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Abstract

Background: Recently, great technical progress has been achieved in the field of plant phenotyping. High-throughput
platforms and the development of improved algorithms for rosette image segmentation make it possible to extract shape
and size parameters for genetic, physiological, and environmental studies on a large scale. The development of low-cost
phenotyping platforms and freeware resources make it possible to widely expand phenotypic analysis tools for Arabidopsis.
However, objective descriptors of shape parameters that could be used independently of the platform and segmentation
software used are still lacking, and shape descriptions still rely on ad hoc or even contradictory descriptors, which could
make comparisons difficult and perhaps inaccurate. Modern geometric morphometrics is a family of methods in
quantitative biology proposed to be the main source of data and analytical tools in the emerging field of phenomics studies.
Based on the location of landmarks (corresponding points) over imaged specimens and by combining geometry,
multivariate analysis, and powerful statistical techniques, these tools offer the possibility to reproducibly and accurately
account for shape variations among groups and measure them in shape distance units. Results: Here, a particular scheme
of landmark placement on Arabidopsis rosette images is proposed to study shape variation in viral infection processes.
Shape differences between controls and infected plants are quantified throughout the infectious process and visualized.
Quantitative comparisons between two unrelated ssRNA+ viruses are shown, and reproducibility issues are assessed.
Conclusions: Combined with the newest automated platforms and plant segmentation procedures, geometric
morphometric tools could boost phenotypic features extraction and processing in an objective, reproducible manner.
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Background

Plant phenotyping, the process of recording quantitative and
qualitative plant traits, is essential to the study of plant re-
sponses to the environment [1]. A survey of the International
Plant Phenotyping Network [2] plant scientists found that most
participants think that plant phenotyping will play an impor-
tant role in the future. The selected topics of interest were the
assessment of abiotic, biotic, and multiple stress and the model
plant Arabidopsis thaliana. Recently, many new techniques have
been developed to facilitate and improve quantitative plant phe-

nomics (i.e., the full set of phenotypic features of an individ-
ual), going from destructive to nondestructive and even high-
throughput phenotyping (the use of cameras and automated
platforms to automatically extract phenotypic features on hun-
dreds of plants per day) [3–5]. Whereas the throughput is an im-
portant aspect of phenotyping, spatial and temporal resolutions,
as well as accuracy, should be considered [6].

Freely available software that overcomes the difficult task
of image rosette segmentation (i. e., the computational separa-
tion of the living plant tissue from the substrate background)
is still under investigation and has been developed by different
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means [7–11]. These software packages allow the assessment of
several rosette parameters such as area, perimeter, and other
more complex descriptors. However, the persistence of ad hoc
descriptors [12, 13] and lack of a gold standard could give rise to
reproducibility issues, because of different growing substrate-
segmentation algorithm combinations. Moreover, different ap-
proaches sometimes give the same name to different parame-
ters (e.g., “roundness” in ImageJ, [14] vs. [10]) or different names
to the same parameter (e.g., “solidity” in [11] equals “compact-
ness” in [7, 10] and “surface coverage” in [5]). The need to develop
objective, mathematically, and statistically sound and more ac-
curate shape descriptors in plants has been stressed in recent
reviews on the topic [15–17]. Nonetheless, image dataset analy-
ses require a conceptual and statistical corpus of knowledge that
is not always present in a plant biologist’s research field. Plant
phenotyping relies on skills and technologies that are used to
characterize qualitative or quantitative traits regardless of the
throughput of the analyses [1]. One such knowledge corpus is
morphometrics [18].

Traditional morphometric analyses, such as measures and
ratios of length, depth, and width, were widely used in evolu-
tionary biology, taxonomy, and similar studies throughout the
20th century. At the end of that century, the seminal work of
Thompson [19] was reevaluated in light of multivariate analy-
sis and novel mathematical developments [20, 21], giving rise
to modern geometric morphometrics (GM), which was called a
“revolution” in morphometrics [22–24].

GM combines geometry, multivariate morphometrics, com-
puter science, and imaging techniques for a powerful and ac-
curate study of organismal forms. This family of methods in
quantitative biology is proposed to be the main source of data
and analytical tools in the emerging field of phenomics [25].
Formally, GM is “a collection of approaches for the multivari-
ate statistical analysis of Cartesian coordinate data, usually (but
not always) limited to landmark point locations” [26]. Landmark
methods have been successfully applied to various species and
have the advantage of being easy to understand [27]. In addition
to enhanced statistical power and better descriptive and graph-
ical tools, GM allows researchers to decompose form in size and
shape. The whole configuration of the organism under study is
analyzed, rather than relying on the description of relative dis-
placements of pairs of points. GM is now a mature discipline that
has been widely applied in biology [28–30] (see [31] for a review).
For example, barley seeds [32] and grapevine leaves [33] and oak
leaves [34, 35] were studied using GM methods.

Plant viruses cause important worldwide economic losses in
crops [36]. Symptoms include plant stunting, changes in leaf
morphology, and, in some cases, plant death [37]. These symp-
toms vary depending on various aspects, including genetic com-
patibility and environmental conditions. Given a particular host-
virus interaction, different viral strains trigger different symp-
tomatology, which is more or less subtle for the observer to
distinguish [38–40]. Comparing the severity of qualitative viral
symptoms (i.e., the degree to which infected plants depart from
healthy controls in some observable phenotype, often referred to
as the aerial parts of the plant such as leaves, stems, or rosettes)
is a difficult task; it is performed mainly by visually rating symp-
toms (e.g., [41]). Consequently, morphological differences could
be difficult to describe and reproducibility issues could arise.

Arabidopsis thaliana has been extensively used in studies on
the influences of environmental factors on plants, paving the
way to the development and testing of experimental techniques
and data analysis methods [42]. The Arabidopsis rosette is a
nearly two-dimensional (2D) structure in the vegetative phase

[11], thereby facilitating image acquisition and interpretation.
Here, a case study is proposed where GM tools are applied to
study and quantitatively describe morphometric changes trig-
gered in A. thaliana plants by RNA viruses belonging to two un-
related families. It is proposed that a particular selection of land-
marks be located in the Arabidopsis rosette during its vegetative
phase. The study spans from the early stages of viral infection
to later periods when symptoms are detectable with the naked
eye. Comparisons are made between the discriminant power
of computer-assisted classification and the expert human eye.
Symptom severity triggered by both viruses is also compared
based on the relative morphometric changes induced relative to
healthy controls. Changes in allometric growth, phenotypic tra-
jectories, and morphospace occupation patterns are also inves-
tigated. Size analyses are also performed. Throughout this work,
several bioinformatics resources were applied in order to both
extract the higher degree of information available and to exem-
plify different and complementary possibilities that GM offers
for the accurate description of shape in Arabidopsis.

In this work, we aim to introduce the use of GM tools for
analysis of the Arabidopsis rosette. Its purpose is to statisti-
cally quantify the shape differences between treatments in or-
der to establish objective global comparisons on a matter that
is usually subjective, virus phenotype severity. Viral infections
are used as case studies to exemplify the potential usefulness
of these techniques to quantitatively reveal shape changes using
this plant model. As such, it is not intended to offer a complete
introductory explanation of each GM tool, an objective that is
beyond the scope of this article. Such a task has been performed
by [35]. For a complete introductory explanation of GM tools ap-
plied in biological systems, refer to [43]. Software used in this
work frequently has its own user’s manual and informative ex-
amples [44–46]. Nevertheless, for the purpose of facilitating the
comprehension of this work to newcomers in the field of GM,
each tool is briefly described in the Materials and Methods sec-
tion.

Materials and Methods
Plant growth conditions

Arabidopsis thaliana Col-0 seeds were stratified at 4◦C for 3 days.
Plants were grown under short-day conditions (10 hours light/14
hours dark cycle, T(◦C) = 23/21, Hr(%) = 60/65, and a light in-
tensity of 150 μE m-2 s-1) in a controlled environmental cham-
ber (Conviron PGR14; Conviron, Winnipeg, Manitoba, Canada).
Plants were grown in individual pots in trays, and treatments
were assigned to plants in all trays. One experiment was per-
formed with oilseed rape mosaic virus (ORMV) and two indepen-
dent experiments were carried on with turnip mosaic virus-UK1
strain (TuMV-UK1).

Virus infection assays

ORMV [47] was maintained in Nicotiana tabacum (cv. Xhanti nn),
and infective sap was obtained after grinding infected leaves
with mortar and pestle in 50 mM phosphate buffer, pH = 7.5.
TuMV-UK1 strain (accession number X65978) [48] was main-
tained in infected A. thaliana Col-0. Fresh sap was obtained
immediately prior to use in order to inoculate plants with
sodium sulfite buffer (1% K2HPO4 + 0.1% Na2SO3 [wt/vol]). Mock-
inoculated plants were rubbed with carborundum dust with ei-
ther 50 mM phosphate buffer, pH = 7.5, or sodium sulfite buffer,
respectively. Plants were mechanically inoculated in their third
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true leaf at stage 1.08 at 21 days post-sowing [49]. This was done
because the leaves were almost fully developed by the time of
the procedure and therefore constituted a source tissue for the
export of virions to the rest of the plant. The number of plants
assigned to each treatment in each experiment was: Mock = 23
and ORMV = 17, Mock = 27 and TuMV = 14 (TuMV 1st experi-
ment) and Mock = 14 and TuMV = 8(TuMV 2nd experiment)

Image acquisition

Zenithal photographs of individual plants growing in pots were
taken with a Canon PowerShot SX50HS camera mounted on a
monopod at maximum resolution. Specimens were imaged at
different days post-inoculation (DPI), spanning 3 to 12 DPI. Pho-
tographs were taken at the same time of day on successive days
to minimize error. A ruler was placed next to each plant at each
image acquisition, and only the plant’s central part (60–80 mm)
was taken into account to avoid image distortion at the edges of
the photograph [50].

