
fore, we used Principal Components Analysis
(PCA; McCune et al. 2002) to obtain independ-
ent measures of land use/cover variables
(Table 1). PCA is a multivariate ordination
technique which represents a data set contain-
ing many variables (in this case, vegetation
cover variables) with a smaller number of
composite or latent variables (the components
or axes of the PCA; Graham 2003, Dormann
et al. 2013). These axes are orthogonal (i.e.,
they are completely uncorrelated), and repre-
sent the strongest covariation patterns among
the variables in the original data set (McCune
et al. 2002). The first four PCA components
represented 49, 19, 16 and 15% of the total
variance in the original data matrix and were
at least moderately correlated (r ≥ 0.4) with at
least one land cover variable (Table 2). Given
the value and sign of correlations of the first
component (PC1) with the original variables,
this axis represented a gradient from sites with
low annual crops cover and high forests and
fallow and weedy fields cover to sites with
high annual crops cover and low forests and
fallow and weedy fields cover. The second
component (PC2) represented a gradient of
covariation between plowed fields and annual
pastures (i.e., a gradient of sites with low to
high values of both variables). The third com-
ponent (PC3) represented a gradient of sites
with high values of plowed fields cover and
low values of annual pastures cover and sites
with low values of plowed fields cover and
high values of annual pastures cover. Finally,
the fourth component (PC4) represented a

gradient of sites with low forests cover and
high cover of fallow and weedy fields to sites
with high forests cover and low proportional
cover of fallow and weedy fields. In order to
evaluate the potential effects of multi-
collinearity, we calculated Spearman correla-
tion coefficients between all candidate
variables. Spearman correlations were gener-
ally low (rs ≤ 0.30), and thus we assumed that
our results were not significantly affected by
multicollinearity.

Species density-environment models

Because of the nested structure of the data
(points within routes, routes within sampling
periods, sampling periods within observers),
we used linear mixed modelling to analyse the
relationship between the estimated density
for each bird species and annual environmen-
tal variables (Pinheiro and Bates 2000). In all
models, bird density was the dependent vari-
able. The fixed effects (i.e., independent or
predictive variables) were the year (to test for
a temporal trend) and the environmental vari-
ables describing climatic, primary productiv-
ity and land use/cover variation (Table 1). All
predictive variables were standardized to vary
between 0 and 1, to be able to compare model
coefficients directly. Random effects were
observer, route and sampling period (morn-
ing or evening). Also, sub-region was used as
a random effect for models that used the com-
plete, regional data set. Bird density data was
log-transformed to meet the statistical assump-
tion of a normal error distribution. In general,

  PC1 PC2 PC3 PC4 

Variables     
  Annual crops   0.96   0.15   0.04   0.00
  Annual pastures -0.50   0.61 -0.60 -0.10
  Plowed fields -0.47   0.61   0.64 -0.02
  Fallow and weedy fields -0.73 -0.23 -0.01   0.63
  Forests -0.71 -0.39  0.07 -0.57
% explained variance  49  19  16  15 

Table 2. Results of a Principal Components Analy-
sis of land use/cover variables recorded on sam-
pling transects along secondary and tertiary roads
in agroecosystems of central Argentina. Correla-
tions between components and variables are
shown.
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model errors did not meet the variance homo-
geneity assumption, and we re-fitted models
with a heterogeneous variance structure
between years (Pinheiro and Bates 2000).
Finally, because of the spatial nature of our
sampling scheme, we also fitted models with
a spatial autocorrelation error structure.
Because of the aforementioned features asso-
ciated to our data set, we fitted models with
four different structures, for each species and
sub-region, and for the complete study region
(all sub-regions combined): (1) without ran-

dom effects, assuming homogeneity of varian-
ces and independence between errors (stand-
ard multiple regression model); (2) with
random effects and heterogeneity of variances
between years; (3) with random effects and
homogeneity of variances between years; and
(4) without random effects and assuming
homogeneity of variances, but with a tempo-
ral and spatial autocorrelation structure, to
test for lack of independence between errors
(Table 3). We used AIC values to select among
these different model structures; the used

