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Introduction
Maize (Zea mays L.) is one the most important cereals 
in the world, with a production and consumption of 
~1000 million tons (USDA, 2015). Currently, tight 
balance between world offer and demand causes 
concerns over long-term food security. Nitrogenous 
fertilization has been a powerful tool to increase grain 
yield in cereals. However, the overuse of nitrogen (N) 
fertilizer implies higher environmental risks associated 
with non-absorbed N leaching towards underground 
water and nitrous oxide emissions into the atmosphere, 
production cost increases, and waste of energy applied 
to the industrial synthesis of fertilizers (Tilman et al, 
2002). Therefore, besides the beneficial effects of 
N fertilizers on maize yields, to increase N uptake 
and utilization efficiencies of available soil N is also 
important for diminishing crop production costs as well 
as to avoid  negative effects on the environment.
In this context, the development of genotypes with 
improved performance in environments with low soil N 
content has two purposes: to reduce the cost of crop 
production and to allow a more sustainable agriculture 
in areas characterized  by N deficiencies. A maize crop 
with  improved N use efficiency (NUE, or grain biomass 

per unit of N absorbed) could also take advantage of  
enhanced N supply via fertilizers, making greater grain 
yield possible.
Several studies have demonstrated the existence of 
genetic variability for maize grain yield when grown in 
soils with different amounts of N available (Bänziger 
et al, 1997). The efficiency in which cereals utilize  N 
content to produce grains depends on multiple 
processes, including root N uptake, translocation of 
reduced N to the leaves, and remobilization of N from 
stalks and leaves to developing grains. Consequently, 
genetic improvement could allow the increase in NUE 
of cereal crops as a result of selection for grain yield 
and for one or more of these processes (Agrama, 2006).
Numerous studies have been carried out to obtain a 
better understanding about NUE regulation in cereals. 
In maize, quantitative trait loci (QTLs) for grain yield 
and its components (kernel number and individual 
kernel weight) have been reported under different soil 
N levels. Significant effects under both  low and high 
available N were found for the most of these QTLs; 
however, some QTLs showed interaction with the 
environment since they were expressed only under one 
N condition (Agrama et al, 1999; Ribaut et al, 2007; 
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This  study was aimed to identify quantitative trait loci (QTL) for nitrogen use efficiency (NUE) and related traits 
in a maize population  derived from a cross between two lines with different genetic background (B100 and LP2). 
Recombinant inbred lines (181) from this population were evaluated under field conditions during two growing 
seasons, and significant (P < 0.01) phenotypic and genotypic variability was detected for most evaluated traits. 
Two different mapping methods were applied for detecting QTLs. Firstly, a trait by trait approach was performed 
on across environments, and 19 QTLs were identified. Secondly, a multi-trait multi-environment analysis detected  
seven joint QTLs. Almost all joint QTLs had inconsistent additive effects from one environment to another, which 
would reflect presence of QTL × Environment interaction. Most joint QTLs co-localized with QTLs detected by indi-
vidual mapping. We detected consistent additive effects for  grain yield per plant and NUE, as well as for biomass 
and nitrogen harvest index in some joint QTLs, especially QTL-1 and QTL-6. These QTLs had positive and stable 
effects across environments, and presence of some genes within these QTL intervals could be relevant for selecting 
for both NUE and grain yield simultaneously. Up today, this is a first report on the co-localization of QTLs for enhan-
ced  allocation of biomass allocation to grains with NUE, and NUE candidate gene identification. Fine mapping of 
these regions could allow  to detect additional markers more closely linked to these QTLs that could be used for 
marker assisted selection for NUE.
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Bertin and Gallais, 2001; Hirel et al, 2001). Likewise, 
Coque et al (2008) demonstrated that QTLs for stay-
green in leaves, deep and thin roots, and increased soil 
N uptake were coincident with loci controlling  grain 
yield under low and high N levels. These associations 
could be due to pleiotropy or genetic linkage between 
loci controlling these phenotypic characteristics and 
NUE. Similarly, the relationship between NUE and the 
root architecture has been extensively studied. Liu et 
al (2008) identified QTLs related to features of radical 
system growing under different N levels, but they 
were not coincident across environments. One QTL 
for length of axial roots growing under low N  soils 
co-localized with QTLs previously reported for grain 
yield and N uptake, highlighting the importance of the 
root length on N use and overall crop performance. 
Additionally, Li et al (2015) identified common QTL 
clusters between NUE and traits related to root 
architecture, most of them expressed under low as well 
as high N environments. Similarly, QTLs for grain yield 
and its components have been detected coincident 
with QTLs mainly associated with  N content in leaves 
and activity of enzymes related to N metabolism, such 
as glutamine synthetase (Hirel et al, 2001; Gallais and 
Hirel, 2004).
In previous studies, inbred lines B100 and LP2 were 
evaluated phenotypically under contrasting soil N 
experimental sites, and significant differences were 
found between them and N treatments for grain 
yield, number of kernels per plant, NUE and N uptake 
(D’Andrea et al, 2006, 2009). In addition, a panel of 102  
inbred lines, included inbreds B100 and LP2 developed 
by the temperate maize breeding program of INTA  
were characterized with Simple Sequence Repeats 
(SSR) markers and the genetic structure of this panel  of 
lines elucidated (Olmos et al, 2014, 2016). This analysis 
classified lines B100 and LP2 into different clusters 
across successive cycles of cluster simulations, giving 
a molecular support to the phenotypic differences 
between them previously observed in the field. 
Moreover, harvest index and NUE of the  B100×LP2 
single cross  were the highest among all tested 
inbreds and their derived crosses included in a set of 
complete and incomplete dialelic experiments (Munaro 
et al, 2011). Accordingly, the B100×LP2 germplasm 
combination would be appropriate to develop a 
mapping population for the genetic study of NUE.
The objective of this study was to identify QTLs 
associated with NUE and related traits in a mapping 
population of recombinant inbred lines (RILs) of maize 
derived from the cross of B100 (yellow dent, US genetic 
background) × LP2 (orange flint, Caribbean×Argentine 
genetic background), grown under contrasting 

conditions of soil N offer and climate. Identification of 
candidate genes into QTLs regions would contribute 
to a better understanding of the genetic basis of 
NUE. The availability of the genome sequence of 
inbred B73 (Schnable et al, 2009) and genetic maps 
enable a precise location of chromosomal regions, and 
ultimately of key genes implicated in such an important 
agronomic trait. The discovery and/or validation of 
genes that regulate the NUE and associated traits, as 
well as  the development of molecular markers more 
closely linked to these genes, could contribute to 
breed new genotypes with enhanced NUE through 
marker assisted selection (MAS).

Materials and methods
Genetic material

The genetic material evaluated  consisted in a 
population of 181 RILs derived from the single cross 
B100×LP2. The F1 was grown in the field at the 
Pergamino Experimental Station (33º 56´S, 60º 34´O) 
of the National Institute of Agricultural Technology 
(INTA), Argentina during the 2001-2002 season. Several 
F1 plants were selfed to obtain the F2 (S0) generation. 
Randomly chosen F2 plants were self-pollinated during 
successive generations conducted ear to row through 
single seed descent until the S5:6 derived RILs. .

