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Since their initiation in the 1950s, worldwide selective tree breeding programs followed the recurrent selection scheme of repeated
cycles of selection, breeding (mating), and testing phases and essentially remained unchanged to accelerate this process or address
environmental contingencies and concerns. Here, we introduce an “end-to-end” selective tree breeding framework that: (1)
leverages strategically preselected GWAS-based sequence data capturing trait architecture information, (2) generates
unprecedented resolution of genealogical relationships among tested individuals, and (3) leads to the elimination of the breeding
phase through the utilization of readily available wind-pollinated (OP) families. Individuals’ breeding values generated from multi-
trait multi-site analysis were also used in an optimum contribution selection protocol to effectively manage genetic gain/co-
ancestry trade-offs and traits’ correlated response to selection. The proof-of-concept study involved a 40-year-old spruce OP testing
population growing on three sites in British Columbia, Canada, clearly demonstrating our method’s superiority in capturing most of
the available genetic gains in a substantially reduced timeline relative to the traditional approach. The proposed framework is
expected to increase the efficiency of existing selective breeding programs, accelerate the start of new programs for ecologically
and environmentally important tree species, and address climate-change caused biotic and abiotic stress concerns more effectively.
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INTRODUCTION
Forest tree selective breeding programs follow the recurrent
selection scheme, involving repeated cycles of selection, breeding,
and testing (Allard 1960; White et al. 2007) along with a product
development phase for improved seed production (El-Kassaby
1995). While this process has successfully delivered substantial
gains worldwide, it is highly structured and long-term, thus less
responsive to addressing the pressing environmental contingen-
cies (Wheeler et al. 2015; Matallana-Ramirez et al. 2021). In
particular, climate change-induced biotic and abiotic stresses
(Surówka et al. 2020) with their cascading biological consequences
affecting populations’ survival and recruitment. These challenges
require faster genetic evaluation methods that traditional selective
breeding cannot provide. Thus, developing agile evaluation
methods to address these new challenges necessitates efficient
approaches that leverage advanced genomic capabilities and their
integration into traditional selective breeding programs (Gratta-
paglia et al. 2018). Most tree selective breeding programs are
protracted as they require creating structured pedigree (half- (HS)
and full-sib (FS) families) during the breeding phase and
necessitate long-term evaluation phases as most sought-after
target traits (e.g., volume and wood density) are expressed at an
advanced age (White et al. 2014). However, certain innovations
have been effective in shortening the breeding cycle length to
some extent. These include: (i) reliance on juvenile-mature

correlations where early age performance serves as proxy to
advanced age (Lambeth 1980), (ii) utilizing open-pollinated (OP)
families to bypass the structured pedigree requirement (Stone-
cypher et al. 1964), and (iii) applying pedigree reconstruction to
assemble a “structured pedigree” from naturally produced off-
spring (a.k.a., “Breeding without Breeding”), thereby eliminating
the breeding phase (El-Kassaby and Lstibůrek 2009; also see
Grattapaglia et al. 2004).
Pedigree-dependent quantitative genetics analyses utilize the

average numerator relationship (A-matrix), reflecting the con-
temporary genealogical relationships among the structured
pedigree members (Wright 1922). This matrix is then used to
estimate the genetic variance components using Restricted
Maximum Likelihood (Gilmour et al. 1995) for predicting
individuals’ breeding value using the Best Linear Unbiased
Prediction algorithms (BLUP) (Henderson 1975). For monoecious
species, when OP families are used, a half-sib family structure is
assumed, with members of each OP family sired by different
males, an inconceivable assumption considering trees’ pollination
biology and ecology. In reality, OP families’ offspring often
represent a mixture of self-sibs (progeny from self-pollination),
half-sibs, and full-sibs with varying proportions, resulting in
inflated additive genetic variance and heritability estimates
(Namkoong 1966; Squillace 1971; Askew and El-Kassaby 1994).
Another drawback of the average numerator relationship is its
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inability to differentiate among siblings within HS or FS families as
it applies global relationship estimates without considering the
Mendelian sampling term, which represents relatedness variation
among FS and HS family members that cannot be determined by
traditional pedigree analyses (Avendaño et al. 2005).
The availability of DNA sequence data has facilitated the

accurate determination of the actual fraction of alleles shared
between individuals (identity-by-state), enabling the estimation of
their realized genomic pairwise kinship (G-matrix) (VanRaden
2008; also see Ritland 1996). The strength of the G-matrix lies in its
ability to capture genetic information from both contemporary
and ancestral pedigrees, accurately accounting for hidden
relationships that cannot be ascertained through the traditional
contemporary pedigree analysis (Powell et al. 2010). This under-
standing has enabled the integration of DNA sequences into
quantitative genetics where the pedigree-based relationship (A-
matrix) is replaced by the genomic-based relationship (G-matrix).
It is important to note that the G-matrix application in OP families
has successfully addressed the aforementioned drawbacks,
resulting in accurate estimates of additive, dominance, and
epistatic genetic variances (Gamal El-Dien et al. 2016).
Complex traits, following Fisher’s infinitesimal model, are often

theorized to be controlled by a large number of genes, each
explaining a small fraction of the trait’s variance (Fisher 1918). To
harness the linkage disequilibrium (LD) between the traits’ causal
genes and the genotypic data (genome-wide SNPs), genome-wide
association studies (GWAS) have been used to unravel complex
traits architectures and identify their underpinning causal genes
(Visscher and Goddard 2019). However, the GWAS approach is
statistically burdened by the multiple testing threshold, leading to
failure in detecting many potentially causal genes with smaller
effects as they do not meet the predetermined significance
threshold (Tam et al. 2019).
Here, we present the genomic version of the “Breeding without

Breeding” conceptualized by El-Kassaby and Lstibůrek (2009). This
version represents a unified and all-encompassing selective
breeding framework in a holistic “end-to-end” process that: (1)
quantifies all the advantages of combining genomic data with the
simple OP family structure, (2) generates reliable genetic
information in a substantially reduced timeframe, (3) includes
genetic evaluation and ranking, and (4) culminates in selecting the
best individuals for further utilization. To illustrate this, we utilized
phenotypic (tree height, diameter, and wood density) and
genotypic (≈9 K SNPs) data from a 40-year-old spruce OP testing
population growing on three sites in British Columbia, Canada
(Gamal El-Dien et al. 2016). We then compared the results to those
obtained using the traditional selective breeding scheme (i.e., A-
matrix).