 Fork-tailed Flycatcher White-browed Blackbird 

Model structures CSR AR AFR A CSR AR AFR A 

Standard multiple regression model 339.91 117.49 109.00 78.98 495.48 60.74 139.61 340.00 
With random effects 320.70 120.92 110.32 56.04 454.62 63.72 139.78 319.83 
With several random effects and 

heterogeneous variances 
NC 122.42 NC 58.05 441.04 64.20 NC NC 

With one random effect and 
heterogeneous variances 

307.07 120.68 93.98 58.05 492.60 59.49 NC 340.37 

With spatial autocorrelation 331.65 115.90 110.96 48.92 481.02 61.94 140.26 328.09 

Table 3. Comparison of the structure of statistical models of bird-habitat relationship for the Fork-tailed
Flycatcher (Tyrannus savana) and the White-browed Blackbird (Sturnella superciliaris) in agroecosystems
of central Argentina. AIC values for each model structure in the complete study region (CSR) and in the
agricultural-rangeland (AR), agricultural-forested rangeland (AFR) and agricultural (A) productive sub-
regions are shown. NC: non-convergence.

Table 4. Initial 15 models of bird-habitat relationship for the Fork-tailed Flycatcher (Tyrannus savana) and
the White-browed Blackbird (Sturnella superciliaris) in agroecosystems of central Argentina fitted to
data. Predictive variables included in models are described in table 1.

Model type Predictive variables in model 

Full model 
(all predictive variables) 

Year+Pper+PC1+PC2+PC3+PC4+EVI+MinTemp+MaxTemp+Rain 

Trend + land use + climate Year+Pper+PC1+PC2+PC3+PC4+MinTemp+MaxTemp+Rain 
Land use + EVI + climate Pper+PC1+PC2+PC3+PC4+EVI+MinTemp+MaxTemp+Rain 
Land use + climate Pper+PC1+PC2+PC3+PC4+MinTemp+MaxTemp+Rain 
Trend + land use + EVI Year+Pper+PC1+PC2+PC3+PC4+EVI 
Trend + EVI + climate Year+EVI+MinTemp+MaxTemp+Rain 
Trend + land use Year+Pper+PC1+PC2+PC3+PC4 
Land use + EVI Pper+PC1+PC2+PC3+PC4+EVI 
Land use Pper+PC1+PC2+PC3+PC4 
Trend + climate Year+MinTemp+MaxTemp+Rain 
EVI + climate EVI+MinTemp+MaxTemp+Rain 
Climate MinTemp+MaxTemp+Rain 
Trend + EVI Year+EVI 
Trend Year 
EVI EVI 
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model structure was the one with the lowest
AIC value (Table 3). All analyses were con-
ducted in R software with the nlme (Pinheiro
et al. 2013) and lattice (Sarkar 2008) packages.

Once the optimal model structure was
found, best-fitting models were selected using
a combination of traditional hypothesis test-
ing and Kulback-Leibler Information meth-
ods, particularly AIC values and Akaike
weights (wi) (Burnham and Anderson 1998,
2001, Anderson et al. 2000). For each bird spe-
cies, we initially fitted a set of 15 models with
different combinations of year (i.e., linear tem-
poral trend), land use/cover, EVI, and climatic
variables (Table 4). We used this exploratory
approach, rather than a more restricted set of
a priori models (Burnham and Anderson 1998,
2002), because we had no prior information
on the explanatory power of our variables in
combination. Then, for each model, we exam-
ined the P-values for each predictive variable
in the set, selected variables with P ≤ 0.20, and
re-fitted the model using only those variables.
The number of fitted models for each species
varied between 22 for Fork-tailed Flycatcher
in the agricultural-rangeland sub-region and
24 for White-browed Blackbird in agricultural-
forested rangeland sub-region. Finally, we
used AIC and wi values to choose the best-
fitting models from the final set of fitted mod-
els (Table 5). When differences between AIC
values were small (≤ 2 units), wi values were
used as indicators of the strength of evidence
for each model. The wi is interpreted as the
approximate probability that model i is the
best model in the set of models being consid-
ered (Anderson et al. 2000).