Experimental design 
Phenotypic evaluations of the RILs population, the 
parental lines and a tester line (LP612) were conducted 
at INTA Pergamino, over a silty clay loam soil (Typic 
Argiudoll) during 2009-2010 (Exp. 1) and 2011-2012 
(Exp. 2) growing seasons, under supplementary 
irrigation and without N supply as fertilizer. The 
contrast between these environments was imposed by 
(i) high initial soil N level (72.6 kg N-NO3 ha-1), early 
sowing date (21 October 2009) and ‘El Niño’ phase of 
the ENSO (El Niño Southern Oscillation) phenomenon 
for Exp. 1, and (ii) low initial soil N level (11.0 kg N-NO3 
ha-1), late sowing date (between 14 and 23 November 
2011) and ‘La Niña’ phase of the ENSO phenomenon 
for Exp. 2. Soil organic matter was similar across 
experimental sites (2.06-2.08 %), and phosphorous 
level was considered  high (> 30 ppm). More details 
of growing conditions can be found in D’Andrea et al 
(2016). 
For both experiment, genotypes (RILs, parental lines 
and tester line) were distributed in a randomized 
complete block design with two replicates. Each plot 
consisted of three rows of 5.5 m long and 0.7 m apart, 
with a plant density of 7 plants m-2. Early sowing in Exp. 
1 set the flowering period along January. For Exp. 2, 
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sowing was delayed to avoid the negative effects of 
probable above-optimum temperatures during January, 
associated with ‘La Niña’ extreme phase of the ENSO 
phenomenon. In this way, flowering of most inbred 
lines in Exp. 2 was expected to occur by February when 
solar radiation and temperature are already declining 
(Otegui et al, 1996). In order to avoid large variations 
in the photothermal-environment among genotypes 
with contrasting phenology, inbreds were grouped in 
three categories (early, intermediate and late) based 
on the anthesis date recorded in Exp. 1. Inbred lines 
sowing dates in Exp. 2 were 14 (late), 18 (intermediate) 
and 23 November 2011 (early). This strategy helped 
to synchronize the flowering event (Liu et al, 2011), 
and thus minimize possible effects of differences in 
climate conditions between early and late inbreds 
associated with sowing dates (Otegui et al, 1996). Both 
experiments were hand-planted at three seeds per 
hill and thinned to the desired plant population at V3 
(Ritchie et al, 1992).
Weather conditions were monitored daily at the 
experimental sites (Campbell Scientific Inc., Logan, 
UT), and records were obtained for mean (Tmean) 
and maximum (Tmax) air temperatures (in ºC), 
photosynthetically active radiation (in MJ day-1), rainfall 
(in mm), and potential evapotranspiration (PET, in 
mm). Accumulated thermal time (in ºC day with base 
temperature of 8 ºC) was computed from daily Tmean 
from sowing onwards (Ritchie and NeSmith, 1991).

Measurements

Nine traits related to grain yield and N metabolism were 
evaluated. In each plot, phenotypic determinations 
were done in a group of plants (five plants in Exp. 1 and 
seven plants in Exp. 2) tagged at the V3 stage. These 
traits were evaluated according to the methodology 
described by D’Andrea et al (2006, 2009). The dates 
of anthesis (i.e., at least one extruded anther visible) 
and silking (i.e. at least one extruded silk visible) were 
registered on all tagged plants. The anthesis-silking 
interval (ASI) was calculated as the difference in days 
between silking and anthesis dates of individual plants 
(Uribelarrea et al, 2002) and averaged for each plot. 
The ASI was expressed in days. Tagged plants were 
harvested at physiological maturity in order to obtain 
total aerial biomass (BIOMPM, in g) and plant grain yield 
(PGY, in g). The harvested plants were dried in oven at 
65 ºC until constant weight and weighed; distinguishing 
between grain, ear and rest fractions. Ears of each 
tagged plant were harvested and threshed separately 
for computation of PGY. The biomass harvest index 
(BHI) was calculated as the quotient between PGY and 

BIOMPM. Nitrogen content in vegetative tissues (stem, 
leaves, husks and cobs) and in grains were estimated 
for each plant harvested at physiological maturity; 
in the first case by Micro Kjeldahl method, and in 
the second by near-infrared transmittance method 
(NIR; Infratec 1227, Tecator, Sweden) in order to 
compute the percentage of grain protein (%Protein). 
Nitrogen uptake at physiological maturity (PNUPTAKE) 
was calculated as the sum of (i) the product between 
N concentration in vegetative tissues and non-grain 
biomass (difference between BIOMPM and PGY), and 
(ii) the product between N concentration in grain and 
PGY. Nitrogen use efficiency (NUE, in g of grain per g of 
absorbed N) was determined as the quotient between 
PGY and PNUPTAKE. Nitrogen harvest index (NHI) was 
estimated as the quotient between N content in grains 
and N content in BIOMPM. Nitrogen proportion in 
plant at physiological maturity (N/BIOMPM, in %) was 
estimated as the ratio between PNUPTAKE and BIOMPM.

Statistical analyzes

Descriptive statistics were estimated for the data. For 
each trait, normality of the dataset distribution was 
estimated using modified Shapiro-Wilks test. Traits that 
were not normally distributed were transformed using 
the appropriate function.
Variability for each trait was tested using a linear mixed 
model (Eq. 1). The phenotypic observation of measured 
trait  on genotype  in replicate  and in environment  was 
modeled according to D’Andrea et al (2008). The two 
growing seasons (Exp. 1 and Exp. 2) were considered 
as environments.

Y𝑖𝑖𝑗𝑗𝑘𝑘=μ+G𝑖𝑖+E𝑗𝑗+𝑅𝑅𝐸𝐸𝑗𝑗𝑘𝑘+GE𝑖𝑖𝑗𝑗+ ε𝑖𝑖𝑗𝑗𝑘𝑘  [1]
where  is the general mean, G is the effect of the 
th genotype, E is the effect of the th environment, 
R is the effect of the th replicate nested in the th 
environment, GE is the Genotype × Environment 
interaction effect (G×E) between the th genotype 
and the th environment, and E is the residual error. 
Genotype and G×E interaction effects were considered 
as random, and E and R effects were treated as fixed. 
The parental line means for all traits were compared 
with Fisher’s least significant difference (LSD). The 
GLM procedure of SAS V. 8.2 (SAS Institute, 1999) was 
used. Heritability (h2) for each trait on a family-mean 
basis (Holland et al, 2003) was estimated from the 
components of variance according to Eq. 2 using SAS 
script (http://www4.ncsu.edu/~jholland/heritability/
MultiEnvironRCBDHeritability.sas).
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h2= σG
2/ (σG

2 + σGE/j
2 + σe/jk

2)   [2]

where σG
2 is the genetic variance, σGE

2 is G×E 
interaction variance, σe

2 is the error variance, j is 
the number of environments and k is the number of 
replicates.
Likewise, genetic correlations between traits were 
estimated from variance and covariance data estimated 
using the MIXED procedure of SAS V. 8.2 (SAS Institute, 
1999) according to Eq. 3: 

rGiGj = σGiGj / √ σGi
2 + σGj

2   [3]

where σGiGj is covariance between the  and traits, σGi
2 

is genetic variance of the  trait and σGj
2  is genetic 

variance of the trait. 

DNA extraction and molecular markers detection

DNA extraction of each RIL and both parental lines was 
done from leaves of young maize plants. Samples of five 
plants of each genotype were selected and bulked at 
ca. V6. From each bulk, genomic DNA was extracted 
according to Kleinhofs et al (1993) method. Genotypic 
characterization was carried out using SSR and Single 
Nucleotide Polymorphism (SNP) markers. For the former, 
the parental lines B100 and LP2 were evaluated with 
437 SSR equally distributed across 10 chromosomes. 
These markers were selected from Maize Genetics and 
Genomic Database (MaizeGDB; Lawrence et al, 2004). 
Analyzes indicated that 196 SSR were polymorphic and 
131 were finally selected to evaluate the RILs population. 
The SSR markers were amplified by polymerase chain 
reaction (PCR); PCR products were resolved in 6% (w/v) 
denaturing polyacrylamide gel and visualized by silver 
staining using the conditions described by Olmos et 
al (2014). For SNP analysis, an Illumina microchip of 96 
SNP was designed to be analyzed with the BeadXpress® 
Reader. For the microchip design, a chip of 1536 SNP 
described by Yan et al (2009) was used as reference, and 
96 SNP were selected. The selected SNP were distributed 
equally in all chromosomes of maize, giving priority to 
SNP which were located within genes involved in N 
metabolism and abiotic stress tolerance. The complete 
RILs population genotyped with the microchip included 
control DNA (both parental lines and the reference line 
B73). Data generated with BeadXpress® Reader were 
visualized using the GenomaStudio V. 2011.1 software 
(Illumina, 2011). In order to evaluate SNP quality, three 
different parameters were used: minor allele frequency 
(MAF), gene train score (GTS) and cluster sep (CS). 
Those markers with MAF ≥ 0.1, GTS ≥ 0.7 and CS ≥ 0.2 
were considered as high quality SNP. Eight high quality 
SNP were polymorphic and used to characterize the 
population.