Landmark configuration and digitization

At the heart of GM analyses is the concept of landmarks. Land-
marks are points that can be located precisely over a structure
and correspond in a one-to-one manner among all the speci-
mens included in a study [51]. There is no absolute landmark
configuration on any given structure. The choice of the num-
ber of landmarks and their configuration depend on the hypoth-
esis being tested [52]. Here, the focus was on the phenotypic
impact of viral infections on the Arabidopsis rosette over time.
Hence, short-day conditions were chosen to maintain the vege-
tative phase and delay flowering (when stems and reproductive
organs could mask morphological features of leaves in zenithal
photographs), allowing the plant’s aerial part to remain near 2D
during the experiment. Landmarks were chosen based, in part,
on the relative ease of recognition in an Arabidopsis rosette in
the vegetative phase. Landmark choice was also made to en-
compass, as broadly as possible, the phenotypic changes experi-
enced by the plant during the infection. Chosen landmarks were
present from early stages of infection to later stages and placed
in regions that experience dramatic changes when infected [39].
Also, selected landmarks could take into account relevant mor-
phological changes induced by stresses or distinctive pheno-
types of different ecotypes such as relative shortening or length-
ening of petioles and laminae or relative lateral displacement of
leaves [7, 10, 11]. Moreover, the landmarks chosen are probably
less prone to manual digitization error than, e.g., a landmark sit-
uated in the middle of the laminae or placed somewhere along
the leaf’s contour. This is a task that seems rather complicated
given the serrated nature of Arabidopsis leaves and the fact that
the degree and placement of serration changes along the devel-
opment of successive leaves [53–55]. A relatively reduced num-
ber of landmarks can be used to describe complex forms [35, 56].

Also, the selection of landmarks is based on the observation
of the following five basic principles, including the basic require-
ments for 2D approximation [43]:

1) Homology (in the sense of correspondence of points). The
points on one specimen correspond (as the “same” point) to
that point on all individuals.

2) Adequate coverage of the form (or comprehensive coverage).
Landmarks should be chosen so that they encompass the
structure over which the biological hypothesis of interest is be-
ing tested and are functional to the specific aim of a study.

A B

Figure 1: (A) Landmark configuration in a representative Arabidopsis rosette. An

8-DPI mock-inoculated rosette is shown. (B) Analysis flowchart showing the dif-
ferent software used in this study, with the main features extracted from each
one that is listed below the corresponding icon. See the Main Text and Materials
and Methods for details.

3) Repeatability. The same landmarks should be easily identified
in the same structure in order to reduce digitization error (a
component of measurement error).

4) Consistency of relative position. This attribute guarantees that
landmarks do not interchange relative positions.

5) Coplanarity. When digitizing real, three-dimensional (3D)
structures under the 2D approximation, landmarks should be
placed as close as possible onto an imaginary plane to reduce
the distortion associated with that approximation.

The TPSUtil software (a member of the TPS series of GM tools
[46] that prepares the data for further analyses) was used to cre-
ate .TXT files with a .TPS extension from the directories con-
taining the .JPG images. These were used to load the .JPG im-
ages in TPSDig2. Opening these .TPS files with TPSDig2 allows
the user to proceed with the digitization of landmarks. An 11-
landmark configuration for the Arabidopsis rosette is shown in
Fig. 1A. The 11 landmarks were digitized in the same order on
each picture, after setting a scale factor with a ruler, at each DPI.
This scale factor is set in TPSDig2 selecting two points placed at
a known distance between them in the photograph and allows
for the correction of possible differences in distances from the
camera objective to the specimen under study (from one day to
the next, for instance). The scale factor is important to measure
centroid size, among other possible measures, but has no effect
on landmark coordinates, which remain in pixel units [46].

Following Bookstein’s criteria [57], landmark 11 (which is sit-
uated at the center of the rosette) is a type 1 landmark because
it is the intersection of the base of all petioles, i.e., its juxtapo-
sition and, hence, is very locally defined. Type 1 landmarks are
frequently considered as optimal [43, 57]. Landmarks 1–5 (which
are located at the tip of leaves 8–12 and are the maximum of cur-
vature of that structure) and landmarks 6–10 (which are located
at the intersection of the petiole and the lamina of each leaf from
8–12) cannot be unambiguously assigned due to the continuous
nature of the leaf curvature and are type 2 landmarks. Leaves
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below leaf 8 were not chosen for landmark placement for three
main reasons: they are hidden for younger leaves at later stages
of infection; these old leaves had almost finished their growth by
the time the first photographs were taken (and the form covered
by them would be a less informative one for the process of shape
and size change upon viral infection); and the senescence pro-
cess of older leaves leads to morphological changes derived from
dehydration and death. Younger leaves (beyond leaf 12) were not
chosen because they were not present at the earlier stages of
infections, therefore, violating the requisite of repeatability of
landmarks.

Average specimen digitization time was about 1 minute. The
output of TPSDig2 is a .TPS file containing information about
specimen name, scale factor, and raw coordinates of each land-
mark for all digitized specimens. Landmark digitization was re-
peated 1 week later in order to estimate the digitization compo-
nent of the measurement error for each specimen.

Workflow

A flowchart of data analyses is shown in Fig. 1B. Image datasets
for all DPIs and both treatments were handled and digitized for
further analyses using the TPSUtil and TPSDig2 software pack-
ages that generate .TPS output files. Several freeware packages
can be used to extract shape information from .TPS files [43].
Here, MorphoJ software [44] was chosen mainly because of its
ease of use and comprehensive tools available. MorphoJ cre-
ates new datasets from several file extensions including .TPS.
The “Supplementary File ORMV.morphoj” was created and 16
datasets were generated, one for each DPI and digitization in-
stance. Specimens were classified according to ID, treatment,
DPI, and digitization for each dataset. Combinations of classi-
fiers were also made in order to perform further grouped analy-
ses. Other complimentary analyses and shape change visualiza-
tions were performed by exporting output files from MorphoJ to
other software packages. TuMV analyses were done in the same
way.

Procrustes fit and outlier detection

The first step of shape analysis in GM consists of extracting
shape coordinates from raw data obtained at the digitization
step. The standard procedure in GM studies is the generalized
Procrustes analysis (GPA).

Procrustes procedures are performed in order to remove from
the specimens all information that is not relevant for shape
comparisons, including size. Specimens are first translated at
the origin (“superimposed”) by subtracting the coordinates of its
centroid from the corresponding (X or Y) coordinates of each
landmark. Then, differences in size are removed by rescaling
each specimen to the mean centroid size (CS), which is cal-
culated as the square root of the summed squared distances
of each landmark from the centroid. Differences in rotation
are eliminated by rotating specimens, thus, minimizing the
summed squared distances between homologous landmarks
(over all landmarks) between the shapes. MorphoJ performs a
full Procrustes fit that is a variant of the analysis that is more
conservative and resistant to outliers of shape.

In a few recent studies that focused on flowers [58–60] or
leaves [61], asymmetry in plants was examined by comparing
GM with those in animals [51]. Although we did not study the
asymmetry issue, it must be briefly considered. In Arabidopsis,
the arrangement of organs along the stem (phyllotaxy) follows
a predictable pattern, the Fibonacci series. Phyllotaxy orienta-

tion can be clockwise or counterclockwise [62]. There is no pre-
ferred orientation of Arabidopsis rosettes; in this study, 20 were
clockwise and 21 were counterclockwise. This is an example
of antisymmetry, where (following Klingenberg’s [51] explana-
tion) “most individuals are asymmetric, but differ in the direc-
tions of the asymmetries so that there is a mix of ’left-sided’
and ’right-sided’ individuals.” This creates a bimodal distribu-
tion that should be considered because clockwise and counter-
clockwise rosettes are biological enantiomorphs and must not
be directly superimposed by GPA. Fortunately, MorphoJ automat-
ically performs reflections on every specimen when executing a
GPA; therefore, it is not a problem at this stage. However, care
must be taken with different software. Alternatively, rosettes
can be reflected using TPSDig2 to leave all clockwise or coun-
terclockwise rosettes prior to landmark digitization.

Although the full Procrustes fit performed by MorphoJ is con-
sidered to be more resistant to outliers of shape [44], there could
still be specimens that divert from the rest to a great extent. The
“Find Outliers” option in the “Preliminaries” menu provides an
indication of how unusual an individual is relative to the others
in the sample (using Mahalanobis distance in larger samples).
The user can, therefore, consider subtracting this specimen from
the rest as an outlier. A GPA was run for each dataset (each com-
prising one of the DPIs and one digitization replicate), and out-
liers were evaluated separately in each of the 16 datasets.

Assessment of the tangent space approximation

For a given M-dimensional structure with K landmarks (here, M
= 2 and K = 11), an individual’s shape can be visualized as a point
in an M x K multidimensional space (a hypersphere). After cen-
tering and rescaling, three dimensions are lost and shapes are
said to be in a preshape space; they are not rotated yet. The dis-
tance in the hypersphere surface at which rotation differences
between shapes are minimal is called the Procrustes distance
(the conventional measure of a morphometric distance in GM
[63]). Afterward, a reference (average) shape is selected and all
other shapes are rotated to minimize distances relative to it,
generating a shape space and losing one more dimension (re-
maining 2K-4). Because distances over curved multidimensional
spaces are non-Euclidean, conventional tools of statistical in-
ference cannot be used. Fortunately, a good approximation to
Euclidean distances for most biological shapes is possible by
projecting shape points to a tangent Euclidean space (for a vi-
sual explanation, see [43]). This assumption should, however,
be tested when analyzing new data. TPSSmall is used to deter-
mine whether the amount of variation in shape in a dataset is
small enough to perform statistical analyses in the linear tan-
gent space approximate to Kendall’s shape space, which is non-
linear. Basically, this task is performed by comparing the Pro-
crustes distances obtained using both shape spaces. Since TPSS-
mall does not perform reflections, datasets analyzed with TPS-
Dig2 were opened again and specimens reflected when neces-
sary to leave all clockwise rosettes. Two data subsets were cre-
ated for each DPI, one with mock-inoculated plants and the
other with ORMV-infected plants. Next, the datasets were com-
bined across DPIs using the “Append files” option of TPSUtil to
create three main datasets—mock, ORMV, and all plants.