We used multi-model inference or model
averaging (Burnham and Anderson 2002) to
compare the effect size of individual predic-
tive variables. Model averaging consists in
obtaining an averaged coefficient value from
several models, weighted by each model’s wi
(Burnham and Anderson 1998). We obtained
an averaged coefficient for each predictive
variable from the set of models with a sum of
wi ≥ 0.95 (i.e., the confidence model set). The
number of models in confidence sets was
much smaller than the complete set of mod-
els for each bird species, varying between two
models for Fork-tailed Flycatcher in the com-
plete study region and the agricultural-
rangeland sub-region and six models for the
White-browed Blackbird in the agricultural-

forested rangeland sub-region. Overall mean
(±SD) number of models in confidence sets
was 4.4±2.4.

Model AIC wi 

Fork-tailed Flycatcher (CSR)   
  Pper+PC4 285.2 0.94
  Pper+PC4+MaxTemp 290.7 0.06
White-browed Blackbird (CSR)   
  Pper+PC1+PC2+PC3+PC4+EVI 504.1 0.82
  Pper+PC1+PC2+PC3+PC4+EVI+ 

MaxTemp+Rain 
507.9 0.12

  Year+Pper+PC1+PC2+PC3+PC4+EVI 509.7 0.05
Fork-tailed Flycatcher (AR)   
  PC1+PC4 100.1 0.63
  EVI 101.3 0.34
White-browed Blackbird (AR)   
  Pper+PC4+EVI 62.7 0.87
  Pper+PC3+PC4+EVI 67.7 0.07
  EVI 68.1 0.06
Fork-tailed Flycatcher (AFR)   
  PC2+PC4+EVI 91.1 0.41
  EVI 91.8 0.29
  PC3+PC4 92.0 0.26
White-browed Blackbird (AFR)   
  Year 101.1 0.45
  Year+EVI 102.1 0.27
  PC1+PC2+PC4+MaxTemp 104.8 0.07
  Year+PC1+PC2+PC4 105.0 0.06
  Pper+PC1+PC2+PC4+EVI 105.7 0.04
Fork-tailed Flycatcher (A)   
  Pper+PC1+PC4 27.9 0.30
  MinTemp 28.0 0.29
  EVI 28.9 0.18
  Year 29.5 0.14
  Pper+PC1+PC4+EVI 31.3 0.06
White-browed Blackbird (A)   
  Pper+PC1+PC2+PC4+MinTemp+ 

MaxTemp+Rain 
342.4 0.55

  Pper+PC1+PC2+PC4+EVI+ 
MinTemp+MaxTemp+Rain 

343.2 0.38

  Pper+PC2+PC4+EVI 349.0 0.02

Table 5. Confidence set of models of bird–habitat
relationship for the Fork-tailed Flycatcher (Tyrannus
savana) and the White-browed Blackbird (Sturnella
superciliaris) in agroecosystems of central Argen-
tina. AIC and wi values for each model in the
complete study region (CSR) and in the agri-
cultural–rangeland (AR), agricultural–forested
rangeland (AFR) and agricultural (A) productive
sub-regions are shown. Predictive variables
included in models are described in table 1.



2016 ASSOCIATION OF BIRDS WITH ENVIRONMENTAL FACTORS 105

RESULTS

Trends in population density

Fork-tailed Flycatcher mean (±SE) density
was approximately three times higher than
the density of the White-browed Blackbird
(0.132±0.01 and 0.045±0.01 individuals/ha,
respectively; Fig. 2). Population density of the
Fork-tailed Flycatcher showed statistically sig-
nificant changes only in the agricultural sub-
region, were it increased, while the density
of the White-browed Blackbird significantly

decreased only in the agricultural–rangeland
sub-region (Fig. 2). However, both trends were
probably influenced by outlier values, such as
the unusually high density of the Fork-tailed
Flycatcher in 2008 and White-browed Black-
bird in 2003 (Fig. 2).