Genetic map construction and QTL detection

The molecular markers segregation was verified 
using the false discovery rate (FDR) test (Benjamini 
and Hochberg, 1995). Only markers which fitted the 
expected Mendelian segregation (1:1) were used to 
made linkage maps. Recombination frequencies were 
transformed to map units using following  Kosambi 
(1944). The best order of markers in the map was 
estimated by the maximum-likelihood method. The 
segregation of markers and linkage maps construction 
were carried out using GQMol V. 2008.6.1 software 
(Cruz and Schuster, 2008), and the maps were charted 
using MapChart 2.2 software (Voorrips, 2002). Linkage 
map of the RILs population was constructed using 112 
markers with 1:1 segregation (105 SSR and 7 SNP). The 
maps consisted of 94 markers (18 non-linked) covering 
a total distance of 1129.5 cM with an average interval 
between markers of 11.8 cM.
Two mapping strategies were used to detect QTLs. 
Firstly, QTL analysis was done for each individual trait 
in each environment using  the composite interval 
mapping (CIM) method. Model 6 of the Zmapqtl 
procedure of WinQTL Cartographer V. 2.5 software 
(Wang et al, 2012) was utilized with a walk speed of 1 
cM, a window size of 10 cM and five default markers 
included as cofactors. Threshold LOD scores were 
estimated using the 1000 permutation test (Churchill 
and Doerge, 1994). Secondly, a multi-trait multi-
environment (MTME) QTL analysis was done according 
to Alvarez Prado et al (2013). The multiple trait analysis 
is appropriate when traits are genetically correlated. 
Causes of genetic correlation among different traits 
could be pleiotropy or linkage disequilibrium. For 
MTME QTL mapping, the phenotypic data were 
analyzed considering correlations between traits and 
variability between environments using the mixed 
model approach followed by Malosetti et al (2008). 
Only traits with genetic correlations ≥ 0.50 (with at least 
one trait) were used for the analysis. The model MTME 
consisted of I genotypes evaluated in J environments on 
K traits repeated in L blocks (with I=181, J=2, K=9, L=2). 
Defining an N×1 vector “y” with N=IJKL that contains 
all the observations sorted by trait in each environment 
for each genotype and in each block. Genotype effects 
were assumed as random, while trait-environment 
combinations (TE) and blocks nested within TE were 
considered as fixed effects. Seven different variance-
covariance models for both matrixes were tested in 
order to select the most suitable for the analysis of data 
sets. Tested models were: (i) variance component, (ii) 
compound symmetry, (iii-v) factor analytic “0”, “1” and 
“2”, (vi) heterogeneous compound symmetry, and (vii) 
unstructured. The choice of the best model was based 
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on a goodness of fit criterion such as the Bayesian 
Information Criterion (BIC; Schwarz, 1978). A minor 
value of BIC implies a better model. The best model of 
variance-covariance structure for this data set was the 
compound symmetry model.
Once chosen the variance-covariance structure, 
the best linear unbiased predictor (BLUP) of each 
genotype in each environment was estimated to 
reduce uncontrolled trait variation for QTL mapping 
(Borevitz et al, 2002; Zalapa et al, 2007). These analyzes 
were performed using the MIXED procedure of SAS 
V. 8.2 (SAS Institute, 1999). BLUPs estimated by the 
mixed model were used for QTL mapping. However, 
QTL analysis was done using a mixture model (Jiang 
and Zeng, 1995) according to Alvarez Prado et al 
(2013). Mixture model has greater precision than 
mixed model to detect QTLs in unsaturated maps. For 
this approach, a two main step procedure was used. 
In the first step, joint QTLs were identified using the 
JZmapqtl procedure of WinQTL Cartographer V. 2.5 
software (Wang et al, 2012), which can analyze multiple 
traits simultaneously. Composite interval mapping was 
implemented using the forward regression method of 
model 6 with a window size of 10 cM and five markers as 
cofactors. A LOD threshold of 7.0 was used to declare a 
joint QTL as significant. In the second step, a final multi-
QTL model was constructed to evaluate the effects and 
significance of each QTL into a unique model. For that, 
QTLs detected in the first step were used as candidate 
QTLs to construct the initial multi-QTL model by 
means of multi trait multi interval mapping procedure 
(MT-MIM) of WinQTL Cartographer V. 2.5 (Wang et 
al, 2012.). For this initial model, parameters were 
estimated, positions of detected QTLs were optimized, 
new QTLs and epistatic interaction were searched, 
and the genetic variance explained by the model was 
calculated (Basten et al, 2004). The Eq. 4 was used to 
compare the significance of each optimized model with 
initial model likelihood ratio test (LRT):

LRT= 2(logL1-logL0) [4]

where L1 and L0 were the likelihood under the refined 
and the initial models, respectively. The difference 
between log-likelihoods was multiplied by a factor 2, so 
it distributes as the  statistic. Then statistical significance 
of LRT was assessed using standard  significance levels. 
The degrees of freedom for the test were equal to the 
difference in the number of parameters between the 
refined and the initial models.
For both mapping approaches, QTL positions were 
assigned in the maximum LOD score (LODmax), and 
confidence intervals were calculated subtracting one 
unit of LOD to each side of the LODmax position.

Identification of candidate genes 

Potential candidate genes were identified within the 
QTL intervals detected by MTME. Firstly, physical 
coordinates (in bp) of flanking markers were established 
using option Locus Lookup in the MaizeGDB database 
(Andorf et al, 2010). Once physical position of intervals 
were known, candidate genes in QTL regions were 
identified based on B73 RefGen_v3 genome sequence, 
using BioMart software in the Gramene database www.
gramene.org (last revision 14-07-2016). The function 
of each gene was confirmed by their homology to 
orthologous genes in Arabidopsis thaliana or Oryza 
sativa. Identified genes were classified according to 
their putative functions into six main categories based 
on the criteria established by Munich Information 
Center for Protein Sequences (MIPS; Ruepp et al, 2004).

RESULTS
Weather conditions

Weather conditions were different between  years, and 
consistent with the contrasting phases of the ENSO 
phenomenon. While Tmean was similar between both 
experiments (≈ 22.0 ºC), Tmax in Exp. 2 (29.8 ºC, 
average of daily Tmax values) was higher than in Exp. 
1 (28.2 ºC). Furthermore, Exp. 1 presented only one 
day with Tmax ≥ 35 ºC, whereas for Exp. 2 there were 
20 days  above this threshold. However, this condition 
occurred before flowering in Exp. 2. As expected from 
the ENSO phenomenon, total rainfall in Exp. 1 (ca. 
900 mm) was higher than in Exp. 2 (ca. 563mm), which 
caused an opposite trend in PET, with daily values of 4.8 
and 5.8 mm respectively. However, rainfall during the 
flowering period was not markedly different between 
experiments (ca. 240 mm). Delayed flowering in Exp. 
2 exposed the crop to low levels of incident solar 
radiation, and consequently to lower PET values (4.7 
mm d-1)  than those registered in Exp. 1 (5.7 mm d-1).

