
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/315470255

A	modification	of	the	arcsine-log	calibration
curve	for	analysing	soil	test	value-relative	yield
relationships

Article		in		Crop	and	Pasture	Science	·	March	2017

DOI:	10.1071/CP16444

CITATIONS

2

READS

249

4	authors:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

P	dynamics	in	soils	View	project

Proyecto	Integrado	de	Previsión	de	Cosecha	INTA	View	project

Adrián	Alejandro	Correndo

International	Plant	Nutrition	Institute

19	PUBLICATIONS			10	CITATIONS			

SEE	PROFILE

Fernando	Salvagiotti

Instituto	Nacional	de	Tecnología	Agropecuaria

38	PUBLICATIONS			677	CITATIONS			

SEE	PROFILE

Fernando	Garcia

International	Plant	Nutrition	Institute,	Argentina

93	PUBLICATIONS			1,124	CITATIONS			

SEE	PROFILE

Flavio	Hernan	Gutierrez	Boem

University	of	Buenos	Aires

42	PUBLICATIONS			549	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Adrián	Alejandro	Correndo	on	03	October	2017.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/315470255_A_modification_of_the_arcsine-log_calibration_curve_for_analysing_soil_test_value-relative_yield_relationships?enrichId=rgreq-32e4ac695243cc508dbfeb2994c911a4-XXX&enrichSource=Y292ZXJQYWdlOzMxNTQ3MDI1NTtBUzo1NDUzNTMyMjUyMDc4MDhAMTUwNzAzMzc0OTI4Mg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/315470255_A_modification_of_the_arcsine-log_calibration_curve_for_analysing_soil_test_value-relative_yield_relationships?enrichId=rgreq-32e4ac695243cc508dbfeb2994c911a4-XXX&enrichSource=Y292ZXJQYWdlOzMxNTQ3MDI1NTtBUzo1NDUzNTMyMjUyMDc4MDhAMTUwNzAzMzc0OTI4Mg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/P-dynamics-in-soils?enrichId=rgreq-32e4ac695243cc508dbfeb2994c911a4-XXX&enrichSource=Y292ZXJQYWdlOzMxNTQ3MDI1NTtBUzo1NDUzNTMyMjUyMDc4MDhAMTUwNzAzMzc0OTI4Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Proyecto-Integrado-de-Prevision-de-Cosecha-INTA?enrichId=rgreq-32e4ac695243cc508dbfeb2994c911a4-XXX&enrichSource=Y292ZXJQYWdlOzMxNTQ3MDI1NTtBUzo1NDUzNTMyMjUyMDc4MDhAMTUwNzAzMzc0OTI4Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-32e4ac695243cc508dbfeb2994c911a4-XXX&enrichSource=Y292ZXJQYWdlOzMxNTQ3MDI1NTtBUzo1NDUzNTMyMjUyMDc4MDhAMTUwNzAzMzc0OTI4Mg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adrian_Correndo?enrichId=rgreq-32e4ac695243cc508dbfeb2994c911a4-XXX&enrichSource=Y292ZXJQYWdlOzMxNTQ3MDI1NTtBUzo1NDUzNTMyMjUyMDc4MDhAMTUwNzAzMzc0OTI4Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adrian_Correndo?enrichId=rgreq-32e4ac695243cc508dbfeb2994c911a4-XXX&enrichSource=Y292ZXJQYWdlOzMxNTQ3MDI1NTtBUzo1NDUzNTMyMjUyMDc4MDhAMTUwNzAzMzc0OTI4Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/International_Plant_Nutrition_Institute?enrichId=rgreq-32e4ac695243cc508dbfeb2994c911a4-XXX&enrichSource=Y292ZXJQYWdlOzMxNTQ3MDI1NTtBUzo1NDUzNTMyMjUyMDc4MDhAMTUwNzAzMzc0OTI4Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adrian_Correndo?enrichId=rgreq-32e4ac695243cc508dbfeb2994c911a4-XXX&enrichSource=Y292ZXJQYWdlOzMxNTQ3MDI1NTtBUzo1NDUzNTMyMjUyMDc4MDhAMTUwNzAzMzc0OTI4Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fernando_Salvagiotti?enrichId=rgreq-32e4ac695243cc508dbfeb2994c911a4-XXX&enrichSource=Y292ZXJQYWdlOzMxNTQ3MDI1NTtBUzo1NDUzNTMyMjUyMDc4MDhAMTUwNzAzMzc0OTI4Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fernando_Salvagiotti?enrichId=rgreq-32e4ac695243cc508dbfeb2994c911a4-XXX&enrichSource=Y292ZXJQYWdlOzMxNTQ3MDI1NTtBUzo1NDUzNTMyMjUyMDc4MDhAMTUwNzAzMzc0OTI4Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Instituto_Nacional_de_Tecnologia_Agropecuaria2?enrichId=rgreq-32e4ac695243cc508dbfeb2994c911a4-XXX&enrichSource=Y292ZXJQYWdlOzMxNTQ3MDI1NTtBUzo1NDUzNTMyMjUyMDc4MDhAMTUwNzAzMzc0OTI4Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fernando_Salvagiotti?enrichId=rgreq-32e4ac695243cc508dbfeb2994c911a4-XXX&enrichSource=Y292ZXJQYWdlOzMxNTQ3MDI1NTtBUzo1NDUzNTMyMjUyMDc4MDhAMTUwNzAzMzc0OTI4Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fernando_Garcia27?enrichId=rgreq-32e4ac695243cc508dbfeb2994c911a4-XXX&enrichSource=Y292ZXJQYWdlOzMxNTQ3MDI1NTtBUzo1NDUzNTMyMjUyMDc4MDhAMTUwNzAzMzc0OTI4Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fernando_Garcia27?enrichId=rgreq-32e4ac695243cc508dbfeb2994c911a4-XXX&enrichSource=Y292ZXJQYWdlOzMxNTQ3MDI1NTtBUzo1NDUzNTMyMjUyMDc4MDhAMTUwNzAzMzc0OTI4Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fernando_Garcia27?enrichId=rgreq-32e4ac695243cc508dbfeb2994c911a4-XXX&enrichSource=Y292ZXJQYWdlOzMxNTQ3MDI1NTtBUzo1NDUzNTMyMjUyMDc4MDhAMTUwNzAzMzc0OTI4Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Flavio_Gutierrez_Boem?enrichId=rgreq-32e4ac695243cc508dbfeb2994c911a4-XXX&enrichSource=Y292ZXJQYWdlOzMxNTQ3MDI1NTtBUzo1NDUzNTMyMjUyMDc4MDhAMTUwNzAzMzc0OTI4Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Flavio_Gutierrez_Boem?enrichId=rgreq-32e4ac695243cc508dbfeb2994c911a4-XXX&enrichSource=Y292ZXJQYWdlOzMxNTQ3MDI1NTtBUzo1NDUzNTMyMjUyMDc4MDhAMTUwNzAzMzc0OTI4Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Buenos_Aires?enrichId=rgreq-32e4ac695243cc508dbfeb2994c911a4-XXX&enrichSource=Y292ZXJQYWdlOzMxNTQ3MDI1NTtBUzo1NDUzNTMyMjUyMDc4MDhAMTUwNzAzMzc0OTI4Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Flavio_Gutierrez_Boem?enrichId=rgreq-32e4ac695243cc508dbfeb2994c911a4-XXX&enrichSource=Y292ZXJQYWdlOzMxNTQ3MDI1NTtBUzo1NDUzNTMyMjUyMDc4MDhAMTUwNzAzMzc0OTI4Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adrian_Correndo?enrichId=rgreq-32e4ac695243cc508dbfeb2994c911a4-XXX&enrichSource=Y292ZXJQYWdlOzMxNTQ3MDI1NTtBUzo1NDUzNTMyMjUyMDc4MDhAMTUwNzAzMzc0OTI4Mg%3D%3D&el=1_x_10&_esc=publicationCoverPdf