Annual changes in environmental variables

Vegetation productivity and climatic vari-
ables did not show statistically significant
annual changes in the analysed period either
on the complete study region or the sub-

Table 6. Mean (±SE) values of the regression coefficient (β), 95% confidence intervals and associated
statistics for land use cover variables recorded on sampling transects along secondary and tertiary roads
in agroecosystems of central Argentina that showed a significant temporal trend.

 β 95% CI R2 P 

Complete study region     
  Annual crops -0.23 ± 0.04 [-0.33, -0.14] 0.77 0.002 
  Perennial pastures -0.04 ± 0.01 [-0.07, -0.01] 0.55 0.022 
Agricultural-rangeland     
  Annual crops -0.20 ± 0.04 [-0.30, -0.10] 0.77 0.002 
Agricultural-forested rangeland     
  Fallow and weedy fields -0.13 ± 0.04 [-0.22, -0.04] 0.61 0.013 
Agricultural     
  Annual crops -0.31 ± 0.05 [-0.42, -0.19] 0.85 <0.001 
  Perennial pastures -0.03 ± 0.01 [-0.05, -0.01] 0.70 0.005 
  Fallow and weedy fields   0.13 ± 0.05 [0.00, 0.25] 0.46 0.040 

Figure 2. Variation in density (individuals/ha) of the Fork-tailed Flycatcher (Tyrannus savana) and the
White-browed Blackbird (Sturnella superciliaris) in agroecosystems of central Argentina during 2003–
2011. Mean (±SE) values for each species in the complete study region and in the agricultural-rangeland,
agricultural–forested rangeland and agricultural productive sub-regions are shown.
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regions. However, land use variables showed
temporal trends on some cases (Table 6).
Annual crops showed a negative trend in the
complete study region and in the agricultural
and agricultural–rangeland sub-regions.
Additionally, perennial pastures showed a
negative trend in the complete study region
and in the agricultural sub-region. Finally,
fallow and weedy fields presented a negative
trend in the agricultural–forested rangeland
sub-region but a positive trend in the agricul-
tural sub-region (Table 6).

Bird density and environmental variables

Bird density was related to environmental
variables to different degrees, depending on
the species and sub-regions. The density of
the Fork-tailed Flycatcher increased in land-
scapes characterized by decreasing forest

cover and increasing fallow and weedy fields
in the complete study region and in all sub-
regions (positive relationship to PC4; Figs. 3A–
D). Additionally, the density decreased with
increasing plowed fields cover and decreas-
ing annual pastures, but only in the agricul-
tural–forested rangeland sub-region (negative
association to PC3; Fig. 3C). In the agricul-
tural–rangeland sub-region, although the
Fork-tailed Flycatcher increased in landscapes
with high proportion of annual crops cover
and decreased in sites with low fallow and
weedy fields and forest cover (positive asso-
ciation with PC1; Fig. 3B), it was still strongly
associated to the fourth component, and this
association was higher than its association to
PC1. Thus, its negative association to PC1 (and
thus to its usually preferred cover types, low
fallow and weedy fields) was probably asso-

Figure 3. Mean (±SE) values of coefficients (adjusted by Akaike weights) for all predictive variables
included in statistical models of bird-habitat relationship for the Fork-tailed Flycatcher (Tyrannus savana)
and the White-browed Blackbird (Sturnella superciliaris) in agroecosystems of central Argentina. Values
for the complete study region and for the agricultural–rangeland, agricultural–forested rangeland and
agricultural productive sub-regions are shown. Predictive variables are described in table 1.
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ciated to its avoidance of forest which, on PC1,
was associated to fallow and weedy fields. In
the agricultural sub-region, however, its rela-
tionship to PC1 was inverted to that shown
in the agricultural–rangeland sub-region. Per-
haps in the agricultural region, the amount
of fallow and weedy fields is higher or forest
cover is much lower, thus making these land-
scapes more attractive. Climatic variables were
weakly associated: the density of the Fork-
tailed Flycatcher showed a positive relation-
ship with rainfall in the agricultural–
rangeland sub-region (Fig. 3B) and was also
weakly and negatively related to annual mini-
mum temperature in the agricultural sub-re-
gion (Fig. 3D).