Descriptive statistics and mixed model analysis of 
measured traits 

Parental inbreds (B100 and LP2) were compared for 
all measured traits (Table 1) and significant differences 
were found  between them for ASI, %Protein and NUE. 
Parental line LP2 exhibited a larger ASI than  B100 (P 
< 0.05) in both experiments. Differences (P < 0.05) 
between parental inbreds for NUE (LP2 > B100) and 
%Protein (LP2 < B100) were observed only in Exp. 2. 
The RILs population showed transgressive segregation 
for all traits, at least on one side of the frequency 
distribution. For most traits, there were recombinant 
inbred lines  with smaller records than those observed 
for the inferior parental.
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Results revealed significant genetic variability among 
lines (P < 0.01) for most evaluated traits (Table 1), 
except PNUPTAKE. There were significant differences 
between experimental environments for almost all 
traits (Table 1) and a significant G×E interaction was 
always observed (P < 0.001). In Exp. 2 RILs population 
showed a significant (P < 0.05) reduction in PGY, 
BIOMPM, BHI, PNUPTAKE and %Protein (24%, 21%, 5%, 
36% and 14%, respectively), and an increase in NUE 
(14%). Narrow sense heritabilities were estimated for 
all traits and varied from 0.37 for BIOMPM to 0.74 for 
ASI. The PNUPTAKE showed null heritability (Table 1).
PGY was positively correlated with NUE, NHI, PNUPTAKE, 
BIOMPM and BHI, and negatively correlated with ASI, 
%Protein and N/BIOMPM (Table 2). Traits that presented 
high correlations with PGY were NUE, NHI and BHI. 
Likewise, some traits had a strong correlation between 
them. For instance, NUE was positively correlated 
with NHI (0.90) and with BHI (0.85). By the contrary, % 
Protein had  high and negative correlation coefficients 
with NUE (-0.73) and with BHI (-0.80).

QTL analysis

Nineteen QTLs were identified associated with PGY, 
BHI, NUE, NHI, ASI, N/BIOMPM and %Protein across 
the two experiments by CIM (Table 3). The QTLs were 
mapped in the most of chromosomes, except 3, 6, 7, 
and 10 (Figure 1). Percentage of phenotypic variance 
explained (PVE) by QTLs ranged from 6.0 to 13.3 %. 
Four QTLs were identified for BHI (BHI1a, BHI1b, BHI1c 
and BHI2). The QTL BHI1a in Exp. 1 and BHI2 in Exp. 
2 were both located on chromosome 1, on the same 
markers interval (phi339017 and phi095), and showed 
positive additive effects. Three QTLs were detected 
for NHI, two of them located on chromosomes 8 
(NHI1a) and 9 (NHI1b) in Exp. 1, and one located on 
chromosome 1 (NHI2) in Exp. 2. The QTLs NHI1b and 
NHI2 showed positive additive effects whereas the 
NHI1a showed negative additive effects. Likewise, 
three QTLs were identified for %Protein, two of them 
in Exp. 1 (%Protein1a, %Protein1b) and one in Exp. 
2 (%Protein2). Only %Protein1b on chromosome 5 
showed positive additive effect. QTLs %Protein1a 

Table 1 Descriptive statistics, variance components, year effect and heritability (h2) values of traits measured in 181 RILs and their parental lines (B100 and LP2)  
 measured in two contrasting environments (Exp. 1 and Exp. 2)

PGY (g) BIOMPM
(g) BHI

PNUPTAKE

  
(g)

NUE
 (g grain g 

N-1) NHI N/BIOMPM 
(%) %Protein

ASI 
(days)

Exp. 1

B100a 62.2 150 0.42 1.6 38.7 0.64 10.8 10.3 -1.50†

LP2 58.4 138 0.43 1.51 40.2 0.62 10.8 9.67 3.50†

RILs 55.1 151 0.37 1.6 35.1 0.57 10.6 10.4 1.51

Rangeb 11.4-87.5 85.0-264 0.08-0.50 0.98-3.58 11.4-50.9 0.20-0.72 8.44-14.1 8.03-13.2 (-2.00)-7.00

CV (%) 25.9 18.5 20.6 22.5 22.9 18.6 9.67 9.41 110

P valuec 0.33 <0.001 <0.001 <0.001 <0.001 <0.001 0.07 0.48 0.006

Exp. 2

B100a 49 135 0.35 1.23 38.5† 0.58 9.15 9.59† -2.00†

LP2 53.7 130 0.41 1 56.0† 0.67 7.65 7.44† 3.00†

RILs 41.9 120 0.35 1.03 40.7 0.56 8.62 8.91 1.74

Range 6.57-70.0 75.9-168 0.08-0.47 0.68-1.63 9.01-60.8 0.12-0.72 6.54-10.5 6.70-11.8 (-2.75)-10.5

CV (%) 30 15.5 24.3 16.5 27 21.4 9.49 12.1 124

P value 0.02 0.11 <0.001 0.43 <0.001 <0.001 0.32 0.01 <0.001

Variance 
Components 
± s.e.

G 58.1 ± 15.1* 131 ± 46.3* 0.003 ± 0.0006* 0.007 ± 0.006 35.6 ± 7.90* 0.006 ± 0.001* 0.26 ± 0.07* 0.47 ± 0.09* 2.34 ± 0.34*

G × E 55.8 ± 14.6* 183 ± 51.3* 0.002 ± 0.0004* 0.034 ± 0.008* 33.1 ± 6.40* 0.003 ± 0.0008* 0.30 ± 0.07* 0.32 ± 0.07* 0.67 ± 0.17*

Residual 132 ± 10.1 473 ± 36.9 0.003 ± 0.0002 0.074 ± 0.006 43.3 ± 3.32 0.006 ± 0.0005 0.60 ± 0.05 0.53 ± 0.04 1.56 ± 0.12

Year effect <.001 <.001 <.001 <.001 <.001 0.09 <.001 <.001 0.05

 h2 ± s.e. 0.46 ± 0.08 0.37 ± 0.10 0.63 ± 0.06 0.16 ± 0.12 0.56 ± 0.07 0.63 ± 0.07 0.44 ± 0.08 0.59 ± 0.06 0.74 ± 0.04

a Mean value of B100, LP2 and RILs; b minimum and maximum values of RILs population; c Shapiro-Wilk normality test: significantly different from normal P < 0.01; † indicates a significant difference (P < 0.05) 
between B100 and LP2 (LSD Test); *Indicates significant difference (P < 0.01); ASI: anthesis-silking interval; BHI: biomass harvest index; BIOMPM: total plant biomass at physiological maturity; Exp. n: experiment n; 
N/BIOMPM: N proportion in plant biomass at physiological maturity; NHI: N harvest index; NUE: N use efficiency for grain production; %Protein: percent grain protein; PGY: plant grain yield; PNUPTAKE: plant total N 
uptake at physiological maturity, s.e.: standard error. 
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and %Protein2 were located on chromosome 1 
sharing at least part of intervals between markers. 
For NUE, three QTLs were detected, two located on 
chromosomes 1 (NUE1a) and 9 (NUE1b) in Exp. 1, 
and one on chromosome 1 (NUE2) in Exp. 2. All QTLs 
presented positive additive effects. For N/BIOMPM 

three QTLs were identified, one on chromosome 8 (N/
BIOMPM1) in Exp. 1, and two in Exp. 2, one of them 
located on chromosome 4 (N/BIOMPM2a) and the other  
on chromosome 8 (N/BIOMPM2b). For PGY, only one 
QTL was detected (PGY2), placed on chromosome 1 
between phi339017 and phi095 markers in Exp.2. 

 

phi0560.0
umc11064.3
bnlg142913.0
bnlg148420.7
bnlg43930.4
umc147930.9
phi33901732.7
phi09534.5
bnlg223839.5
umc222747.2
umc202554.0

umc223775.4
PZA03741.184.1
bnlg102589.7

umc1431110.0
umc1290112.8
umc1885115.0
umc2223117.0
umc1553126.4

. . . . . . . .

.
.

Cromosoma1

umc22460.0

umc122724.5

umc118559.3

umc1749104.9

phi127118.1

umc1042139.7

bnlg1893201.1

.

Cromosoma2

umc21060.0

phi10412719.5

bnlg132532.7

bnlg144745.6

bnlg60260.3
phi05366.1

dupssr2377.2
umc176787.6
umc205097.0

Cromosoma3

phi0260.0

bnlg162120.2

bnlg113744.2
bnlg118949.5

umc108682.7

umc1699108.2

umc1101119.1

umc1058134.7

.

Cromosoma4

umc21400.0
umc21613.7
bnlg6535.1
bnlg18927.5
PZB01331.218.2
umc180024.1
umc216428.6
umc185335.1

phi08557.6
umc219862.4
phi12871.1

bnlg11883.0

.