A modification of the arcsine-log calibration curve for analysing soil test 1 

value - relative yield relationships* 2 

Adrián A. CorrendoA,D, Fernando SalvagiottiB, Fernando O. GarcíaA and Flavio H. Gutiérrez-BoemC 3 
A International Plant Nutrition Institute (IPNI), Latin America Southern Cone Program, Av. Santa Fe 910, 4 
Acassuso, Buenos Aires Argentina. 5 
B Dep. Agronomía, EEA INTA Oliveros, Santa Fe, Argentina. 6 
C University of Buenos Aires, College of Agronomy, INBA-CONICET, Buenos Aires, Argentina. 7 
D Corresponding author. Email: correndo@agro.uba.ar 8 
 9 
*Pre-typeset proof version of: Correndo, A.A., F. Salvagiotti, F.O. García, and F.H. Gutiérrez Boem. 2017. A 10 
modification of the arcsine-log calibration curve for analysing soil test value-relative yield relationships. Crop & 11 
Pasture Science 68 (3): 297-304. https://doi.org/10.1071/CP16444 12 

 13 

Abstract. This article aims to discuss the arcsine-log calibration curve (ALCC) method 14 

designed for the Better Fertiliser Decisions for Cropping Systems (BFDC) to calibrate 15 

relationships between relative yield (RY) and soil test value (STV). Its main advantage is 16 

estimating confidence limits of the critical value (CSTV). Nevertheless, intervals for 95% 17 

confidence level are often too wide, and authors suggest to reduce the confidence level to 70% 18 

in order to achieve narrower estimates. Still, this method can be further improved by modifying 19 

specific procedures. For this purpose, several datasets belonging to the BFDC were used. For 20 

any confidence level, estimates with the modified-ALCC procedures were always more 21 

accurate as compared with the original-ALCC. The overestimation of confidence limits with the 22 

original-ALCC was inversely related to the correlation coefficient of the dataset, which might 23 

allow a relatively simple and reliable correction of previous estimates. In addition, since the 24 

method is based on the correlation between STV and RY, the importance to test it for 25 

significance it is emphasized in order to support the hypothesis of a relationship. Then, the 26 

modified-ALCC approach could also allow a more reliable comparison of datasets by slopes of 27 

the bivariate linear relationship between transformed variables.  28 

 29 

Additional keywords: bivariate model; correlation; standardized major axis regression.  30 