Testing digitization error and variation between
treatments using Procrustes ANOVA

As mentioned previously, two digitization instances were per-
formed on each plant at each DPI in order to evaluate digitiza-
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tion error. This procedure is important because digitization error
should always account for far less variance in the subsequent
analyses than specimens and treatments do [35]. The differ-
ences between the samples and particularly between the treat-
ments are the ones worth investigating, not the human error
in landmark placement. Purposely, datasets for each DPI were
combined and subjected to a hierarchical analysis of variance
(ANOVA). In MorphoJ this is a Procrustes ANOVA, with “Treat-
ment” as an additional main effect, “ID” for the individuals, and
“Digitization” as the Error1 source (the last term is equivalent to
the Residuals here, as only one source of error is being quanti-
fied). One Procrustes ANOVA was performed separately for each
DPI.

In Procrustes ANOVA, variance is partitioned by means of hi-
erarchical sum of squares (SS), which implies that each effect
is adjusted for effects that appear earlier in the hierarchy. This
takes into account the nested structure of the data and, there-
fore, allows the quantification of differences in Treatments and
individuals (plants) regardless of Treatment. (This ssue is crucial
if the design is unbalanced, i.e., with unequal sample sizes, in
part, because hypothesis tests are more robust to the assump-
tions of normality and equal variance when the design is bal-
anced. Although the design here is unbalanced (24 mock and
17 ORMV plants), it is considered a minor problem for designs
that are not extremely unbalanced and/or do not involve more
than one factor [43, 64]. It should, however, be taken into account
when multiple factors are studied, requiring special calculations
for obtaining the correct SS. MorphoJ also recommends use of
data that are as balanced as possible (see [43] for a discussion
on the topic). The variance unexplained by any of these effects
(Treatment and Individual) is digitization error, and it is esti-
mated using the differences between digitizations. Hence, total
variance was decomposed into main (Treatment) and random
(ID and Digitization) components and was expressed as a per-
centage of total variance for each DPI. Statistical significance is
provided by Goodall F tests [65] for size and shape. The paramet-
ric Goodall F test assumes isotropic variation (the assumption
that there is an equal amount of variation around each land-
mark), which is often violated in biological studies [66]. For many
practical applications, it is possible to use the approach based
on Procrustes distances to assess the relative magnitudes of ef-
fects. Hoever, when making statistical inferences, the multivari-
ate analysis of variance (MANOVA) approach is used [44]. For
this reason, MorphoJ includes a multivariate test (Pillai trace) for
shape.

Ordination methods and shape change visualization

PCA (Principal Component Analysis)
Once shape variables (the 22 Procrustes coordinates) are ex-
tracted for all specimens at each DPI, it is a useful option to plot
differences between individuals and treatments. However, pat-
terns of variation and covariation between lots of variables are
difficult to interpret, and shape variables are not statistically in-
dependent [43]. PCA (Principal Component Analysis) is a tech-
nique that simplifies those patterns and, therefore, makes them
easier to interpret. When a PCA is performed, the original, pos-
sible correlated set of shape variables are mathematically trans-
formed to create a new set of orthogonal and independent vari-
ables (known as principal components [PCs]) that are a linear
combination of the original variables. PCs do not covary but carry
all the original shape information. As each PC explains sequen-
tially less shape variance, this approach is often used to restrict
the analysis to the first few PCs that account for most of the to-

tal variance [43]. However, some recent developments in the GM
field [67] propose that PCA should be, at the least, carefully inter-
preted since the biological meaning of the PC axes are difficult to
assess. Here, PCA is used conservatively to discuss relative shape
distances between individuals belonging to different groups, as
advised by Howells [68]. It is also important to remember that
PCA is useful for studying distances between individuals, not
groups, and that although it is a powerful descriptive tool, it does
not involve any statistical test. Therefore, the relative separation
of groups in a PCA plot does not allow one to draw conclusions
about significant differences (or its absence).

Visualization of shape changes
A brief description of common GM visualization tools is needed
in order to accurately interpret the results. After the GPA, every
configuration in the sample is optimally aligned to the average
configuration and nearly optimally aligned to every other config-
uration in the sample [69]. GPA has already removed differences
attributable to size, position, and orientation from configura-
tions. All differences that remain are shape variation. Accord-
ingly, shape differences are found using the relative displace-
ments of the landmarks from one shape to another nearby in
shape space [69].

A key concept to bear in mind is that it is fundamentally
wrong to consider landmarks as displacements in an isolated
manner [43, 69] (see example in [35]). This is because all the
landmarks in the GPA jointly determine the alignment of each
configuration in relation to the mean shape. Then, the variation
in the position of each landmark after superimposition is rela-
tive to the positions of all other landmarks. Although a shift is
shown at every landmark, these shifts are relative to all other
landmarks. Lollipop and wireframe graphs are based on these
assumptions (see the Results section).

Shape variation could be depicted by means of transforma-
tion grids, which are mathematically constructed following the
thin-plate spline technique [43, 57, 69]. Briefly, landmarks of a
starting shape are placed on a grid of an imaginary infinitely thin
metal plate. Landmarks of a target configuration are placed on
another grid with equal characteristics, and both metal sheets
are superimposed. Each landmark in the starting shape (e.g.,
mean shape) is linked to its homologous in order to reach the
target configuration, and the deformation caused in the spline
is calculated, finding the smoothest interpolating function that
estimates energy changes in the spline between landmarks. Im-
portantly, unlike lollipop or wireframe graphs, transformation
grids distribute the change in landmark positions to the space
between landmarks, when no objective information is available.
Then, whereas a powerful descriptive tool, transformation grids
must be carefully interpreted, especially regarding regions of the
object that do not have landmarks nearly positioned [43, 69].
More details and examples are given in the Results section.

Discriminant analysis
Discriminant analysis (DA) is mathematically related to PCA. It
finds the axes that optimize between-group differences relative
to within-group variation. It can be used as a classification tool
[43]. Here, it is used for testing treatments by using tests for sam-
ple mean differences, including an estimate of the accuracy of
shape in predicting groups. The capability of DA to correctly as-
sign specimens to treatments was assessed along with the ex-
periment using the averaged datasets for each DPI. In MorphoJ,
DA analysis was requested, selecting “Treatment” as the classifi-
cation criterion. By default, DA in MorphoJ performs a paramet-
ric Hotelling T-square test (multivariate equivalent of the Stu-
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dent t test). Here, requested permutation tests were also per-
formed for the Procrustes and Mahalanobis distances with 1,000
random runs. Procrustes and Mahalanobis distances show how
far shapes from one group are from the mean of the other group.

Allometric patterns and size correction

The covariation between a size variable and shape variables is
called allometry. Isometry, by contrast, is the condition where
size and shape are independent of each other and usually serves
as the null hypothesis. These concepts are rooted in the Gould-
Mosimann school of allometry that conceptually separates size
and shape [70]. Although size had been removed from forms af-
ter GPA, thus leaving shape differences free of it, a consistent
trend in change of shape with size may be possible. Allometry
can be statistically tested by tests of multivariate regression.

When groups are present, a single regression line through all
groups cannot be fit to test allometry because lines could have
group-specific slopes or intercepts [35]. To test whether an allo-
metric component is present in each group, separate regressions
were performed for each treatment and DPI, with Procrustes co-
ordinates and ln(CS) as dependent and independent variables,
respectively. Permutation tests were requested with 10,000 runs.

When at least one group has regression slopes that are dif-
ferent from zero, several tests could be done in order to con-
trol for size and repeat analyses in order to assess whether dif-
ferences in shape are actually the result of size variation only
[34, 35, 43, 70]. A multivariate analysis of covariance (MANCOVA)
(with treatments as groups, shape coordinates as dependent
variables, and ln(CS) as the independent variable) was run from
3 to 8 DPI. The MANCOVA is first run to allow each group to have
its own slope. Next, the regression analysis is run again, but this
time it fits a MANCOVA with the slopes constrained to be the
same in each group (i.e., parallel). Although the percentage of
variance explained (% SS) for the regression of the first model is
always higher than the second one (constrained by the premise
to keep parallel the slopes), the allometric trajectories could be
considered to be parallel if differences are small. TPSRegr (v.1.41)
provides multivariate and permutation tests for the assessment
of that difference [46]. Afterward, the MANCOVA model tests if
slopes are parallel but separate or if they are coincident (same
Y-intercept), and a common regression slope including individ-
uals from both treatments could be fit. This allows correction
for size and testing, e.g., if DAs are improved after removing the
“size-effect” [35].

Phenotypic trajectory analyses and morphospace
occupation patterns

Whereas the comparison of allometric vectors allows testing
of whether shape change is altered at definite DPIs during
ORMV infection, a more complete view of ontogenetic alter-
ations needs to measure phenotypic evolution across multiple
levels. It allows ontogenetic patterns to be characterized as phe-
notypic trajectories through the morphospace, rather than phe-
notypic vectors. The method proposed by Adams and Collyer
[71] “may also be used for determining how allometric or onto-
genetic growth trajectories differ, or for quantifying patterns in
other data that form a time-sequence” [71]. Briefly, phenotypic
trajectories have three attributes: size, direction, and shape.