Cromosoma5

phi0750.0

bnlg42621.2
umc108327.9

umc191848.6

umc231967.5

bnlg345110.1

umc2323143.0

Cromosoma6

phi0570.0
bnlg17929.6
bnlg65718.5

bnlg107029.1
PZA03574.137.3

Cromosoma7

phi0260.0

bnlg162120.2

bnlg113744.2
bnlg118949.5

umc108682.7

umc1699108.2

umc1101119.1

umc1058134.7

.

Cromosoma4

umc21400.0
umc21613.7
bnlg6535.1
bnlg18927.5
PZB01331.218.2
umc180024.1
umc216428.6
umc185335.1

phi08557.6
umc219862.4
phi12871.1

bnlg11883.0

.

Cromosoma5

phi0750.0

bnlg42621.2
umc108327.9

umc191848.6

umc231967.5

bnlg345110.1

umc2323143.0

Cromosoma6

phi0570.0
bnlg17929.6
bnlg65718.5

bnlg107029.1
PZA03574.137.3

Cromosoma7

phi4207010.0
bnlg20377.9
phi11916.9

bnlg183432.8
bnlg186338.8

PZB00865.251.8

bnlg182369.6

dupssr1498.9
phi080105.7

. .

.

Cromosoma8

bnlg12720.0

bnlg181026.0

phi02249.4
bnlg43053.2
bnlg12755.5
bnlg120962.0
bnlg127068.1
PZB00126.172.1

umc178991.2

bnlg1129120.6

. . .

Cromosoma9

phi1170.0

umc131915.1

umc196237.5
umc123940.7
bnlg152644.9
PZA03585.146.8
umc150657.8

bnlg219083.0

Cromosoma10

phi0260.0

bnlg162120.2

bnlg113744.2
bnlg118949.5

umc108682.7

umc1699108.2

umc1101119.1

umc1058134.7

.

Cromosoma4

umc21400.0
umc21613.7
bnlg6535.1
bnlg18927.5
PZB01331.218.2
umc180024.1
umc216428.6
umc185335.1

phi08557.6
umc219862.4
phi12871.1

bnlg11883.0

.

Cromosoma5

phi0750.0

bnlg42621.2
umc108327.9

umc191848.6

umc231967.5

bnlg345110.1

umc2323143.0

Cromosoma6

phi0570.0
bnlg17929.6
bnlg65718.5

bnlg107029.1
PZA03574.137.3

Cromosoma7

Chromosome 2 Chromosome 3 Chromosome 4 Chromosome 5Chromosome 1

Chromosome 6 Chromosome 7 Chromosome 8 Chromosome 9 Chromosome 10

N
U

E1a

N
U

E2

%
P

rotein1a

%
P

rotein2

BH
I1a

BH
I2

N
H

I2

PG
Y

2

ASI1
ASI2

BH
I1b

N
/BIO

M
P

M 2a

BH
I1c

N
U

E1b

N
H

I1b

N
/BIO

M
P

M 1

N
/BIO

M
P

M 2b

N
H

I1a

phi4207010.0
bnlg20377.9
phi11916.9

bnlg183432.8
bnlg186338.8

PZB00865.251.8

bnlg182369.6

dupssr1498.9
phi080105.7

. .

.

Cromosoma8

bnlg12720.0

bnlg181026.0

phi02249.4
bnlg43053.2
bnlg12755.5
bnlg120962.0
bnlg127068.1
PZB00126.172.1

umc178991.2

bnlg1129120.6

. . .

Cromosoma9

phi1170.0

umc131915.1

umc196237.5
umc123940.7
bnlg152644.9
PZA03585.146.8
umc150657.8

bnlg219083.0

Cromosoma10

%
P

rotein1b

phi0260.0

bnlg162120.2

bnlg113744.2
bnlg118949.5

umc108682.7

umc1699108.2

umc1101119.1

umc1058134.7

.

Cromosoma4

umc21400.0
umc21613.7
bnlg6535.1
bnlg18927.5
PZB01331.218.2
umc180024.1
umc216428.6
umc185335.1

phi08557.6
umc219862.4
phi12871.1

bnlg11883.0

.

Cromosoma5

phi0750.0

bnlg42621.2
umc108327.9

umc191848.6

umc231967.5

bnlg345110.1

umc2323143.0

Cromosoma6

phi0570.0
bnlg17929.6
bnlg65718.5

bnlg107029.1
PZA03574.137.3

Cromosoma7

Exp. 1

Exp. 2

ph
i0

56
0,

0
um

c1
10

6
4,

3

bn
lg

14
29

13
,0

bn
lg

14
84

20
,7

bn
lg

43
9

30
,4

um
c1

47
9

30
,9

ph
i3

39
01

7
32

,7
ph

i0
95

34
,5

bn
lg

22
38

39
,5

um
c2

22
7

47
,2

um
c2

02
5

54
,0

um
c2

23
7

75
,4

PZ
A0

37
41

.1
84

,1
bn

lg
10

25
89

,7

um
c1

43
1

11
0,

0
um

c1
29

0
11

2,
8

um
c1

88
5

11
5,

0
um

c2
22

3
11

7,
0

um
c1

55
3

12
6,

4

.

C
ro

m
os

om
a1

ph
i0

56
0,

0
um

c1
10

6
4,

3

bn
lg

14
29

13
,0

bn
lg

14
84

20
,7

bn
lg

43
9

30
,4

um
c1

47
9

30
,9

ph
i3

39
01

7
32

,7
ph

i0
95

34
,5

bn
lg

22
38

39
,5

um
c2

22
7

47
,2

um
c2

02
5

54
,0

um
c2

23
7

75
,4

PZ
A0

37
41

.1
84

,1
bn

lg
10

25
89

,7

um
c1

43
1

11
0,

0
um

c1
29

0
11

2,
8

um
c1

88
5

11
5,

0
um

c2
22

3
11

7,
0

um
c1

55
3

12
6,

4

.
C

ro
m

os
om

a1

Figure 1 Chromosomal location of the QTLs detected by CIM. Bar lengths are proportional to confidence interval lengths (cM). ASI: anthesis-
silking interval; BHI: biomass harvest index; N/BIOMPM: N proportion in plant biomass at physiological maturity; NHI: N harvest index; NUE: N use 
efficiency for grain production; %Protein: percent grain protein; PGY: plant grain yield

Table 2 Genetic correlation of measured traits

 
PGY BIOMPM BHI PNUPTAKE NUE NHI N/BIOMPM %Protein ASI

PGY (g) 1 0.45 0.79 0.25 0.91 0.87 -0.26 -0.51 -0.34

BIOMPM (g) 1 0.14 0.90 0.08 0.21 -0.30 -0.02 0.03

BHI 1 -0.15 0.85 0.95 -0.06 -0.80 -0.32

PNUPTAKE (g) 1 -0.26 -0.16 0.26 0.36 0.04

NUE (g grain g N-1) 1 0.90 -0.47 -0.73 -0.30

NHI 1 -0.27 -0.45 -0.45

N/BIOMPM (%) 1 0.62 -0.001

%Protein 1 0.06

ASI (days)         1

ASI: antesis-silking interval; BHI: biomass harvest index; BIOMPM: plant biomass at physiological maturity; G: genotype; E: environment; N/BIOMPM: N proportion in plant biomass 
at physiological maturity; NHI: N harvest index; NUE: N use efficiency for grain production; %Protein: percent grain protein; PGY: plant grain yield; PNUPTAKE: plant total N uptake at 
physiological maturity.