Introduction 31 

When developing fertilizer recommendation models based on STV, the most usual goal is to 32 

identify a critical value or range of a soil fertility variable for a given level of crop yield under 33 

which response to fertilization is most likely. The most common approach is to fit a regression 34 

line between crop yield and STV, the latter as the independent variable and the crop yield, 35 

many times expressed as RY, as the dependent one. Mathematical functions used to describe 36 

this relationship may be linear-plateau, quadratic-plateau or exponential (Mistcherlich) among 37 

others (Mallarino and Blackmer, 1992; Colwell, 1963). 38 

 39 

The most widely method used for fitting regression models, the ordinary least squares (LS) 40 

approach, assumes that only the dependent variable (e.g. RY) is random while the explanatory 41 

or regressor variable (e.g. STV) is considered as fixed and error-free. This approach is 42 

especially valid for cases in which the explanatory variable is truly fixed, such as fertiliser rate. 43 

However, when this variable is not controlled by the researcher, as happens with STV, 44 

researchers normally still consider it as fixed. In this sense, it has been pointed out that LS 45 

regression is frequently abused in soil research (Webster, 1997). When the underlying 46 

relationship is bivariate it should be described as such and not as a predictive one.  As well as 47 

crop yield, the STV represents an "observed" dimension of the experiments, and comes from a 48 

population that has a reference distribution and thus, an error component. Therefore, a joint 49 

distribution of both variables called "bivariate" should be also considered, which its simplest 50 

case is the "bivariate normal" (Legendre and Legendre, 1998). 51 

 52 

Furthermore, calibrating RY vs STV often shows problems related to normality and 53 

homogeneity of variance. This means a lack of statistical robustness of LS regression to 54 

answer questions of interest (Kutner et al., 2005).  Neither RY nor STV follow normal 55 



distribution, and thus, variable transformation is usually recommended (Webster, 2001). 56 

However, the most common situation is transforming only the dependent variable (RY), while 57 

keeping original units in the explanatory variable, and thus, the solution results partial. On the 58 

other hand, if the nutrient under study is the only limitation to the crop growth, is expected that 59 

high levels of STV may result in larger and also less variable yields each time. This behaviour 60 

results in a dependence of RY variance on STV values when RY is the dependent variable.  61 

Weighted regression is usually applied, but not always brings a solution (Motulsky and 62 

Christopoulos, 2004).  63 

 64 

On the other hand, an innovative approach has been recently proposed by Dyson and Conyers 65 

(2013) for calibrating soil tests aimed at recommending crop fertilization. The ALCC (Arcsine 66 

Logarithm Calibration Curve) method has been developed for determining CSTVs for nitrogen 67 

(N), phosphorus (P), potassium (K) and sulfur (S) and response of various grain crops in 68 

Australia (Anderson et al, 2013;. Bell et al, 2013a; 2013b; 2013c; Brennan and Bell, 2013).  As 69 

opposed to most commonly used calibrating methodologies, the ALCC method: (i) transforms 70 

both variables involved in the relationship (i.e. RY and STV), and (ii) reverses the axes (i.e. fit 71 

STV vs. RY) to estimate not only the CSTV for a given RY level but also its confidence interval 72 

(CI). 73 

 74 

In the original study (Dyson and Conyers, 2013), authors highlighted that estimations of CI in 75 

the original methodology were often too wide for making reliable recommendations and 76 

comparisons between datasets. Therefore, they suggested to reduce the confidence level from 77 

95% (P = 0.05) to 70% (P = 0.30) in some comparisons (Dyson and Conyers, 2013; Watmuff et 78 

al., 2013). However, a detailed review of the original ALCC method suggests that it is possible 79 



to achieve more accurate estimates of CSTVs without reducing the level of confidence by 80 

modifying specific procedures. 81 

 82 

The objectives of this study were to: (i) evaluate changes in procedures of the ALCC method in 83 

order to obtain CSTV with narrower CI; (ii) test the reliability of the shape of STV:RY 84 

relationships based on a simple linear parameter, and (iii) discuss the importance of testing the 85 

correlation coefficient for significance in order to support the hypothesis of a relationship 86 

between variables. 87 

 88 

Materials and Methods 89 

Data sources and analysis 90 

Datasets were gathered from several sources: 91 

Dataset #1. The first dataset was obtained from the BFCD Interrogator Database (NSW DPI, 92 

2012). It was intentionally the same as Dyson and Conyers (2013) described in their paper, 93 

belonging to the National Soil Fertility Program (NSFP) from 1968-72 (Fig. 1). The follow filters 94 

in the BFDC Interrogator were applied to obtain this dataset: Nutrient = ‘P’, Farming System = 95 