Trajectory size (MD) quantifies the path length of the phe-
notypic trajectory expressed by a particular group across levels.
This represents the magnitude of phenotypic change displayed
by that group. If trajectories of two or more groups compared

over comparable time periods differ in trajectory size, then it in-
dicates differences in rates of morphological change.

Trajectory direction (θ ) is a multivariate angle that describes
the general orientation of phenotypic evolution in the multi-
variate trait space. Statistical comparisons of trajectory direc-
tion can be used to provide an assessment of patterns of con-
vergence, divergence, and parallelism.

Trajectory shape (DShape) describes the shape of the path of
phenotypic evolution through the multivariate trait space. This
information is useful because it indicates whether there are dif-
ferences in how each group occupies the morphospace through
the time period.

Phenotypic trajectory analyses (PTA) starts from the PCs for
all specimens at all DPIs. They were obtained from the “Com-
bined dataset 3–12 DPI, averaged by ID DPI” of the Supplemen-
tary File ORMV.morphoj. The R script developed by Adams and
Collyer [71] was run in RStudio [72, 73].

However, as has been pointed out by Ciampaglio et al. [74], no
one method of disparity measurement is sufficient for all pur-
poses. The use of a combination of techniques should allow a
clearer picture of disparity to emerge. With this aim, another
available approach to compare shape trajectories through mul-
tivariate morphospace was used. Originally developed to study
unequal morphological diversification in a clade of South Amer-
ican fishes [75], this approach is useful because it allows us to
investigate whether a group “explores” a different amount of
morphospace than others, in addition to possible differences in
magnitude of phenotypic evolution. Moreover, density param-
eters could be calculated to determine whether the amount of
morphological change is more or less constrained in the mor-
phospace.

The method was adapted to the present study. As there is
not a phylomorphospace and both treatments lack a “common
ancestor,” but each plant follows its own independent ontoge-
netic path, nodes and branches do not exist. Rather, each plant
possesses its own trajectory without points in common. There-
fore, morphological trajectories were calculated for all plants
taking these considerations into account. For this purpose, the
“Combined dataset 3–12 DPI, averaged by ID DPI” of the Supple-
mentary File ORMV.morphoj was subdivided by ID. Forty new
datasets (mock- and ORMV-inoculated plants from the same
previously performed Procrustes fit) were obtained and Pro-
crustes coordinates and eigenvalues from the seven PCs ob-
tained were exported to an Excel spreadsheet.

Statistical analyses

Except as otherwise stated, shape analyses were performed us-
ing MorphoJ [44] and the TPS series [46], as described in the main
text. Paired Hotelling tests for intratreatment inter-DPI shape
change analyses and Mann-Whitney tests for rosette growth
analysis were executed in PAST [45]. PTAs based on Adams and
Collyer [71] were run in R [72]. Excel 2010 was used for Holm-
Bonferroni sequential test for multiple comparisons [76, 77] and
hyperellipses calculations using Real Statistics for Excel 2010
(ver. 4.14) [78].

Results

Morphometrics aims at analyzing the variation and covariation
of the size and shape of objects, defining altogether their form.
Shape and form might be confusing words, used as synonyms in
many languages [13]. Hereafter, the GM definition of shape in the
sense [20] that it is “all the geometric information that remains
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when location, scale and rotational effects are filtered out from
an object” is used.

Landmark configuration, Procrustes fit, and outliers
detection

Figure 1A shows an 11-landmark configuration for the Arabidop-
sis rosette. Plants were inoculated in their third true leaf (24
plants were mock inoculated and 17 were ORMV infected), and
images were acquired starting 3 days post-inoculation (DPI) to
12 DPI (see Materials and Methods section).

After executing a full Procrustes fit of each dataset, they were
inspected for the presence of outliers. The shape of one mock-
inoculated plant (M2) diverted the most from the rest in 11 of 16
datasets and was excluded from all datasets for successive anal-
yses. Thus, 23 mock-inoculated and 17 ORMV-infected plants
were used for the subsequent morphometric analyses.

Afterward, datasets were combined and the “Combined
dataset 3–12 DPI” was created with 640 observations included
following a common GPA. Then, a wireframe was created that
connects consecutive landmarks. This tool aids visualization, as
will be explained later. Next, the “Combined dataset 3–12 DPI”
was subdivided by DPI. This creates one dataset for each DPI;
each one has two digitization outputs for each plant.

Assessment of the tangent (Euclidean) space
approximation

By using the combined datasets for mock-inoculated, ORMV-
infected, and all plants (see Materials and Methods section),
TPSSmall (v.1.33) was run to compare statistics for distance
to reference shape both in Tangent (Euclidean) and Procrustes
(Kendall’s) shape space for both treatments separately and
for all plants together (Supplementary Table S1). The results
showed that maximum Procrustes distances from mean (refer-
ence) shape were 0.371 (ORMV), 0.405 (mock), and 0.400 (ALL).
Mean Procrustes distances from mean (reference) shape were
0.168 (ORMV), 0.186 (mock), and 0.184 (ALL). This indicates a
closer arrangement of ORMV shapes in shape space relative
to mock-inoculated plants. Tangent and Procrustes distances
were highly similar (Supplementary Table S1), and regressions
through the origin for distance in tangent space, Y, regressed
onto Procrustes distance, X, showed slopes >0.98 and correla-
tions >0.9999 for all groups (Supplementary Table S1, Supple-
mentary Fig. S1). These results are in line with several similar
analysis performed on a variety of biological forms [35, 79–81].
Thus, the projections of shapes in Kendall’s shape space onto a
tangent Euclidean shape space are good approximations for the
studied shapes.

Testing digitization error and variation between
treatments using Procrustes ANOVA

Eight separate hierarchical (Procrustes) ANOVAs were performed
to assess digitization error at each DPI. The analysis was exe-
cuted simultaneously for both size and shape. Results are shown
in Supplementary Table S2.

Explained variance (as a % SS) for which individuals ac-
counted was 17.93 to 99.95 for size and 61.00 to 96.74 for shape
over all DPIs. By contrast, explained SS (%) for digitization error
ranged from 0.01 to 0.12 for size and 0.40 to 1.15 for shape and
were almost always two orders of magnitude smaller than indi-
vidual SS. Thus, digitization error was negligible throughout the
digitization process. Furthermore, the results shown in Supple-

mentary Table S2 revealed that for size, the Individual (ID) effect
was highly significant at each DPI as evidenced by Goodall F test
(P < 0.0001). Treatment effect was insignificant from 3 to 5 DPI;
however, starting from 6 DPI, the virus affected plant size (0.0001
< P < 0.03).

For shape, similar results were obtained. Indeed, the Individ-
ual effect was also highly significant at each DPI as evidenced
by Goodall F test (P < 0.0001) and MANOVA results (P < 0.0001).
Treatment impacted earlier in shape than size, as differences
in shape were evident as soon as 5 DPI (P = 0.0008, multivari-
ate test). The infection also had an increasingly proportionally
higher impact along the experiment, reaching 82.35 and 38.29
of the explained % SS at the end of the experiment (12 DPI) for
size and shape, respectively. Accordingly, ORMV induced a rela-
tive growth stagnation that was progressively more accentuated
along the experiment (Fig. 2).

Ordination methods and shape change visualization

PCA
First, PCA was used to assess error measurement (previously
quantified by Procrustes ANOVA; Supplementary Table S2). A
covariance matrix was created for the “Combined dataset 3–12
DPI” and then a PCA was performed. Scatter plots were gener-
ated for the first four PCs, which together account for 87.2% of
total variance (Fig. 3). The proximity of equally colored points
indicates a small digitization error.

As digitization error explained a negligible percentage of
variance, digitizations were averaged within specimens for each
DPI. From the “Combined dataset 3–12 DPI,” the “Combined
dataset 3–12 DPI, averaged by ID DPI” dataset was created, which
contains all 320 averaged observations. The averaged data were
used to find the directions of maximal variance between individ-
uals by requesting a PCA. Three types of graphs were obtained:
PC shape changes (a diagram showing the shape changes associ-
ated with the PCs), Eigenvalues (histogram showing the percent-
ages of total variance for which the PCs account), and PC scores
(scatterp lot of PC scores) (Supplementary File ORMV.morphoJ).

PC1 and the first four PCs accounted for 64.2% and 87.4% of
total variance, respectively. PC scatter plots show specimen dis-
tribution along the axes of maximum variance (Fig. 4A, 4B). Dots
corresponding to early (3–6 DPI) and later (7–12 DPI) stages were
colored in a lighter or darker tone, respectively, to aid visualiza-
tion. The results showed that PC1 is likely an axis related to de-
velopment (change in shape related with age), because clearly
separated rosettes from early (mostly negative values) to late
(positive values) stages of the experiment (Fig. 4A). Moreover, at
later stages, ORMV-infected plants had fewer positive scores on
this axis; this suggests that infected plants retained a more juve-
nile (pedomorphic) shape. Positive extremes of PC2–4 are related
to ORMV shapes.

Also, by using the shape coordinates of the 320 averaged ob-
servations, we then investigated whether plants changed their
shapes between successive DPIs within treatments. Intratreat-
ment paired comparisons of shape are possible using a paired
Hotelling test (a multivariate analog of the paired t test). A strong
effect of time on shape was evident from the start of the exper-
iment, and differences were extremely statistically significant
for mock plants (Supplementary Table S3). From this point, GM
visualization tools are used to better understand what these rel-
ative positions on scatter plots mean with respect to shape dif-
ferences.
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Figure 2: Mean centroid size for mock- and ORMV-inoculated plants across the experiment. Error bars indicate +/- standard error. ∗ = P < 0.05; ∗∗ = P < 0.01; ∗∗∗ = P <

0.0001, Mann-Whitney tests.