Maize Nitrogen Use Efficiency

63 ~ M2

8

Maydica electronic publication - 2018

This QTL showed a PVE of 12.6 % and positive additive 
effect. Finally two QTLs were identified for ASI, one 
with effect in each experiment, both on chromosome 1, 
but located on different marker intervals. These QTLs 
showed negative additive effects.
On chromosome 1, 10 QTLs (NUE1a, NUE2, 
%Protein1a, %Protein2, BHI1a, BHI2, ASI1, ASI2, PGY2 
and NHI2) were identified between markers bnlg1429 
and umc2238. Most  of them shared at least part of 
their confidence intervals. Whereas the QTLs for BHI, 
NUE, NHI and PGY presented positive additive effects, 
those for %Protein and ASI showed negative additive 
effects. Thus, alleles from LP2 would increase mean 
values of NUE, BHI, NHI and PGY, and would decrease 
mean values of %Protein and ASI. Similarly, the NUE1b, 
NHI1b and BHI1c located on chromosome 9, between 
markers bnlg430 and bnlg1270, showed positive 
additive effects, indicating that the alleles from LP2 
would increase the mean values of mentioned traits. 
Likewise, the QTLs N/BIOMPM1 and N/BIOMPM2b 
were located on the same region on chromosome 8 
(between markers bnlg1863 and PZA00865.2) and 
showed negative additive effects.
Most of the detected QTLs were expressed in only one 
of the two experiments. Only the QTLs for BHI (BHI1a 

and BHI2) and %Protein (%Protein1a and %Protein2) 
on chromosome 1, and the QTLs for N/BIOMPM (N/
BIOMPM1 and N/BIOMPM2b) on chromosome 8 were 
mapped in both environments. The confidence 
intervals of QTLs ranged from 2.8 to 14.0 cM, being 
larger intervals corresponding to N/BIOMPM.
MTME mapping was carried out considering only the 
traits with significant genetic variability (P < 0.05; Table 
1) and with genetic correlation coefficients greater than 
0.50 (Table 2). In the first step, seven joint QTLs were 
identified on chromosomes 1, 5, 8, 9, and 10. For each 
QTL, the interval between flanking markers in cM was 
determined as LODmax ± 1 LOD unit, and the physical 
intervals (in Mbp) were estimated from flanking 
markers coordinates (Table 4). Physical intervals were 
highly variable from 2.2 Mbp for QTL-1 to 81.0 Mbp for 
QTL-6. All QTLs detected in this step were considered 
candidate QTLs and incorporated in the initial model. 
No candidate QTL was excluded, and any new QTL was 
added to the final model. Epistatic interactions between 
QTLs were not detected. Genetic map location for all 
joint QTLs and additive effects corresponding to the 
LP2 allele for each trait and in each environment are 
showed in the Figure 2. 
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Figure 2 Chromosomal location of the QTLs detected by MTME. Bar lengths are proportional to confidence interval lengths (cM) BHI: biomass 
harvest index; NUE: N use efficiency for grain production; NHI: N harvest index; N/BIOMPM: N proportion in plant biomass at physiological maturity; 
%Protein: percent grain protein; PGY: plant grain yield. Additive effect corresponding to the LP2 parental allele
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All joint QTLs showed inconsistent additive effects 
across environments at least for one trait, which would 
be attributed  to G×E interaction effects. The trait with 
the highest inconsistency between environments was 
N/BIOMPM. Likewise, the QTL-1, QTL-4, QTL-6 and 
QTL-7 presented additive effects of the same sign for 
NHI, BHI, NUE and PGY, and in most cases their effects 
resulted consistent across environments. Additive 

effects were positive for QTL-1, QTL-6, and QTL-7, 
whereas these effects were negative for the QTL-4. 
The PVE by the multi-QTL model ranged from 10.8 
to 36.7% across traits and environments. On average, 
traits with higher PVE were %Protein, BHI, NUE and 
NHI (28.1, 23.9, 21.0 and 20.4%, respectively), whereas 
N/BIOMPM had the lowest PVE (5.5%).

Table 3 Chromosomal location and effects of the QTLs detected by CIM

QTL Expa LODb QTL POSITION LODmax Genetic effect

Chr Bin cMc Interval (cM) Marker Interval R2 A

1 1.03 34.5 33.7-37.5 phi339017-phi095 5.9 12.6 4.51

BHI1a Exp. 1 2.7 1 1.03 36.5 33.7-38.5 phi339017-phi095 4.9 10.4 0.02

BHI1b 2 2.06-2.08 118 114-123 umc1749-phi127 3.4 6.1 -0.02

BHI1c 9 9.03-9.04 61.5 56.5-65.0 bnlg127-bnlg1209 5.4 10.3 0.02

BHI2 Exp. 2 2.7 1 1.03 34.5 33.7-37.5 phi339017-phi095 6.2 13.3 0.03

NUE1a Exp. 1 3.0 1 1.03-1.04 37.5 34.5-39.5 phi095-bnlg2238 4.8 12.3 2.78

NUE1b 9 9.04 62.0 55.2-65.0 bnlg430-bnlg1209 4.7 10.3 2.54

NUE2 Exp. 2 2.9 1 1.03 34.5 30.9-37.5 umc1479-phi095 3.8 8.4 3.24

NHI1a Exp. 1 2.7 8 8.03 39.8 34.8-43.8 bnlg1834-bnlg1863 3.0 6.6 -0.03

NHI1b 9 9.03-9.04 62.0 56.5-65.0 bnlg127-bnlg1209 6.0 12.5 0.04

NHI2 Exp. 2 3.1 1 1.03 34.5 33.7-36.5 phi339017-phi095 4.5 9.7 0.04

N/BIOMPM1 Exp. 1 2.8 8 8.03 51.8 46.8-59.8 bnlg1863-PZB00865.2 4.6 10.9 -0.37

N/BIOMPM2a Exp. 2 2.9 4 4.06-4.07 49.5 45.2-56.5 bnlg1137-bnlg1189 3.2 6.9 -0.24

N/BIOMPM2b 8 8.03 55.8 50.8-64.8 bnlg1863-PZB00865.2 3.5 12.7 -0.33

%Protein1a Exp. 1 2.8 1 1.03-1.04 37.5 33.7-39.5 phi339017-bnlg2238 5.1 10.5 -0.32

%Protein1b 5 5.06-5.07 61.6 58.6-62.4 phi085-umc2198 6.4 13.1 0.37

%Protein2 Exp. 2 3.6 1 1.03 33.7 31.9-37.5 umc1479-phi095 4.7 10.8 -0.35

ASI1 Exp. 1 2.9 1 1.02-1.03 20.7 17.0-27.7 bnlg1429-bnlg1484 2.9 6.0 -0.39

ASI2 Exp. 2 3.0 1 1.03 30.4 29.7-33.7 bnlg1484-phi339017 3.2 6.4 -0.52

 a Only those with data; b LOD threshold obtain by permutation test; c QTL position in cM (corresponding to LODmax value); R2: total proportion of phenotypic variance explained 
for each QTL; A: additive effect corresponding to the LP2 parental allele; ASI: anthesis-silking interval; BHI: biomass harvest index; Chr: chromosome; LODmax: maximum LOD value; 
N/BIOMPM: N proportion in plant biomass at physiological maturity; NHI: N harvest index; NUE: N use efficiency for grain production; %Protein: percent grain protein; PGY: plant 
grain yield. 

Table 4 Chromosomal location of the QTLs detected by MTME analysis

QTL
POSITION

LODmax
Chr Marker interval Genetic interval (cM) Physical interval (Mbp)

QTL-1 1 phi339017-phi095 32.7-38.5 45.9-48.1 9.0

QTL-2 1 bnlg2238-umc2025 45.5-56.0 55.1-91.3 8.6

QTL-3 5 phi085-umc2198 57.6-62.4 203-217 9.4

QTL-4 8 bnlg1834-bnlg1863 36.8-46.8 63.5-91.6 9.5

QTL-5 8 bnlg1863-PZB00865.2 50.8-63.8 91.6-125 9.3

QTL-6 9 bnlg127-bnlg1209 61.5-68.0 26.9-107 13.5

QTL-7 10 PZA03585.1-umc1506 56.8-69.8 105-133 7.8

Chr: chromosome; LODmax: maximum LOD value
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Identification of candidate genes