The density of the White-browed Blackbird
increased with decreasing fallow and weedy
fields and forest cover and increasing annual
crops cover (positive association to increases
in PC1) in the complete study region (Fig. 3E)
and in the agricultural sub-region (Fig. 3H).
Additionally, it increased in landscapes with
high proportion of annual pastures and
plowed fields (positive associations to PC2),
and increased in landscapes with low propor-
tion of forest cover and high cover of fallow
and weedy fields (positive associations to PC4)
in the complete study region (Fig. 3E) and in
the agricultural–rangeland (Fig. 3F) and the
agricultural (Fig. 3H) sub-regions. Its density
was also positively associated with perennial
pastures, both in the complete region and in
all sub-regions (Figs. 3E–H). Furthermore,
White-browed Blackbird decreased with
increasing plowed fields and decreasing
annual pastures cover (negative relationship
to PC3) in the complete study region (Fig. 3E)
and in the agricultural–rangeland sub-region
(Fig. 3F). In contrast to the density of the Fork-
tailed Flycatcher, climatic variables and vege-
tation productivity were more strongly
associated with the density of the White-
browed Blackbird. It showed a positive rela-
tionship with rainfall and EVI but decreased
with annual maximum temperature in the
complete study region (Fig. 3E) and in most
of the sub-regions. In sharp contrast to its
more complex response in the agricultural–
rangeland and agricultural sub-regions,
where it responded to multiple environmen-
tal variables, this species only responded to
EVI in the agricultural–forested rangeland
sub-region (Fig. 3G).

DISCUSSION

Land use/cover and productivity were the
main factors explaining the long-term popu-
lation changes of the Fork-tailed Flycatcher
and the White-browed Blackbird in agroeco-
systems of central Argentina. These results
strenghten the weak relationships found in
the previous short-term study (Gavier-Pizarro
et al. 2012), highlighting the importance of
monitoring long-term population trends
(Magurran et al. 2010).

Different bird responses to landscape
changes may be relate to degrees of speciali-
zation to landscape elements (Andrén et al.
1997). In our study, both species responded
mainly to evolving land use change and, to a
lesser degree, to climatic variables. The lower
relation of Fork-tailed Flycatcher density with
climatic variables could be due to the lack of
significant variations on these variables on the
study area included on the wide distribution
range of this species (Fraga 2016). Goijman et
al. (2015) found high occupancy rates of the
Fork-tailed Flycatcher in east central Argen-
tina. White-browed Blackbird was associated
with variation in temperature and rainfall (at
the regional level and in two sub-regions:
agricultural–rangeland and agricultural),
showing an association with more rainy and
cooler areas. Recent studies in Europe and
North America have shown that bird declines
are strongly associated to temperature and
rainfall (Newton 1998, Morrison and Bolger
2002, Dugger et al. 2004, Szep et al. 2006,
Studds and Marra 2007, 2011, Wilson et al.
2011). In particular, species with a low ther-
mal maximum showed the sharpest declines
(Jiguet et al. 2010). In this study, climatic vari-
ables did not show a temporal trend or sig-
nificant differences between sub-regions.
Additionally, we did not found a relation
between variations in density of the White-
browed Blackbird with more rainy periods
(e.g., in 2005 and 2010), which likely reflect a
time lag in the functional response of birds.
However, the density of the White-browed
Blackbird thrived in wet and temperate habi-
tats, in coincidence with the reported prefer-
ence of this species for lush wet meadows and
humid grasslands (Fraga 2016).

Temporal changes in bird densities in agri-
cultural landscapes have been related to tem-
poral land cover changes in Europe and North
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America (Chamberlain et al. 2000, Donald et
al. 2001, Murphy 2003, Reif et al. 2008, Gaston
2010). In Argentina, previous studies also have
shown changes in bird abundance in relation
to land use and cover types (Filloy and Bellocq
2007, Gavier-Pizarro et al. 2012, Weyland et al.
2014). A general pattern observed in this study
was a gradient from landscapes with scarce
forest cover but with more fallow and weedy
fields sustaining more Fork-tailed Flycatcher
densities, although statistically significant
only in the agricultural sub-region, to land-
scapes with more perennial pastures and
annual crops and less fallow and weedy fields
and forest cover where the White-browed
Blackbird was most abundant.