Visualization of shape changes
Wireframe graphs (Fig. 4C-4F) can be requested for each PC of
interest from the “PC shape changes” tab by right-clicking on
the displayed image and changing the type of graph. Wireframe
graphs connect the landmarks with straight lines for the start-
ing and target shapes by using a previously created Arabidop-
sis wireframe, thus showing the relative displacements of land-
marks from a mean shape. Negative values of PC1 mostly corre-
spond to juvenile (and infected) shapes; positive values of PC1
belong to healthy controls and adults. Hence, by depicting the
–PC1 component, target shapes are given negative values (Fig.
4C). The –PC1 explains the relative shortening of leaves #11 (the
space limited by landmarks 4, 9 and 11) and #12 (landmarks 5,
10 and 11). This makes sense, since younger plants have yet to
develop these relatively new leaves. Petioles of leaves #10, #11
and #12 are particularly relatively shortened. Relative to these
shortenings, older leaves (#8 and #9) are longer but, interestingly,
only its laminae, since its petioles are not relatively elongated.
Taken together, PC1 reveals that ORMV impaired the elongation
of newer leaves to their normal extent. PC2 (Fig. 4D) associates
with relative radial displacements of leaves; tips of leaves #8 and
#9 (landmarks 1 and 2) come close together, lowering the typi-
cal angle between successive leaves from near 137.5◦ to close to
90◦. These relative displacements determine that leaves #9 and
#10 form an exaggerated angle of near 180◦. PC3 (Fig. 4E) is also
mostly associated with radial changes in the infected rosette:
leaf #10 is relatively displaced towards leaf #8 and the main ef-
fect is, again, the increase of the angle between leaves #9 and #10
to near 180◦. PC4 (Fig. 4F) explains less proportion of total vari-
ance (4.5%) and is mostly related to the relative displacement of
the lamina of leaf #11 toward leaf #9 almost without altering its
petiole, which functions as a hinge. Leaves #9 and #10 are, as a
combination of the effects depicted by PC2 and PC3, both rela-
tively displaced toward leaf #8. Together, the wireframe visual-
ization of the first four PCs (which account for more than 87%
of total variance) shows that ORMV induces the relative short-
ening of laminae and (especially) petioles of the newest leaves.
This shortening is related to a pedomorphic shape. Furthermore,
this analysis also demonstrates that ORMV provokes the relative
displacement of leaves #9 and #10 toward leaf #8.

Displacement vectors (called “lollipop graphs” in MorphoJ)
are arrows drawn between a landmark in a starting shape and
the same landmark in a target shape. The dot in the lollipop rep-

resents the starting position, and the vector is represented by
a line departing from it (but in some software, the inverse con-
vention is followed, i.e., PAST). Although these visualizations are
being displaced in the GM literature in favor of more advanced
tools [69], here, the case for –PC1 is presented, showing the rela-
tive displacements of landmarks (Fig. 4G). It can be directly com-
pared with Fig. 4C.

Finally, Fig. 4H and 4I show exemplified transformation grids
for –PC1. Figure 4H depicts the starting (mean) shape, whereas
Fig. 4I shows the transformed grid for –PC1. The compression
of the grid in the central zone is the result of the relative dis-
placement of the space between landmarks 3, 8, and 11 (leaf
#10); 4, 9, and 11 (leaf #11); and 5, 10, and 11 (leaf #12) toward
the center of the rosette. In addition, grid stretching is detected
around landmarks 1 and 2 and reveals the relative expansion of
laminae of leaves #8 and #9, since its petioles remain relatively
immobile; landmarks 6 and 7). As stated previously, visualiza-
tion with these grids should be cautiously interpreted since the
interpolation function deforms the grid between places where
no landmark is placed (and no information about even the ex-
istence of tissue is guaranteed). Therefore, such visualizations
need to be interpreted cautiously in regions that are relatively
far from landmarks [69]. To assess these changes in more de-
tail, PCA analyses were performed for each DPI. The “Combined
dataset 3–12 DPI, averaged by ID DPI” was subdivided by DPI
performing a common Procrustes fit, thus creating eight new
datasets (DPIs) (raw data in Supplementary File ORMV.morphoJ).
Covariance matrices were generated, and a PCA was performed
for each DPI dataset. PC1 and the first four PCs accounted for
27% to 43% and 78% to 84% of total variance, respectively. PCs
beyond PC4 accounted for 5% or less of variation each. Shape
change visualization showed that PC1 gradually separated speci-
mens belonging to different treatments. Mock-inoculated plants
were progressively more aligned with positive PC1 values. PC2
was more generally related to ORMV-infected plants in its pos-
itive values. Relative shortening of younger leaves and petioles
and relative displacement of leaves towards leaf #8 were pro-
gressively more accentuated (Supplementary Fig. S2).

Discriminant analysis
So far, distances between individuals were addressed with the
aid of PCA. Subsequently a DA was performed to test whether
differences between treatments are detectable at each DPI (Table
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Figure 3: Shape variation including all observations and replicas. PCA scatter plots of (A) PC1 vs. PC2 and (B) PC3 vs. PC4. Equally colored dots represent both digitizations
of the same specimen for all DPIs. The scale factor for this graph is directly the magnitude of the shape change as a Procrustes distance in any given direction; the
same scaling was used for all axes.

Table 1: Statistical tests for differences between means of treatments at each DPI from DA

Discriminant function
analysis 3 DPI 4 DPI 5 DPI 6 DPI 7 DPI 8 DPI 10 DPI 12 DPI

Difference between means
Procrustes distance 0.037 0.047 0.063 0.087 0.097 0.105 0.149 0.189
Mahalanobis distance 1.799 1.924 3.815 5.117 6.651 7.035 9.078 10.863
T-square 31.637 36.170 142.264 255.916 432.438 483.790 805.573 1,153.389
P value (parametric) 0.521 0.405 0.001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
P values for permutation tests (1,000 permutation runs)
Procrustes distance 0.549 0.182 0.005 0.002 <0.0001 <0.0001 <0.0001 <0.0001
T square (Mahalanobis
distance)

0.523 0.417 0.001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Permutation tests with 1000 random runs

1). At 5 DPI, the three tests detected shape differences between
treatments (0.001 < P < 0.005). From 6 DPI and beyond, P val-

ues were extremely significant (P < 0.0001). These results coin-
cide with those obtained by Procrustes ANOVA of shape (Supple-
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Figure 4: Shape variation between specimens (averaged by measurement replicates). PCA scatterplots of (A) PC1 vs. PC2 and (B) PC3 vs. PC4, which together explain
87.4% of variance. Pale dots = juvenile (3–6 DPI) plants. Dark dots = mature (7–12 DPI) plants. (C-F) Wireframe graphs showing shape changes from the starting (average)
shape (bluish green) to the target shape (orange) for the first four PCs. Negative (PC1) and positive (PCs 2–4) components are shown, respectively. Here and throughout
this work, leaf number is indicated in the wireframe in black. (G) Lollipop graph for the –PC1 component. Lollipops indicate starting position of landmarks with dots.

(H-I) Transformation grids for (H) the starting shape and for (I) the target shape (–PC1). Shape changes (C-G and I) are magnified 2x for better visualization.

mentary Table S2). DA maximizes group separation for plotting
their differences and predicting group affiliation (classification).
The classification of a given specimen (through the discriminant
axis) is done using functions that were calculated on samples
that included that same specimen (resubstituting rate of assign-

ment). Then, a degree of over-fitting is unavoidable and leads to
an overestimate of the effectiveness of the DA. To overcome this
problem, one can use a cross-validation or jackknife procedure
[35, 43]. A jackknife procedure leaves one specimen at a time
not used for constructing the discriminant function and then
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Figure 5: Discriminant analyses of shape variation between treatments at 3 (A- C), 7 (D-F), and 12 (G-I) DPI. Frequencies of discriminant scores obtained by resubstitution

rates of assignments (A, D, G) and a jackknife cross-validation (B, E, H) are shown using histogram bars with percentages of correct assignments above each graph.
Wireframes comparing mean shapes (C, F, I) are shown magnified 2 times. Mock = bluish green; ORMV = orange.

tests the rate of correct specimen assignment. Only jackknife
cross-validated classification tables provide reliable information
on groups. Figure 5 displays DA results in group assignment for
3, 7, and 12 DPI, and Supplementary Table S4 details these re-
sults for all DPIs. As expected, resubstitution rates of assign-
ment (Fig. 5A, 5D, 5G) were higher than jackknifed counterparts
(Fig. 5B, 5E, 5H) but those jackknifed reached high levels of ac-
curacy (≥90%) from 6 DPI and later (Supplementary Table S4). To
test whether this level of accuracy was adequate, these results
were compared with classification/misclassification tables com-
pleted by human observers. The entire image dataset of 7 DPI
was given to three expert researchers working with Arabidopsis
(one of the authors [S.A.] and two other researchers from an-
other institution). They did not know which plants were mock-
inoculated or ORMV-infected, except for one mock-inoculated
and one ORMV-infected plant that were given as phenotypic ref-
erences. These two reference plants were excluded from the
dataset for subsequent human classification. The researchers
classified the 38 remnant plants (Supplementary Table S4). Hu-

man accuracy ranged from 55% to 72.5%, with an average of
64.2%. Therefore, DA outperformed the expert human eye by 30%
at 7 DPI and yielded higher classification rates from 5 DPI.