The analysis identified a total of 3961 genes within the 
intervals corresponding to the seven detected joint 
QTLs, which were classified according to their putative 
function (S1_table). A complete list of genes is showed 
in the S2_table. The 71.2% of identified genes (2819 
genes) corresponded to uncharacterized protein, 
whereas the remaining 28.8% (1142 genes) belonged 
to proteins with putative functions.
Percentages assigned to each category were established 
for the 1142 genes with predicted function. A 32.7% 
corresponded to proteins involved in basal metabolism. 
Proteins related to synthesis and degradation of 
amino acids, nucleotides, carbohydrates, lipids and 
other secondary metabolites fall in this category, 
as well as those implicated in processes related to 
energy production such as glycolysis, respiration, 
fermentation, photosynthesis, oxidation of fatty acids, 
etc. On the one hand, 43.5% of genes corresponded 
to proteins involved in information pathways, such as 
DNA processing (synthesis, replication, recombination, 
repairing, etc.), cell cycle, transcription (synthesis, 
processing and modification of rRNA, mRNA and tRNA), 
protein synthesis (ribosomal proteins and proteins 
involved in translation), protein fate (protein folding 
and modification, assembly of protein complexes 
and protein degradation). Genes encoding proteins 
involved in the ubiquitin (Ub)-proteasome pathway 
of protein degradation (ubiquitin-protein ligase, 
ubiquitin fusion degradation UFD1 family protein, 
proteasome maturation factor UMP1 family protein, 
26S protease regulatory subunit 4, putative ubiquitin-
conjugating enzyme family, etc.) and genes encoding 
Clp proteases were identified in all QTL intervals. On 
the other hand, 6.0% of genes corresponded to protein 
implicated in cellular transport. Among them, amino 
acid transporters genes were identified on intervals of 
the QTL-5, QTL-6 and QTL-7. A 13.4% of genes were 
associated with perception and response to stimulus 
such as cellular communication and signal transduction, 
cellular defense to biotic and abiotic stress, cellular 
detoxification and environmental interaction. Some QTL 
intervals included genes that encode proteins involved 
in cellular detoxification, as metallothionin, glutathione-
S-transferase, superoxide dismutase and peroxidase. 
Finally, 4.4% of genes were associated with processes 
related to plant development such as biogenesis of 
cellular components, cell type differentiation (organs, 
tissues and cell), sexual determination and senescence.

Discussion
Variability of the RILs population and their parental lines 
(B100 and LP2) for NUE and related traits was evaluated 
across two contrasting environments. The combined 
effect of low initial soil N and warm conditions during 
Exp. 2 determined  unfavorable growth conditions, 
causing  reductions in N absorption (36%),biomass 
production (21%) and PGY (24%). The population had a 
broad genetic variation in PGY and all traits of interest, 
except PNUPTAKE. A significant G×E interaction was also 
detected for all traits, which highlighted a differential 
performance among genotypes when exposed to 
different environments as well as the importance 
of phenotypic evaluation in different environments 
(Crossa, 1990). Parental inbreds differed markedly for 
NUE only when grown under low soil N level and higher 
temperatures (Exp. 2). In this environment, LP2 had a 
higher NUE than B100, indicating that LP2 would be 
more efficient for using N when this nutrient is scarce 
and/ or when growing under warmer environments. 
Genotypic characterization of the RILs population was 
mainly done using SSR markers. A high percentage of 
the tested SSR (almost 50%) were polymorphic between 
parental lines, which is in agree with the results obtained 
by Olmos et al (2014). The high level of polymorphism 
allows us to deduce that the RILs population derived from 
B100 and LP2 lines was appropriate for QTL mapping. 
Although the number of useful SNP was reduced, it 
allowed an increase of 6% in total marker number. 
Moreover, 19% of evaluated markers had distortive 
segregation. Numerous studies have detected deviation 
of marker segregation in maize (Gardiner et al, 1993; 
Pereira and Lee, 1995; Sibov et al, 2003). Segregation 
distortion can be attributed to chromosomal regions 
called segregation-distortion loci (SDL). Markers close 
to these loci can be affected by distortion (Vogl and 
Xu, 2000). In current study, two distortive segments 
were detected that coincide with regions previously 
described as SDL by Lu et al (2002): one on chromosome 
2 (bin 2.04), close to the gams1 (gametophytic male 
sterile1) gene, and other on chromosome 5 (bin 5.02-
5.04). Distortive segregation affects recombination 
frequency, and hence precludes precise QTL mapping. 
In this work, distortive markers were excluded from 
genetic map construction and only those markers with  
1:1 segregation were used. Linkage maps covered 
1129.5 cM with an average marker interval of 11.8 cM. 
However, some genomic regions presented marker 
intervals up to 30 cM. For example, map corresponding 
to chromosome 2 showed two extensive genomic 
regions, whereas map corresponding to chromosome 
6 presented one large region between umc2319 and 
bnlg345. In some case, many of the tested SSR in these 
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regions resulted monomorphic between the  parental 
lines, so were not used for mapping; moreover, markers 
that were polymorphic showed distortive segregation. 
Thereby, most chromosome maps presented low 
coverage regions that coincided with larger bins. 
Linkage map corresponding to chromosome 1 was the 
most covered, whereas the less covered map was that 
of chromosome 7.
When current genetic map is compared with genetic 
maps in the MaizeGDB database, we observed that 
most published maps derive from the B73×Mo17 cross 
which are, in addition, more saturated. Inbreds of this 
family are representative of dent temperate germplasm 
which had been extensively studied (Gustafson and 
de Leon, 2010), whereas the B100×LP2 (US yellow 
dent × Caribbean-Argentine orange flint) population 
combines a more complex genetic background than 
the B73×Mo17 population, that has not been deeply 
elucidated. For instance, LP2 is a flint inbred line from 
the Argentine × Caribbean Derived Stocks (Olmos 
et al, 2014, 2016) which shares high added value for 
industry (Greco, 2014) whereas B100 is a semi-dent US 
inbred line but with a distant genetic relationship with 
B73 and Mo17 (Romay et al, 2013). This implies that 
the cross B100 x LP2  and its derived RILs would serve 
as novel sources of undiscovered alleles for genetic 
studies and breeding purposes. Thus, in spite of the 
low genetic map saturation, QTL detection for NUE 
and related traits was achieved and many of these QTLs 
were stable across evaluated environments. However, 
some QTL could have not revealed due to low genome 
representation.
Nineteen QTLs were identified associated with NUE 
and related traits across two environments using CIM. 
In many cases, intervals of a QTL detected for a trait 
showed partial or complete overlap with intervals of 
other QTL identified for other trait. Moreover, most of 
detected the joint QTLs co-localized, at least in part, 
with several QTLs identified by individual mapping. 
The markers interval corresponding to the QTL-1 
(phi339017 and phi095) showed total overlapping 
with the interval of the QTLs BHI1a, BHI2, PGY2 and 
NHI2, and partial overlapping with the QTLs NUE2, 
%Protein1a and %Protein2. In addition, the interval 
of the QTL-6 (bnlg127 and bnlg1209) presented total 
overlapping with the QTLs NHI1b and BHI1c, and 
partial overlapping with NUE1b. Likewise, overlapping 
between intervals of QTL detected by both approaches 
was evidenced for the QTL-3, QTL-4, and QTL-5 but 
fewer traits were significant for both methods. Several 
researchers have found that results from individual QTL 
mapping cannot be compared across environments. 
However, when MTME approach is used, a higher 