The density of the Fork-tailed Flycatcher was
positively associated to increasing fallow and
weedy fields cover and decreasing forst cover.
Although this species is reported as a habitat
generalist (Mobley and Garcia 2016), in this
study it was strongly associated to higher
fallow fields cover, which on average occupies
a small proportion of studied landscapes.
Contrary to this general pattern, in the
agricultural–rangeland sub-region this species
was positively associated to the first compo-
nent (this axis went from landscapes domi-
nated by fallow and weedy fields and forest
cover, to landscapes dominated by annual
crops). Thus, this relationship contradicts its
usual association to fallow and weedy fields
cover. We believe that in this sub-region the
species is mainly avoiding forest cover, even
though these ends of the component are also
represented by fallow and weedy fields cover.
In addition, in this sub-region its response to
the fourth component, although explaining
only approximately 30% of the variation of the
first one, was more strongly associated. Thus,
considering both components 1 and 4, the spe-
cies tends to avoid landscapes with forest
cover.

In a shorter time span, Gavier-Pizarro et al.
(2012) found a positive relationship between
the Fork-tailed Flycatcher and non-plowed
fields, indicating a preference for semi-natu-
ral habitats, and Filloy and Bellocq (2007)
found a negative association with increasing
percentage of arable farmland. Additionally,
this species prefers nesting in open savannas
over closed forest habitats in the Brazilian
Cerrado (Marini et al. 2009). Feichtinger and
Veech (2013), in a study with Scissor-tailed

Flycatcher (Tyrannus forficatus), found a posi-
tive association with open land cover types
(such as grassland, pasture-hayfield and
cropland) and a negative association with
forest and scrubland cover. Thus, the mainte-
nance of fallow fields cover in landscapes with
low forest cover is probably important for the
conservation of birds associated to grassland
and savannas. In contrast to the White-
browed Blackbird, the general lack of response
of Fork-tailed Flycatcher density to climatic
factors could be explained by their ecological
requirements, which were not influenced by
small yearly or spatial variations in the study
region.

The White-browed Blackbird, a bird species
preferring pastures, agricultural lands and
grassland habitats (Narosky and Yzurieta
1987, Stotz et al. 1996, Camperi et al. 2004,
Azpiroz et al. 2012, Fraga 2016), showed a rela-
tively consistent response to landscape
changes in the agricultural–rangeland and the
agricultural sub-regions, increasing in land-
scapes with more perennial pastures, fallow
and weedy fields and annual pastures, and
avoiding sites with more forest cover. Its abun-
dance has also been negatively related to
increasing native forest in another study con-
ducted in the central part of Argentina for the
2003–2006 period (Schrag et al. 2009). These
results probably reflect the species’ reported
ability to use a variety of open habitats
(Narosky and Yzurieta 1987, Stotz et al. 1996,
Camperi et al. 2004, Fraga 2016) as well as its
plasticity to changing environments, allowing
them to survive in landscapes dominated by
open, non-woody habitats and to tolerate the
intensive agriculture that typifies the study
region. Goijman et al. (2015) found high
variability in occupancy estimation over time
of the White-browed Blackbird, but it appears
to be declining.

Given the high relationship of these two bird
species on semi-natural open (non-woody)
habitats, such as fallow and weedy fields and
annual pastures, we can infer that the conser-
vation of both species would depend on the
conservation of these habitat types. Addition-
ally, these remnants of natural or semi-natural
habitats would help to maintain a relatively
high proportion of avian diversity. Finally, as
the studied species have a relatively wide tol-
erance to habitat variation, further studies
would have to be dedicated to grassland-
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dependent species as well as to variables
related to the whole bird community, in order
to establish more precise and systematic base-
lines for bird management and conservation
at regional scales.
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