Wireframe graphs for 3, 7, and 12 DPI (Fig. 5C, 5F, 5I) show
the difference from mock to ORMV group. The difference was
subtle at 3 DPI, if there was any (Fig. 5C), consistent with non-
significant differences found by DA at this stage. At 7 DPI (Fig.
5F), the relative shortening of leaf #11 (landmarks 4, 9, and 11)
and the relative increase in the angle between leaves #9 and #10
were evident. These tendencies persisted at 12 DPI (Fig. 5I). At
this stage, petioles of leaves #11 and #12 were strongly relatively
shortened. These results resembled those shown in Fig. 4C-4F
and approximately summarize shape changes explained by the
first four PCs. This indicated that these shape differences not
only separated juveniles from adults but also are hallmarks of
shape change induced by ORMV. These results are interesting
because discriminant axes not necessarily resemble PCA axes
[43].
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Allometric patterns and size correction

As ORMV induced not only changes in shape but also in size
(Supplementary Table S2), it is worth investigating whether
shape differences between treatments (within a given DPI) are
associated with size differences. In principle, group differences
could arise if individuals of one group are different in shape
because they grew faster than those from the other group and
reached earlier a more advanced developmental stage.

Allometry analyses were performed with individual datasets
(each corresponding to one separate treatment for each DPI)
from the first digitization (as proven earlier [Fig. 3, Supplemen-
tary Table S2], differences between digitization instances were
negligible).

Figure 6A and Supplementary Table S5 show groups with sta-
tistically significant allometry and predicted SS from regressions
(which correspond to allometric variation of shape). Allometry
accounted for a moderate to high proportion of the total shape
variation, since SS reached values of 36% at 6 DPI (mock). ORMV
induced a reduction in the allometric component of shape varia-
tion, as evidenced by lower predicted SSs throughout the experi-
ment and nonsignificant values of allometry for all except 4 and
5 DPI. For both treatments and particularly for healthy controls,
a bell-shaped curve was detected. A maximum allometry was
detected at 6 DPI for mock plants, but a day before for ORMV.
Differences between treatments started at 5 DPI, when allom-
etry accounted for 32% and 20% of predicted SS for mock and
ORMV, respectively. This analysis shows that shape variation is
much less driven by size heterogeneity (at a given DPI) in ORMV
plants. On the other hand, for mock plants this situation (isom-
etry) occurs at later stages of development (10–12 DPI).

Allometry was detected from 3 to 8 DPI. For this reason, TP-
SRegr (v. 1.41) was used first to determine whether treatment-
specific slopes were parallel at each DPI (3 to 8) (Supplemen-
tary Table S5). This phenomenon only occurred 3 and 4 DPI (P
> 0.05, nonstatistically significant slope differences). As slopes
were found to be parallel, it is possible to test whether they are
separate parallel slopes or coincident (same Y intercept). TP-
SRegr tests demonstrated that slopes were coincident (P > 0.05).
Then, size corrections could only be done for 3 and 4 DPI, since
from 5 to 8 DPI, slopes were different (P < 0.05) and groups fol-
low their own allometric pattern. Also, for 10 and 12 DPI, there
is isometry and size does not correlate with shape variation.
Size correction was done for 3 and 4 DPI separately in MorphoJ
using all 40 plants. Shape variables were regressed onto ln(CS)
for each dataset by pooling regressions within subgroups (treat-
ments), and permutation tests with 10,000 runs were requested.
Residuals from the analyses contain the size-free information
about shape only and can be used to repeat DAs to test for im-
proved accuracy of discrimination [70]. Group separation was
not improved (Fig. 6B-6E). This is somehow expected since at
this stage of the viral infection, differences in size or shape are
undetectable (Supplementary Table S2, Table 1, Fig. 5). This test
and the large overlap between populations in the scatter plot of
regression scores on size (Fig. 6F, 6G) suggest that the effect of
size on shape is very similar for both treatments and DPIs. Big-
ger rosettes have further distal displacements of leaves 10, 11,
and 12 relative to older leaves (8 and 9) and elongated petioles
(Fig. 6H, 6I), thus reflecting the differential internal growth of
the rosette. Bigger, more mature rosettes have more developed
newer leaves.

Figure 6: Allometric analyses. (A) Predicted SS from regressions of shape onto
ln(CS) for each treatment and DPI. P values were corrected using Holm sequen-
tial test (α = 0.05). ∗ = P < 0.05; ∗∗ = P < 0.01. Allometric analyses for (B, D, F, H) 3

DPI and (C, E, G, I) 4 DPI (mock = bluish green; ORMV = orange). Cross-validated
DAs before (B-C) and after (D-E) size correction with percentages of correct as-
signments above each graph. (F-G) Scatter plot of regression scores vs. ln(CS).
(H-I) Wireframes showing starting mean shape (turquoise) and target shape de-

picting an increase in one unit of ln(CS) (blue), without magnification.
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Figure 7: Phenotypic trajectories for mock and ORMV (3–12 DPI). Scatter plot
shows the first two PCs of shape variation across the experiment. Mean values

for each DPI are colored and connected with lines. PTA parameters are given (see
Materials and Methods section). Mock = bluish green; ORMV = orange.

PTA and morphospace occupation patterns

PTA approach (with 1,000 residual randomization permutations)
revealed significant differences in the magnitude of phenotypic
evolution between the two treatments (MDMock, ORMV = 0.100, Psize

= 0.003). This implies that ORMV-infected plants experienced
a lower rate of ontogenetic phenotypic evolution compared to
controls. Overall direction of ontogenetic changes was also sta-
tistically significantly different (θMock, ORMV = 18.34◦, Pθ = 0.001).
Finally, shape assessment analysis showed differences between
treatments regarding trajectories over time (DShapeMock, ORMV =
0.367, PShape = 0.001) (Table 2). Accordingly, when phenotypic tra-
jectories were plotted over time through a projection of the first
two generated PCs on a plane (Fig. 7), it was found that mock
and ORMV plants follow different trajectories across the mor-
phospace. Beyond 6 DPI, ORMV induced a relative stasis along
PC1 (major morphological axis).

Regarding differences in morphospace occupation patterns,
the morphometric change experienced by a plant throughout
ontogeny equals the Euclidean distance (D) between successive
points in a morphospace that represents its shape at each DPI.
As PCs from a PCA carry all the morphological information ex-
tracted from the Procrustes coordinates, distances are simulta-
neously calculated over all the PCs by using the Pythagorean
theorem. These distances are designated as morphometric path
lengths (MPL) (�D = MPL) (sensu [75]). Mock-inoculated plants
traveled on average more distance through morphospace than
infected plants (MPLMock = 0.6956 vs. MPLORMV = 0.5963, P =
0.00025, Mann-Whitney test). Other measures are traditionally
used to detect changes in morphospace occupation patterns and

Table 2: Comparative trajectory analyses for the full dataset of the
ORMV experiment (3–12 DPI), the reduced dataset (4–10 DPI), and the
comparisons with TuMV experiments (4–10 DPI)

ORMV3–12 DPI(a) P value

MDMock,ORMV 0.100 0.003
θMock,ORMV 18,34◦ 0.001
DShapeMock, ORMV 0.367 0.001
MPLMock 0.696 2.50E-04
MPLORMV 0.596
∑

Var Mock 0.035 2.52E-06
∑

VarORMV 0.023
D1(Mock) 20.21 2.89E-06
D1(ORMV) 26.93
Hyperellipse(IC95%)Mock 0.022 0.005∗

Hyperellipse(IC95%)ORMV 0.014
D2(Mock) 32.97 0.040∗

D2(ORMV) 41.87
ORMV4–10 DPI(a)

MDMock,ORMV 0.085 0.005
θMock,ORMV 16,46◦ 0.001
DShapeMock, ORMV 0.343 0.037
MPLMock 0.472 8.03E-04∗

MPLORMV 0.401
∑

VarMock 0.022 2.21E-05∗
∑

VarORMV 0.015
D1(Mock) 21.77 3.61E-05∗

D1(ORMV) 28.37
Hyperellipse(IC95%)Mock 0.012 0.075∗

Hyperellipse(IC95%)ORMV 0.009
D2(Mock) 48.94 0.203∗

D2(ORMV) 56.41
TuMV4–10 DPI 1st(b)

MDMock,TuMV 0.093 0.015
θMock,TuMV 34,41◦ 0.001
DShapeMock, TuMV 0.613 0.001
MPLMock 0.504 0.049∗

MPLTuMV 0.461
∑

VarMock 0.030 0.007∗
∑

VarTuMV 0.023
D1(Mock) 16.94 0.017∗

D1(TuMV) 21.83
Hyperellipse(IC95%)Mock 0.019 0.156∗

Hyperellipse(IC95%)TuMV 0.017
D2(Mock) 32.51 0.277∗

D2(TuMV) 46.05
TuMV4–10 DPI 2nd(c)

MDMock,TuMV 0.082 0.202
θMock,TuMV 35,05◦ 0.001
DShapeMock, TuMV 0.642 0.002

∗= First three PCs considered (>95% total variance).
Units: MD = DShape = MPL = D1 = D2 = Euclidean distance. θ = degrees.

∑
Var =

Hyperellipse(CI = 95%) = dimensionless.
Statistically significant results in bold.
(a)N = 23 (mock) and 17 (ORMV)
(b)N = 27 (mock) and 14 (TuMV)
(c)N = 14 (mock) and 8 (TuMV)

the amount of the difference between character states among
specimens in morphospace [74], e.g., sum of variances (

∑
Var).