stability in QTL expression across environment is 
observed (Malosetti et al, 2008; Messmer et al, 2009; 
Liu et al, 2014). In general, the joint QTL confidence 
intervals were narrower than QTL confidence intervals 
detected by individual mapping. When an individual 
trait is analyzed, the statistical power of the test is 
reduced, and the variance of the estimation increases; 
moreover, most of biological processes involve 
multiple traits that can be genetically correlated due 
to pleiotropy or close linkage (Jiang and Zeng, 1995). 
Thus, MTME analysis is a more powerful and  realistic 
approach than QTL mapping for individual traits across 
environments.
The genetic dissection of PGY into their determinants 
BIOMPM and BHI, or PNUPTAKE and NUE, revealed that 
variation in PGY was strongly associated with BHI and 
NUE, and weakly associated with PNUPTAKE and BIOMPM. 
Also, h2 values computed for BHI, NUE and most traits 
of interest were larger than for PGY, except for PNUPTAKE 
and BIOMPM. This result supports the claim  that 
dissection of complex trait as PGY might not always 
result in improved genetic prediction (Lee et al, 2005; 
Alvarez Prado et al, 2013; Mandolino et al, 2016). The 
highly significant correlations among PGY, BHI, NUE 
and NHI were consistent with additive effects detected 
for all these traits in QTL-1, QTL-4, QTL-6 and QTL-7. 
This result proposed a common genetic control (e.g., 
linkage or pleiotropic effects) among these attributes 
for the current RILs population. As documented in 
previous studies, a tight link exists between BHI and 
NHI (Ciampitti and Vyn, 2012; Fageria, 2014), indicative 
of an enhanced N partitioning from stover to grains 
depending upon an enhanced allocation of plant 
biomass to grains. As proposed by Ciampitti and Vyn 
(2012), the challenge will be to optimize BHI, NHI and 
NUE simultaneously. In this sense, it is necessary to 
be cautious about the negative association between 
remobilized N and postsilking N uptake (Coque and 
Gallais, 2007; Gallais et al, 2007). Fortunately, the 
consistent effects for BHI, NHI and NUE observed in 
the QTL-1, QTL-4, QTL-6 and QTL-7 suggest that an 
effective simultaneous selection of these traits could 
be feasible. This is an important finding that has not 
been reported previously. Moreover, the QTLs in 
chromosomes 1 (QTL-1 and QTL-2), 8 (QTL-5) and 10 
(QTL-7) with additive effect <0 for %Protein and additive 
effect >0 for PGY, BHI or NUE are consistent with the 
negative relationships detected for these traits. These 
results support the existence of a trade-off  between 
PGY, NUE and %Protein among grain crops (Dudley 
et al, 1977; Feil et al, 1990; Lemaire and Gastal, 2009; 
Ciampitti and Vyn, 2013; Gastal et al, 2015), which has 
affected breeding efforts for the simultaneous increase 
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of grain yield and grain protein concentration. Finally, 
a negative correlation was established between PGY 
and ASI. This trend, related to the negative correlation 
between ASI and kernel number, has been observed 
in other studies (Gallais and Hirel, 2004; Lafitte and 
Edmeades, 1995). In our study, however, only two 
QTLs linked to the ASI were detected on chromosome 
1 using CIM (ASI1 and ASI2); in addition, this trait was 
not taken into account for MTME approach because of 
low genetic correlation (<0.50) with NUE and related 
attributes. Such apparent discrepancy with previous 
reports may be linked to the proportionally larger 
effect of water deficit than of N shortage on ASI values, 
particularly among inbreds (Munaro et al, 2011).
Most of the QTLs detected in this study shared regions 
with previously reported QTLs. There was a relevant 
coincidence between the QTL-3 on chromosome 5 
(associated with %Protein, NUE, N/BIOMPM and BHI) 
and a QTL for nitrate content (NO3

-), PGY, and activities 
of nitrate reductase and glutamine synthetase (GS) 
identified by Hirel et al (2001), as well as another 
one for PGY detected by Bertin and Gallais (2001). 
Such coincidences are consistent with the positive 
correlation of GS activity with NUE (Hirel et al, 2001; 
Masclaux et al, 2001) and grain yield (Masclaux et al, 
2001; Gallais and Hirel, 2004). These co-localizations 
support at molecular level the consensus that the 
enzymatic activity in the leaf cytosol is one of the major 
steps controlling biomass and N allocation from leaves 
to grains (Hirel et al, 2001) and its manipulation could 
potentially raise NUE through a more efficient internal 
recycling of N from old to new leaves (Foulkes et al, 
2009). Likewise, the QTL-1 on the chromosome 1 
coincides with a QTL for grain protein concentration 
(Wassom et al, 2008) and a QTL for longer axial root 
detected by Liu et al (2008) under conditions of low 
and high N availability. Similarly, the QTL-5 location on 
chromosome 8 was consistent with QTLs previously 
detected for grain protein concentration (Li et al, 
2009), N remobilization (Coque et al, 2008) and plant 
N content (Gallais and Hirel, 2004). Additionally, the 
QTL-6 on chromosome 9 associated with NUE, NHI, 
BHI, PGY and N/BIOMPM coincides with QTLs detected 
for NUE (Bertin and Gallais, 2001), PGY under high N 
condition (Liu et al, 2010) and N remobilization (Coque 
et al, 2008). This fact confirms the importance of N 
remobilization on NUE and PGY determination (Coque 
and Gallais, 2007; Ciampitti and Vyn, 2013). Finally, the 
QTL-7 on chromosome 10 coincides with a joint QTL 
for protein and starch concentration (Li et al, 2009).
Some candidate genes were found to be of value for 
control of the physiological process underlying NUE. 
One of the most interesting genes identified was rth3 

gene on the QTL-1. This gene encodes a monocot-
specific COBRA-like protein involved in cellular 
expansion and wall cellular biosynthesis. Defects in the 
rth3 gene have been found to affect hair root elongation 
(Hochholdinger et al, 2008). Likewise, the product of 
the rth3 gene has been highly associated with grain 
yield under conditions of high N content, and with 
seedling root traits under contrasting soil N (Abdel-
Ghani et al, 2015). Extension of root hairs increase 
surface of root so enhances water and nutrients (as 
N) uptake. In current research, however, no genotypic 
effect was detected for PNUPTAKE, and this trait had no 
link with NUE. Consequently, no inference can be made 
about genotypic differences in root development and 
root architecture for the evaluated germplasm (Hirel et 
al, 2007). 
About the glutamine synthetase4 (gln4) and the 
glutamate-oxaloacetate transaminase 2 (got2) genes 
identified on the QTL-3, both are involved in N flow 
between organic compounds. The gln4 gene plays a role 
in ammonium assimilation from glutamate (glutamine 
biosynthesis), whereas the got2 gene is involved in N 
transfer from glutamate to aspartate. Finally, within 
the QTL-6 interval the asparagine synthetase 1 (asn1) 
gene and two possible amino acid transporters (amino 
acid permease 1 and amino acid transporter-like 
protein) were identified. The asn1 gene is involved 
in asparagine synthesis from glutamine, it is essential 
to N assimilation, distribution and remobilization in 
plants through phloem pathway (Chevalier et al, 1996). 
Amino acid transporters could play an important role in 
distributions of organic N and therefore would regulate 
the fate of this resource into the plant. 

Conclusions
One the most important result of our study was the 
consistent positive effects for BHI, NHI, PGY and 
NUE observed in some joint QTLs, which could allow 
an efficient  simultaneous selection for these traits. 
Therefore these QTLs seem to be the most interesting 
for breeding purpose. Special focus should be given 
to the QTL-1 and QTL-6 due to their positive additive 
effects, the stability across the contrasting environments 
explored, and because of there are genes that could be 
relevant for NUE and yield within these QTL intervals.
The detection of significant associations between 
traits related to NUE and molecular markers will allow 
marker assisted selection for NUE. The advantage of 
this approach is that presence of these markers can be 
used as selection criterion in maize breeding in early 
development stage, increasing parental control, and 
consequently greater selection responses.
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Occasionally, evaluation and indirect selection of 
genotypes based on their molecular profile could be 
convenient when it is compared with evaluation and 
direct selection for physiological traits. These are 
often difficult to screen under field conditions when 
dealing with a large number of genotypes. Simulation 
studies showed that a distance of 5 cM between QTL 
and marker would be appropriated to marker assisted 
selection (Boopathi, 2013). However, considering that 
intervals of the detected QTLs are still quite large, fine 
mapping will be convenient to identify markers closely 
linked to these QTLs with focus on the desired genes. 
Likewise, increasing markers density in low coverage 
regions would be allow to detect additional QTL 
associated with NUE and related traits.
Candidate genes identification, despite extension of 
intervals, was important because it allowed us to select 
regions of interest within the intervals. Detection of 
new markers within or closely to these genes associated 
with NUE and related traits could be used for marker 
assisted selection in breeding programs.
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