‘dryland’, From Year = ‘1968’, To Year = ‘1972’, State = ‘Victoria’, Season = ‘winter’, Crop = 96 

‘cereal wheat’, Australian Soil Class = ‘All’, Soil Test and sample depth = ‘P Colwell mg/kg at 0-97 

10 cm’, Trial quality = ‘A trials only’.  98 

 99 

FIG 1 100 

 101 

Dataset #2. A second dataset was also defined using the BFCD Interrogator Database in order 102 

to make specific comparisons of parameters using the original and the modified ALCC method. 103 

This dataset was obtained through the follow filters: Nutrient = ‘P’, Farming System = ‘dryland’, 104 



From Year = ‘All’, To Year = ‘All’, State = ‘All’, Season = ‘winter’, Crop = ‘cereal wheat’, 105 

Australian Soil Class = ‘Vertosol Black + Vertosol Grey’, Soil Test and sample depth = ‘P 106 

Colwell mg/kg at 0-10 cm’. 107 

 108 

Dataset #3. A third dataset was built for a comparison of standard errors (SE) of the CSTV 109 

estimator. For this purpose, 60 datasets of STV and RY were used. They were gathered from 110 

(i) the BFCD Interrogator Database (23) (NSW DPI, 2012), and (ii) published and unpublished 111 

grain crop fertilisation experiments in the Pampean Region of Argentina (37) including several 112 

crop-nutrient combinations (wheat, maize, and soybean crops, and N, P, S, and Zn). This 113 

Dataset #3 was defined using specific variables from each of the 60 datasets (n=60): (i) 114 

correlation coefficient (rxy), (ii) SE of CSTV estimator using the original-ALLC method, and (iii) 115 

SE of CSTV estimator using the modified-ALLC method.      116 

 117 

All datasets were tabulated and processed in a Microsoft Excel ® environment in order to make 118 

all comparisons. Analyses of obtained linear models were also checked in the R software 119 

environment using packages Smatr v3.4-3 (Warton et al., 2012) and Stats v3.2.4 (R Core 120 

Team, 2016). All figures were made with the GraphPad Prism software v7.0a for MacOSx 121 

(GraphPad Software Inc., 2016). 122 

 123 

Procedures of the modified-ALCC 124 

A total of 9 steps are needed, each one can be performed with a common spreadsheet in 125 

Microsoft Excel ® or similar. Essential commands for applying in a common spreadsheet are 126 

included in parentheses. Note they could vary depending on the software version and 127 

language. Steps #1 to #3 of the modified-ALCC are basically the same as the original-ALCC 128 



method (Dyson and Conyers, 2013). Specific differences are detailed in the Results and 129 

Discussion section. 130 

1. Transform variables. This will simplify the relationship between variables as a simple 131 

linear equation. Transformations are: 132 

a. Natural logarithm for the STV, hereinafter Y (=LN(STVi)). The method does 133 

work independently of STV units, which normally are expressed in kg/ha, 134 

mg/kg, cmolc/kg, among others. 135 

b. Arcsine of the square root for the RY, hereinafter X (=ASIN(SQRT(RYi/100))). 136 

The original RY units must be always expressed with respect to a maximum 137 

yield (observed or estimated), see Dyson & Conyers (2013) for additional 138 

details. 139 

2. Center the X variable, with respect to the RY level for which you want to estimate the 140 

CSTV (=ASIN(SQRT(RYi/100))-ASIN(SQRT(RYgoal/100))). For example, for a 141 

RYgoal=90% we need to subtract, from each value of X, the corresponding 142 

arcsine√(90/100) = 1.249.  143 

3. Estimate the Pearson correlation coefficient (rxy), between X (centered) and Y 144 

(=PEARSON(Xvalues, Yvalues). Since the methodology is based on “correlation” between 145 

variables, it is advisable to test this coefficient for significance before the next steps.  146 

4. Estimate the average means of centered X (=AVERAGE(Xvalues)) and Y 147 

(=AVERAGE(Yvalues)). They represent coordinates of  the data ellipse centroid (𝑋, 𝑌), 148 

where all possible regressions pass through. 149 

5. Estimate a linear regression (Eqn. 1) between X and Y values (Fig. 2) using the 150 

ordinary least squares (LS) approach. 151 

𝑌$%& = 𝛼%& + 𝛽%& ∗ 𝑋$         (1) 152 



Where, 𝑌$%& are the fitted LS values of ln(STV) and 𝑋$ are the observed (and centered) 153 

X values (see Step #2). 154 

6. Estimate the bivariate equation between X and Y. This step basically consists in 155 

rotating the LS regression (Eqn. 1) about the centroid of the data ellipse (Step #4). The 156 

equation of interest is called standardized major axis (SMA), which describes a 157 

structural or bivariate relationship between variables based on correlation. There is 158 

specific software for fitting this type of regression (Warton et al., 2012). However, the 159 

most direct and simplest way is to use a mathematical property that relates slopes of LS 160 

and SMA regressions (Eqn. 2) (Legendre and Legendre, 1998). Thus, since all possible 161 

regressions of any data ellipse pass through the centroid coordinates (𝑋, 𝑌) (Eqn. 3), 162 

we can estimate the SMA intercept (𝛼&,-) by Eqn. 4. Finally, we obtain the complete 163 