Control plants had higher
∑

Var values than infected plants
(
∑

Var Mock = 0.0350 vs.
∑

VarORMV = 0.0230, P = 2.52 × 10−6,
Mann-Whitney test). This result suggested a higher increase
in shape change in controls [74]. Morphospace density occupa-
tion measures could be obtained taking into account not only
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MPLs but variances of the PCs across the experiment. If a group
folded an equivalent amount of morphometric change into a
much smaller region of morphospace than another, then it had
a higher density [75]. Morphometric path density (D) could be
calculated as D1 = MPL/

∑
Var. ORMV-infected plants are more

densely restricted in morphospace (D1(Mock) = 20.21 vs. D1(ORMV)

= 26.93, P = 2.89 × 10−6, Mann-Whitney test) (Table 2).
An alternative measure of density (D2 = MPL/V) considers the

volume (V) that the group occupies in morphospace. Several vol-
umetric measures are possible [74]. This study considered the
volume of a 95% confidence hyperellipse. D2 was obtained by
calculating the square root of the product of the Eigenvalues of
the PCs and comparing them with expected values for a X2 dis-
tribution at α = 0.05. Mock-inoculated plants have hyperellipses
of higher volume on average (Hyperellipse(IC95%)Mock = 0.0129 vs.
Hyperellipse(IC95%)ORMV = 0.0073), although the differences were
not statistically significant (P = 0.11888, Mann-Whitney test).
Similarly, density measures based on hyperellipses calculations
were not statistically significantly different (D2(Mock) = 111.47 vs.
D2(ORMV) = 146.34, P = 0.25051, Mann-Whitney test), although
ORMV-infected plants had a higher average density. These dif-
ferences could be because hypervolume calculations can pro-
duce extremely small and variable values. The hypervolume is
calculated by taking the product of univariate variances; thus,
any axis or axes with negligible variance will produce a hyper-
volume value close to zero. Moreover, all multiplied variances
are given the same weight; onsequently, PC axes representing
a minimal percentage of the total variance could distort con-
clusions obtained with more informative axes. Thus, hypervol-
ume can be very sensitive to variation in a single character. To
avoid this, one must select only the axes with significant vari-
ances to represent the disparity among points in morphospace
[74]. Therefore, the analysis was repeated including only the first
three PCs, which accounted for more than 95% of variance. The
results were similar to those previously found for all the param-
eters, but with significantly different hyperellipse volumes (Hy-
perellipse (IC95%)Mock = 0.022 vs. Hyperellipse(IC95%)ORMV = 0.014, P
= 0.0052597, Mann-Whitney test) and D2 parameters (D2(Mock) =
32.97 vs. D2(ORMV) = 41.87, P = 0.040172, Mann-Whitney test) (Ta-
ble 2).

Together, PTA and morphospace occupation patterns showed
that mock-inoculated and ORMV-infected plants follow sepa-
rate paths through morphospace. They differ in length, direc-
tion, and shape (Fig. 7). They also explore distinct regions of
morphospace in a disparate quantity. Control plants experience
more diversification of shape, as evidenced by the comparative
length of trajectories (MD and MPL), have a higher amount of dif-
ference between shape states in morphospace (

∑
Var) through-

out the experiment, and explore larger regions of morphospace
(D1, D2) (Table 2). Thus, ORMV infection not only alters the di-
rection of ontogenetic shape development but also diminishes
shape change.

Comparison with TuMV infections

One goal of applying the GM approach to Arabidopsis studies
is to make more objective and repeatable phenotypic compar-
isons. To this end, the same experimental setup was applied
to study viral infections of A. thaliana with TuMV, an ssRNA+
virus unrelated to ORMV [82]. The experiment spanned from 4
to 10 DPI. The time point at 12 DPI was discarded because exces-
sive curling of some leaves owing to TuMV infection impaired
the correct assignment of landmarks (Supplementary File TuMV
1st.morphoj). Individual datasets were created for each DPI, and

Procrustes coordinates were extracted. A combined dataset was
created, and PCA was performed. After the exclusion of out-
liers, 27 mock- and 14 TuMV-inoculated plants remained. PCA
revealed that PC1 accounted for 49.2% of total variance (much
less than in the ORMV experiment) and that PC1 plus PC2 ac-
counted for 69.3% of total variance. Again, PC1 mostly separates
juveniles from adult rosettes, and negative values related pre-
dominantly to infected plants, which retained a more imma-
ture phenotype (Fig. 8A). This result was supported by the as-
sociated wireframe graph, which depicts a relative shortening
of leaves 11 and 12, similar to ORMV-infected plants (Fig. 4C).
PC2 was strongly positively related to infected plants and, simi-
lar to the ORMV case (Fig. 4D), reflected the widening of the an-
gle between leaves 9 and 10. PCs 3 and 4 (Fig. 8B, 8C) accounted
for 17.7% of total variance and were mainly negatively related
to TuMV infection. DSA (Fig. 8D, 8E) showed that, as with ORMV,
group means were statistically significantly different from 5 DPI.
Wireframe graphs also evidenced a strong relative shortening of
the petioles, as in ORMV infections (Fig. 5F, 5I). This indicates
that more compact rosettes are a common outcome of these vi-
ral infections. Discriminant power was slightly higher for almost
all DPIs in the case of TuMV (Supplementary Tables S4 and S6).
Moreover, Procrustes distances were longer for every DPI in the
case of TuMV, which induced a Procrustes separation at 8 DPI
that only matched at 12 DPI with ORMV-infected plants (Table
1, Supplementary Table S6). These results suggest that in Ara-
bidopsis, TuMV is a more severe virus than ORMV since it in-
duces a more pronounced departure from mock mean shape.
PTA supported this evidence, as evidenced by a subset of 4–10
DPI datasets selected to compare ORMV with TuMV infections
(Fig. 9A, 9B, Table 2). Whereas the trajectory size difference in
TuMV-infected plants (MDMock, TuMV) was similar to that obtained
in ORMV-infected pants, the multivariate angle (θMock, TuMV) that
separates infected (TuMV) from healthy trajectories more than
doubled that of the experiment with ORMV. Shape differences
(DShapeMock, TuMV) between trajectories almost doubled. Similar to
ORMV infection, most of the other measures indicated a slower
rate of shape change compared to mock plants (Table 2). To vi-
sualize and compare shape changes in the ORMV and TuMV ex-
periments, transformation grids with Jacobian expansion fac-
tors and lollipops were performed in PAST for 10 DPI plants (Fig.
9C-9F). Both viruses induced relative contraction of the rosette
around leaf 11 (the most affected), but TuMV induced more se-
vere deformations. To confirm these results and to test repro-
ducibility, we carried out an independent experiment of TuMV
infection (Supplementary File TuMV 2nd.morphoj). PTA analy-
ses were run and trajectory attributes compared (Table 2). The
results were similar to those of the first TuMV experiment.

Together, these results indicated that both TuMV and ORMV
induced relative developmental arrest as well as shape change.
However, ORMV triggers symptoms that are mainly driven by
developmental arrest, whereas TuMV also promotes a higher
shape change that impacts more strongly on the overall shape.

Discussion

Here, several GM tools were applied to assess morphological
changes induced by viral infections in Arabidopsis. The GM anal-
ysis is a powerful approach owing to its statistical toolbox and its
appealing visual analysis of shape change. By conceptually sepa-
rating size and shape, both factors that determine form could be
separately analyzed. Thus, the effect of ORMV infection was de-
tected earlier in shape than in size (Table 1, Supplementary Ta-
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Figure 8: Summary of GM analyses for TuMV-infected plants. (A-C) Shape variation between specimens. (A) PCA scatter plot (PC1 vs. PC2). Pale dots = juvenile (4–5

DPI) plants. Dark dots = mature (7–10 DPI) plants. Wireframe graphs from starting (average) shape (bluish green) to target shape (reddish purple) corresponding to
–PC1 (to the left) and +PC2 (top) are included. (B-C) Wireframes for –PC3 and –PC4, respectively. (D-E) Frequencies of jackknifed discriminant scores for 7 and 10 DPI,
respectively, with wireframes depicting shape changes included. Wireframes show starting shape (mock = bluish green) to the target shape (TuMV = reddish purple).
Shape change is magnified 2x.

ble S2, Fig. 2). GM analysis greatly outperformed diagnosis when
compared with the expert human eye (Supplementary Table S4).
The effect of time on shape was more pronounced than that of
treatment, since the former was detected earlier (Supplemen-
tary Tables S2 and S3). This was particularly the case for con-
trol rosettes, indicating that normal rosette development is not
a scaling up of previous shapes but a relative displacement of
newly developed structures. This process is somewhat impaired
by ORMV, which induced the retention of a more juvenile-like
phenotype (Fig. 4).