SMA equation, which for the example application is shown in Fig. 2B. Note that Eqn. 2 164 

is not plausible when  𝑟/0 = 0, so correlation is recommended to be tested for 165 

significance first (see “Testing correlation significance” section). 166 

 167 

FIG 2 168 

 169 

 𝛽&,- =
234
567

, 𝑤ℎ𝑒𝑛	𝑟/0 ≠ 0        (2) 170 

 171 

 𝑌 = 𝛼&,- + 𝛽&,- ∗ 𝑋         (3) 172 

 173 

𝛼&,- = 𝑌 − 234
567

∗ 𝑋         (4) 174 

 175 



7. Estimate the CSTV. It has to be consider the model when 𝑋 = 0. As in this example, the 176 

X values are centered on RY = 90%, the intercept represents the CSTV90%. Since the 177 

estimator (𝛼&,-) is expressed in logarithmic units (Eqn. 5), it is necessary to back-178 

transform it to its original units (Eqn. 6, =EXP(𝛼&,-)).  179 

 180 

𝛼&,- = 𝑙𝑛 𝐶𝑆𝑇𝑉DE           (5) 181 

 182 

𝐶𝑆𝑇𝑉DE = 𝑒 F4GH           (6) 183 

 184 

8. Estimate the confidence interval (CI) of the CSTV. To estimate the confidence limits of 185 

the CSTV we must use Eqn. 7 and Eqn.8 which have been described as the most 186 

appropriate to estimate the CI of intercept for SMA regression (Warton et al., 2006). 187 

Therefore, a CI with 95% of confidence level equals approximately (depending on the 188 

sample size 𝑛) ± 2 standard errors (SE), while a CI with 70% of confidence level equals 189 

approximately ± 1 SE. 190 

 191 

𝑆𝐸𝛼&,- =
0JK0J4GH LM

JNO
PKQ

∗ R
P
+ /L

/JK/ LM
JNO

= 𝑀𝑆𝐸 ∗ R
P
+ /L

&&6
  (7) 192 

Where, 𝑆𝐸𝛼&,- represents the standard error of the intercept, 𝑦$ are the observed Y values, 193 

𝑦$&,- are the fitted SMA values (=𝛼&,- + 𝛽&,- ∗ 𝑋$), 𝑛 is the sample size, 𝑛 − 2 are 194 

degrees of freedom (df), 𝑀𝑆𝐸 represents the mean square error of the model (=(SUM((𝑦$ −195 

𝑦$&,-)^2))/(df)), and 𝑆𝑆/ is the sum of squares of centered X values (=VAR.S(Xvalues)*(n-1)). 196 

 197 

 𝐶𝐼W4GH = 𝛼&,- ± 𝑆𝐸𝛼&,- ∗ 𝑡 RKZL;PKQ
       (8) 198 



Where, 𝑆𝐸𝛼&,- represents the standard error of the intercept (Eqn. 7), and 𝑡 is the two-tailed 199 

Student-𝑡Z
L
 value for an 𝛼 significance level and 𝑛 − 2 df (=TINV(𝛼, df)). 200 

 201 

9. Draw the curve. To fit a RY vs STV curve, we must solve the equation based on the 202 

ALCC method. The ALCC curve does not describe a causal relationship (predictive) but 203 

a bivariate relationship (back-transformed) instead. Fitted values of ln(STV) are 204 

obtained by the SMA linear equation (Eqn. 9) and back-transformed STV values are 205 

obtained by Eqn. 10. Finally, for the same range of fitted values with Eqn. 9, we can 206 

also express the RY values (%) using the parameters of the bivariate relationship (Eqn. 207 

11) 𝛼&,- and 𝛽&,-, and the 𝑅𝑌]^_` for which we estimated the CSTV. 208 

 209 

 𝑌$&,-, 𝑙𝑛 𝑆𝑇𝑉 = 𝛼&,- + 𝛽&,- ∗ 𝑎𝑟𝑐𝑠𝑖𝑛𝑒 ef
REE

− 𝑎𝑟𝑐𝑠𝑖𝑛𝑒 efghij
REE

  (9) 210 

 211 

 𝑆𝑇𝑉$&,- = 𝑒 fJ4GH          (10) 212 

 213 

 𝑅𝑌 % = 100 ∗ 𝑠𝑖𝑛 𝑎𝑟𝑐𝑠𝑖𝑛𝑒 efghij
REE

+ fJ4GHKF4GH
24GH

Q

   (11) 214 

 215 

Results and Discussion 216 

Confidence intervals of CSTVs 217 

Since both variables are inexact, Dyson and Conyers (2013) make focus in finding a ‘major 218 

axis equation’ of the data ellipse. However, the way they reach it has an impact on the error 219 

size of the model. In order to get the major axis equation (in this case a standardized major 220 



axis), they apply a second transformation of the already transformed ln(STV). This step is 221 

designated as the “r-modification procedure”, but the specific equation used for this second 222 

transformation is not properly described in the paper. The equation is described in the Eqn. 12 223 

(Dyson, pers. comm.). This second transformation produces a new variable (Yr-modified) which 224 

has a wider range of values than the original one (Y). Then by a LS regression of Yr-modified 225 

values on X (Eqn. 13), they reach the structural relationship of interest. Even though the mean 226 

values of intercept (𝛼%&5) and slope (𝛽%&5) parameters are correct, the “r-modification 227 

procedure” generates an unnecessary error overestimation of the model, and thus affects the 228 

precision when estimating the CI of CSTV. 229 

 230 

𝑌$K5	m^n$o$pn = 𝑌 + fJKf
567

        (12) 231 

 232 

 233 

𝑌$%&5 = 𝛼%&5 + 𝛽%&5 ∗ 𝑋$       (13) 234 

Where, 𝑌$%&5	are the fitted r-modified values of ln(STV) and 𝑋$ are the observed X values (centered).  235 

 236 

In cases with wide CI95% for CSTV, Dyson and Conyers (2013) suggests to also estimate the 237 

CSTV with a lower confidence level (CI70%) in order to achieve narrower estimates, especially 238 

for the BFDC Interrogator (Conyers et al., 2013; Watmuff et al., 2013). However, this issue of 239 

wide CI of CSTVs lies on the r-modification procedure which generates a “wider in Y” data 240 

ellipse (Fig. 2). Regression of Yr-modified values on X is not actually based on the “true data 241 

ellipse”, where the bivariate major axis equations are based on (Jolicoeur, 1990; Sokal and 242 

Rohlf, 1995; Warton et al., 2006). In this sense, we suggest to modify this procedure to obtain 243 



the bivariate relationship of interest between transformed variables without the error 244 

overestimation.  245 

 246 

Instead of using the r-modification of Y values, we propose to use a bivariate approach called 247 

‘standardized major axis regression (SMA)’. This approach is not a prediction of Y depending 248 

on X as usual. It is based on representing in one dimension -or axis- data that varies in two 249 

dimensions, which could be called as a bivariate relationship (Warton et al., 2006). The model 250 

assumptions are the same as usual: independency, normal distribution of error and 251 

homoscedasticity. Transformation seems to play an important role for fulfilling the last two 252 

assumptions, which is exemplified for Dataset #1 (Fig. 3). In addition, correlation between 253 

variables and whether data follow a distribution that approximates a bivariate normal or not 254 

should be checked out. 255 

 256 

In the particular case of interest (describing a relationship between RY and STV), there are 257 

three main characteristics that determine the usefulness of the SMA approach: (i) RY and STV 258 

represent two observed variables or  dimensions of the same experiments, (ii) standardization 259 

allows using variables that do not have comparable scales of measure, and (iii) the 260 

independence from any causal relationship between variables, then the X:Y direction of SMA 261 

regression is functional to the objectives of the researcher. 262 

 263 

FIG 3. 264 

 265 

With the SMA regression approach, we can estimate exactly the same equation as the original-266 

ALCC algorithm but avoiding the CI overestimation of the intercept parameter (𝛼), which is the 267 

CSTV estimator (Fig. 2). Consequently, keeping the same level of confidence (e.g. 95%), the 268 



CIs of the modified-ALCC algorithm are always more accurate than the original-ALCC. For the 269 

Dataset #1, the SMA equation shows more accurate estimates of the intercept (𝛼&,-, 270 

CI95%=2.963-3.198) as compared with the LS regression of Yr-modified values used by the original-271 

ALCC method (𝛼%&q; CI95%=2.819-3.341). These results are also observed for Dataset #2, with 272 

CSTV estimaties from +30.3% to +61.4% more accurate for the modified-ALCC as compared 273 

to the original-ALCC algorithm (Table 1). 274 

 275 

TABLE 1 276 

 277 

Based on a 60 datasets comparison (Dataset #3), we also observed that the overestimation of 278 

the SE𝛼 (Eqn. 14) was inversely proportional to the correlation coefficient (rxy) of a dataset 279 

(Fig. 4). For the analysed cases (n=60), the overestimation varied from +10.6% to +222.5% for 280 

datasets with rxy of 0.245 and 0.875, respectively. This inverse relationship is explained by the 281 

r-modification procedure which retransforms the ln(STV) values based on the rxy coefficient 282 

(Eqn. 12). However, the relationship described in Fig. 4 might also allow a relatively simple 283 

and reliable (r2=0.99) correction of previous estimations based on the original-ALCC algorithm 284 

(e.g. for the BFDC Interrogator) just using the “rxy” coefficient of the dataset and Eqn. 8.  285 