Normal allometric growth comprised a lengthening of peti-
oles and laminae of new leaves (11 and 12) relative to older ones
(Fig. 6H, 6I). This process was reversed by ORMV, which also dis-
torted the normal angle of approximately 137.5◦ between suc-
cessive leaves. As a result, leaves 9 and 10 were relatively bent
toward leaves 8 and 11, which in turn came close together and
bent toward the inoculated leaf (3) that is mid way between them

(Fig. 5F, 5I). TuMV provoked similar outcomes (Fig. 8) but with an
apparent stronger effect, not only regarding the distorted inter-
leaves angle but for the relative contraction of leaf 11 with re-
spect to all remaining leaves, including leaf 12 (Fig. 8E, 9D, 9F). It
is important to note here that we did not perform absolute indi-
vidual angle or distance measurements. This kind of traditional
morphometric measurement could also be manually taken by
using TPSDig2 software and would be an addition to the param-
eters presented here, where the focus is only on geometric mor-
phometric tools. However, the normal leaf phyllotactic pattern
(the arrangement of organs in regular patterns around the stem
of a plant) seems not to be changed by these viruses (personal
observations, data not shown). Instead, the distortion of the an-
gle determined by the tip of two successive leaves (with its ver-
tex in the center of the plant) appears to arise from the relative
outgrowth of the distal part of the lamina. Taking into account
the source-to-sink nature of viral movement by phloem [39] and
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Figure 9: Comparison of virus severity. PC plots of PTA for (A) ORMV- and (D) TuMV-infected plants compared with mock-inoculated plants (4–10 DPI). PTA parameters are
shown (see main text). Transformation grids with lollipops and Jacobian expansion factors were executed in PAST [45] for ORMV- and TuMV-infected plants depicting
(mean) shape change from controls to virus-infected plants (B to C and E to F, respectively) at 10 DPI. Jacobian expansion factors indicate expansions of the grid (yellow

to orange red for factors >1) or contractions (blue for factors between 0 and 1). The same color scale was set for both comparisons. Lollipops indicate target position
of landmarks with dots. Leaf 11 (landmarks 4, 9, and 11) is positioned at the bottom.

its radial structure [83], it could be hypothesized that virus or
viral-induced signals are distributed through the rosette in such
a way that they inhibit proximal systemic growth. Future work
should test this hypothesis by comparing cell number or size
in distal and proximal parts of systemic leaves or by assessing
the effect that growth hormones and mutants have on these pa-
rameters. This kind of data-based hypothesis is an example of a

desirable outcome of the application of GM tools [43] in particu-
lar and of phenotyping in general. In this study, the observance
of the relative shortening of petioles or laminae and the dis-
torted inter-leaves angles could lead to additional experiments
to more precisely quantify these discrete phenotypes using tra-
ditional morphometric measurements. These traditional mea-
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surements, however, should be made taking into account their
intrinsic statistic limitations (see [43], Introduction).

Both viruses diminished shape change by constraining
virus-infected rosettes to smaller regions of multivariate mor-
phospace (Supplementary Tables S1 and S2, Fig. 7 and 9). On-
togeny (the development or course of development of an indi-
vidual organism) is a genetically based endogenous process that
can be altered by the environment [84]. Here, both viruses in-
duced the departure of normal ontogenetic development. The
consequences of this departure should be further analyzed by
measuring relevant traits.

An objective measurement unit of shape change (Procrustes
distance) allowed us to compare ORMV- and TuMV- induced
shape changes relative to the departure from healthy control
shapes (Tables 1 and 2, Supplementary Tables S2 and S6, Fig. 9)
and objectively rank symptom severity. In addition, visualiza-
tion tools aided us in identifying where to allocate the shape
change differences in the rosette (Fig. 5C, 5F, 5I, 8D, 8E, 9D, 9F). In
sum, TuMV impacts more strongly on Arabidopsis rosette shape
than ORMV.

In this work, two experiments with TuMV were performed to
investigate reproducibility. The second experiment was carried
out with roughly half the specimens (Table 2). Whereas PTA pa-
rameters were very similar between experiments, P values tend
to show less statistical power associated with the smaller sam-
ple (Table 2). This points to both the robustness of the effect
found (PTA parameters) and the need to have a minimum sam-
ple size to statistically assess shape differences, an issue that
will reasonably be of more concern when studying more sub-
tle effects. Although sampling problems arising from scarcity
of specimens is certainly not a problem in Arabidopsis studies,
having a large number of plants could indeed pose a problem be-
cause of the limited room in expensive growth chambers that is
needed to perform physiological experiments in a highly con-
trolled environment. Minimum sample size estimation is not
trivial, because it may vary depending on the natural shape vari-
ation within the assessed population and the kind of scientific
question being addressed [85]. Future work should investigate
the effect of sample size onto statistical parameters, since this
parameter affects shape estimates more than size [85].

Trajectory and density parameters could also be used to com-
pare developmental phenotypic plasticity (a term generally used
to summarize how a given group responds to different environ-
mental conditions by producing an array of phenotypes [86]).
Multivariate reaction norms could be obtained using shape vari-
ables but also controlling for other variables (size, external fac-
tors) and weighting their interaction. This would enrich the de-
scription of phenotypes, while offering a solid basis for compar-
isons.

As superior organisms, plants have complex shapes that ex-
perience complex changes throughout their life spans, partic-
ularly when exposed to severe stresses that modify the route
of ongoing development. Thus, their complex phenotypes are
difficult to encompass to their full extent by using only one
technique, regardless of its descriptive or statistical power. This
is important when evaluating the capabilities and limitations
of the GM tools presented here. For example, we showed that
ORMV significantly impacts rosette shape starting at and after
5 DPI (Table 1, Supplementary Table S2). Furthermore, the wire-
frames (Fig. 5C, 5F, 5I) helped us to detect that some laminae
and (almost all) petioles become relatively shorter under ORMV
infection. However, no particular statistical statement could be
made about these discrete phenotypic outcomes. Rather, if these
questions were to be specifically addressed, other measures

(such as direct measures of petioles’ length) should have been
taken. GM analyses performed here pointed to overall shape
(and size) changes. Visualization tools could serve as guides to
further study of the putative underlying mechanisms involved,
if required. Landmarks analyses come with the limitation of
not being capable of extrapolating results to the regions be-
tween them without uncertainty. For this reason, the selection
of a specific set of landmarks (covering the region of interest)
must be well stated at the beginning of the experiment and
be sound to study the problem of interest. As with any other
technique, caution is needed when interpreting the results be-
cause of its limitations. Here, we investigated the contribution
of one type of measurement error, the digitization error, which
arises from subjective, human error in landmark placement.
Other sources of measurement error were not investigated here,
such as imaging error (corresponding to the camera) and speci-
men positioning. We limited our measurement error analysis to
the error-prone manual placement of landmarks, but the other
types of measurement errors are worth considering. The anal-
ysis pipeline is similar and could be performed in MorphoJ or
other dedicated software. Moreover, as all biological entities are
3D objects, their approximation to 2D structures inevitably in-
volves some degree of measurement error. This issue has been
raised since the first GM studies [87] but has been somehow ne-
glected until recently [88]. Cardini [88] investigated the 2D to 3D
approximation and found that shape estimates were quite dif-
ferent for highly 3D structures (crania). In our study, we used a
particularly flat rosette, generally considered well suited for 2D
approximations [11]. However, with the advancement and lower-
ing costs of 3D imaging and analysis, future studies should ben-
efit from assessing the 2D to 3D approximation over the struc-
tures under analysis [88].

After the genomic revolution, there is a need for objective,
reproducible, and accurate assessments of plant morphology as
a critical missing link to supporting phenomics [89]. In fact, the
use of GM tools to analyze plant shape have already started, from
a botanical, systematic, archaeological [32, 33, 35], and even ex-
perimental [58] point of view.

The use of GM allows the relativization of deviations from
controls in a consistent, objective manner. GPA, which is at the
core of this conceptual framework and allows us to compare
shapes in Procrustes units of distance.

The examples given in this work are necessarily limited, but
other applications could be easily envisioned. As the choice of
landmarks placement is arbitrary on a given structure, other ex-
perimental setups could place them differently in order to study
different stages of growth or other anatomical regions of inter-
est. Importantly, this technique is not a competitor but rather a
possible complement to newly developed automated platforms
for rosette segmentation. Now it is possible for some platforms
to identify the tip of leaves, the center of the rosette, and the
intersection between lamina and petiole [9, 90]. Ttherefore, the
landmarks used in this study and their coordinates could be au-
tomatically determined. Moreover, the same software used in
this work permits GM 3D image analysis, allowing the study of
plant species with a more complex architecture.

One hundred years after the revolutionary vision of D’Arcy
Thompson’s transformation grids and more than 40 years since
the beginning of the revolution in morphometrics, GM appli-
cation for plant phenotyping is starting to develop [34, 35, 91].
Thus, the research on the plant model species A. thaliana should
benefit from it.
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Availability of supporting data

Datasets supporting the results of this article are available via
the GigaScience GigaDB repository [92].

Additional files

Supplementary Figure S1. Graphical assessment of the Tan-
gent shape space approximation. Scatterplots of distances in the
tangent space against Procrustes distances (geodesic distances
in radians) for (A) Mock-inoculated plants, (B) ORMV-infected
plants and (C) all plants, over all DPIs. A blue line is plotted
to show a slope of 1 through the origin. Then a least-squares
regression line through the origin is shown in red (for data in
which the variation in shape is small this will hide the blue line).
Supplementary Figure S2. Wireframes depicting shape change
associated with –PC1 values from 3 to 12 DPI (A-H). Green = start-
ing (average) shape; red = target shape. No magnification was
applied.
Supplementary File ORMV
Supplementary File TuMV 1st
Supplementary File TuMV 2nd
Supplementary Table S1. Summary statistics for the compar-
isons between Tangent (Euclidean) and Procrustes shape dis-
tances from average shapes and for regression slopes and cor-
relations between the two distances.
Supplementary Table S2. Summary of centroid size and shape
variation. Hierarchical sum of squares ANOVA. Main effect:
Treatments; random factors: Individuals (ID), Digitization. SS,
MS and df refer respectively to sum of squares, mean sum of
squares (i.e., SS divided by df) and degrees of freedom. Error1 =
digitization error.
Supplementary Table S3. Statistical comparisons of intra-
treatment shape changes across the ORMV experiment. Holm’s-
Bonferroni sequential correction at α = 0.05.
Supplementary Table S4. Classification/misclassification tables
from DA for each DPI and human observers for 7 DPI.
Supplementary Table S5. Results of allometry tests for each
treatment and DPI (top) and of the regression analyses (MAN-
COVA), for testing differences between slopes when allometry
was detected (bottom).
Supplementary Table S6. Discriminant Analysis for TuMV. Sta-
tistical tests for differences between means of treatments at
each DPI from DA (with permutation tests with 1000 random
runs) and classification/misclassification tables for each DPI.
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variance; CS: centroid size; DA: discriminant anaylsis; DPI: days
post-inoculation; GM: geometric morphometrics; GPA: general-
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