𝑆𝐸𝛼^rp5pst$m_t$^P(%) = 100 ∗ &wFhqJgJMijK&wFxhyJzJ{y

&wFxhyJzJ{y
    (14) 286 

 287 

FIG 4 288 

 289 

Testing SMA slopes 290 

Since the ALCC curve (back-transformed) comes from a bivariate linear relationship, the SMA 291 

slope (𝛽&,-) can also be compared among datasets (Fig. 5A and 5B). It might be considered 292 



as an index of the ALCC curvature (Fig. 5C and 5D). Following Eqn. 10 -back-transformed in 293 

terms of RY-, a greater 𝛽&,- results in a less steep curve. In contrast, a smaller 𝛽&,- results in 294 

a steeper curve. This behaviour was observed in Dataset #2 for wheat RY related to soil 295 

Colwell-P level at 0-10 cm, where Vertosol Black soils showed a greater 𝛽&,- 296 

(𝛽|`_}~K��D�%=2.671-3.370) as compared to Vertosol Grey soils (𝛽�5p0K��D�%=1.610-2.333) 297 

which also means different fitted ALCC curve shapes (Fig. 5).  298 

 299 

FIG 5 300 

 301 

Dyson and Conyers (2013) proposed an estimation of the average slope (and its SE) from 50% 302 

to 80% of RY as the deficient zone of the curve. However, the formula is not specified for users 303 

who want to apply the technique. Moreover, even if detailed, the comparison of slopes of SMA 304 

regressions does not follow the same formula as the LS regression, as Dyson and Conyers 305 

(2013) followed after the r-modification procedure. In fact, as well as for intercept, the LS 306 

regression of Yr-modified values also overestimates the error of the slope (𝛽&,-) as compared to 307 

the true SMA approach (Fig. 2). For the Dataset #1, the modified-ALCC approach showed a 308 

62.6% more accurate estimation for the slope (𝛽&,-, CI95%=1.502-2.147) as compared with the 309 

original-ALCC method (𝛽%&q, CI95%=0.933-2.659). 310 

 311 

The SMA regressions have been used to study allometric relationships where the slope 𝛽&,- is 312 

the main parameter of interest (Warton et al., 2002). The confidence interval for the 𝛽&,- can 313 

be estimated at a predetermined confidence level, and checked whether a value of interest lies 314 

inside or outside the confidence limits. The formula to compute CI for SMA is different 315 

compared to the LS regression (Eqn. 15) (Jolicoeur and Mosimann, 1968; Jolicoeur 1990; 316 



Sokal and Rohlf, 1995). A peculiarity of SMA regression is that the slope cannot be tested for 317 

significance (Legendre and Legendre, 1998). This is a trivial case because 𝛽&,- (Eqn. 2) 318 

cannot be zero unless the standard deviation of Y (𝑠0) is equal to zero. For this reason, among 319 

others, the importance of testing the correlation for significance is discussed below. 320 

 321 

𝐶𝐼24GH = 𝛽&,- ∗ 𝛽 + 1 ± 𝛽 , where 𝛽 = 
tL∗RK567L

PKQ
    (15) 322 

Where, 𝛽&,- represents the slope value, 𝑟/0 is the correlation coefficient of dataset, 𝑡 represents a two-323 

tailed Student’s 𝑡Z
L
 value for an 𝛼 significance level, and 𝑛 − 2 are degrees of freedom. 324 

 325 

Testing correlation significance  326 

A criterion to exclude a dataset based only on its correlation strength was established by 327 

Dyson and Conyers (2013). In the BFDC Interrogator, estimations will not be fitted if a dataset 328 

has an rxy <0.2. Despite this criterion is reasonably valid, it could not be enough for potential 329 

users of the method. The significance of the correlation coefficient rxy should be tested first in 330 

order to determine if a relationship between variables is supported (McArdle, 1988). A 331 

relationship could be weak but significant or could be strong and yet not significant, where the 332 

sample size (n) might play a key role. For large sample sizes it is easy to achieve significance 333 

and one should also consider the strength of correlation to determine whether the relationship 334 

explains very much or not. Conversely, for small sample sizes it could be easy to produce a 335 

strong correlation by chance and one should also consider its significance to keep from 336 

rejecting a true null hypothesis. Additionally, as discussed above, the SMA slope is only 337 

meaningful when rxy is different from zero (Eqn. 2). Therefore, it is advisable to evaluate not 338 

only the correlation strength but also its significance for a better interpretation of data. Since 339 

correlation between STV and RY is normally expected be positive (rxy>0), the commands to 340 



test it in a spreadsheet is =TDIST(tr, df, 1), where 𝑡5 is the t-statistic (Eqn. 16) and df are 341 

degrees of freedom. 342 

𝑡5 = 	
567∗ PKQ

567L
           (16) 343 

 344 

Conclusions 345 

The ALCC algorithm is an interesting approach for estimating CSTVs, which cope with 346 

problems usually faced when using traditional regression methods for calibrating soil tests data 347 

(i.e. lack of normality and homoscedasticity, both variables measured with error). The modified-348 

ALCC method described in this paper, even when it requires some additional steps (and 349 

probably add complexity), it also incorporates comparative advantages over the original-ALCC 350 

method. Based on the SMA regression, it produces more accurate estimates of CSTVs and 351 

their confidence intervals, as well as more reliable comparisons between datasets. 352 
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 421 

 422 

Fig. 1. Scatter plot of relative yield (RY, %) and soil test value (STV, Colwell P at 0-10 cm, mg/kg) for 423 

Dataset #1 -107 experiments from the National Soil Fertility Program (NSFP, 1968-72) in Victoria (107 424 

class A trials)-. Data was gathered from the BFDC Interrogator database following previous descriptions 425 

given by Dyson and Conyers (2013). Dashed line represents the fitted calibration curve by the ALCC 426 

approach (back-transformed from a linear regression between transformed variables –Fig. 2-). 427 
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 429 

Fig. 2. Linear relationships between STV (Colwell P, 0-10cm) and wheat relative yield (RY) both as 430 

transformed variables of Dataset #1. The same structural linear relationship (dotted lines) is derived from 431 

two different data ellipses (A and B). A: ordinary least-squares (LS) regression of Yr-modified values (dotted 432 

line) for the original ALCC (Dyson and Conyers, 2013). B: bivariate standardized major axis (SMA) 433 

regression (dotted line) for the modified ALCC, derived from the LS regression of ln(STV) –not r-434 

modified- on the arcsine of square root of centered RY. In both cases, the intercept (𝛼) of dashed lines 435 

represents the natural logarithm of CSTV.  436 
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 438 

Fig. 3. Residual distribution for testing normality (A) and homoscedasticity (B) for the SMA regression 439 

model of transformed variables applying the modified-ALCC methodology of Dataset #1 (Fig. 2 B). The 440 

Skewness and Kurtosis values indicate the level of asymmetry and bias of dataset. Vertical dotted lines 441 

indicate percentiles 25, 50 (median) and 75 of distribution. Significance of the D´Agostino-Pearson 442 

normality test is indicated with the p-value (D´Agostino et al., 1990). Homogeneity of variances of SMA 443 

regression is tested visually against the fitted axis as described by Warton et al. (2006). 444 
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    446 

Fig. 4. Relationship between the correlation coefficient (rxy) of a dataset and the relative overestimation 447 

of the standard error of the intercept (SE) using the original-ALCC method in comparison to the 448 

modified-ALCC (Eqn. 14). The overestimation is related to the r-modification procedure that the original-449 

ALCC algorithm requires to estimate the bivariate equation of interest (standardized major axis). A total 450 

of 60 datasets with different rxy were used (Dataset #3). 451 

  452 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

50

100

150

200

250

Correlation coefficient (rxy)

SE
α

 o
ve

re
st

im
at

io
n 

(%
)

y = 615.6 e-4.278x

r2=0.99
n = 60



  453 

Fig. 5. Relationships between wheat relative yield and soil Colwell P concentration (0-10 cm, mg/kg) for 454 

two soil types in Australia (Dataset #2). Data was gathered from the BFDC Interrogator filtering by P 455 

response trials in cereal wheat under dryland conditions in Vertosol Black (A and C, n=180) and Vertosol 456 

Grey soils (B and D, n=103). A and B show the bivariate linear regressions (standardized major axis) 457 

between transformed variables, while C and D show the same relationships, back-transformed to the 458 

original units. Critical values (CSTV) and their confidence intervals (CI, grey vertical strips) were 459 

estimated for 90% of RY with a 95% confidence level.  460 
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Table 1. Comparison of confidence limits of critical soil test values (CSTV) estimates using the modified-466 

ALCC and the original-ALCC methods at two levels of confidence (95% and 70%). Calculations were 467 

made for soil Colwell-P at 0-10 cm (mg/kg) at three levels of wheat relative yield (RY 80%, 90% and 468 

95%). Data was gathered from the BFDC Interrogator database (Dataset #2). 469 

    80% RY 90% RY 95% RY 

Vertosol Grey 
(n = 103, r = 0.33) CSTV 13.5 17.8 21.4 

Lower Upper Lower Upper Lower Upper 

95% Confidence Modified 11.9 15.3 16.0 19.8 19.1 24.1 
Original 9.9 18.3 13.6 23.2 16.0 28.7 

70% Confidence Modified 12.7 14.4 16.8 18.8 20.1 22.8 
Original 11.5 15.9 15.4 20.5 18.4 25.0 

Vertosol Black 
(n = 180, r = 0.62) CSTV 16.3 25.0 33.3 

Lower Upper Lower Upper Lower Upper 

95% Confidence Modified 14.5 18.4 22.8 27.4 30.5 36.4 
Original 13.7 19.4 21.9 28.5 29.3 37.9 

70% Confidence Modified 15.3 17.3 23.8 26.2 31.8 34.9 
Original 14.9 17.9 23.3 26.8 31.1 35.7 

 470 

View publication statsView publication stats

https://www.researchgate.net/publication/315470255