MATERIALS AND METHODS
Genetic material, evaluated traits, DNA fingerprinting
A total of 1126, 40-year-old “Interior spruce” (Picea glauca (Moench) Voss ×
P. engelmannii Parry ex Engelm.) trees representing 25 open-pollinated
(OP) families growing on three sites in Interior British Columbia, Canada
(Aleza Lake: lat. 54° 03′ 15.7″ N, long. 122° 06′ 35.4″ W, elev. 700m asl;
Prince George Tree Improvement Station: lat. 53° 46′ 17.9″ N, long. 122° 43′
07.6″ W, elev. 610m asl; and Quesnel: lat. 52° 59′ 27.2″ N, long. 122° 12′
30.6″ W, elev. 915 m asl). The field trial was established by the British
Columbia Ministry of Forests, Forest Improvement and Research Manage-
ment Branch, following a complete randomized block design with five to
ten blocks and ten or fifteen tree-row-plots planted at 2.5 × 2.5 m spacing
with a total of 181 OP families.
The OP family testing method is the mass selection of individuals based

on their desired phenotypic attributes, without prior knowledge of either
their performance or pedigree. This selection method is conducted within
a wide geographic area known as “breeding zone,” thus necessitating
genetic testing to determine individuals’ genetic superiority (White et al.
2007). Offspring within OP families share a common parent (the seed

donor) and are pollinated by the surrounding “local” pollen pool (male
donors), often resulting in some detectable paternal relationships.
Typically, OP family selection lacks a well-defined population structure,
as only a limited number of individuals (seed donors) are selected from a
specific location, as illustrated in Fig. 1 that depicts family structure and
demonstrates the ancestral relationships among the entire test population.
It is essential to recognize that pedigree errors are often found in most

breeding program (Adams et al. 1988; Devey et al. 2002; Doerksen and
Herbinger 2008). Therefore, we leveraged the available genomic data to
verify the pedigree in our genetic materials. This verification process led to
several outcomes: (1) removal of 25 individual with low diagonal elements
of the G-matrix, (2) reassignment of 15 to different pedigree families as
their genomic relatedness was found to be low, (3) creation of a new OP
family consisting of 9 individuals, and (4) the identification of 13
individuals who did not belong to any of the initially studied 25 OP
families (see genomic network below). As a result, the initial count of OP
families of 25 increased by one, while the total number of individuals was
reduced from 1126 to 1101. Pedigree errors are a commonly occurring
issue during development and establishment of progeny testing materials
that include processes such as seed-cone collection, seed extraction,
seedling production, and progeny tests planting. Additionally, as the
selected 25 families represent a subset of the initial 181 OP family test, it is
reasonable to expect that the detected pedigree errors are part of the
overall test.
From each site, four replications representing each of the originally

studied 25 OP family were sampled and measured for: (1) total tree height
(HT, in meters), (2) diameter at breast height (DBH, in centimeters), and (3)
wood density (WD, g·cm−3) determined using X-ray densitometry (WD)
from 5-mm bark-to-bark wood cores extracted at breast height in the
north-south direction of each tree by increment borers (El-Kassaby et al.
2011). DNA extraction and Genotyping-by-Sequencing (GBS) (Elshire et al.
2011), details are available elsewhere (Gamal El-Dien et al. 2018). Here, we
utilized a subset of the GBS-generated SNP data from the original file with
30% missing data (Ratcliffe et al. 2015) and selected those SNPs with the
least missing data, then implemented mean imputation using the ‘A.mat’
function in the ‘rrBLUP’ R package (Endelman, 2011), resulting in a total of
8767 SNPs for quantitative genetic analyses (https://doi.org/10.5061/
dryad.7h44j101d).

Quantitative genetics/genomics analyses
For computational efficiency, the statistical analyses were conducted in
two stages. First, each trait was analyzed separately in each site using a
pedigree-based classical a priori design model, where replications were
fitted as a random effect. In the second stage, the phenotypic data
adjusted for the design effects were obtained for each tree and trait and at
each site by subtracting the estimated replication effects from the raw
phenotype. Thereafter, the additive average-numerator (ABLUP) and
genomic (GBLUP-A) best linear unbiased prediction analyses were

Fig. 1 Heat map of pair-wise genomic relationship coefficients
among 1101 individuals grouped by families. The heatmap
demonstrates lack of genetic structure as families are presented
by squares (blue) across the diagonal elements with off-diagonal
representing shared ancestral pedigree among individuals.
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performed for each of the three traits using the following additive multi-
site individual-tree mixed model:
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is the vector of individual tree adjusted-phenotypes

for the three sites; β ¼ ½β01;β02;β03� is the vector of site fixed effects (i.e.,
overall mean for each site); the additive genetic effects random vector of
a ¼ ½a01; a02;a03� is distributed as a�N 0;ΣaAð Þ, where Σa is the genetic
effects (co)variance matrix and A is the additive average-numerator
relationship matrix containing the additive relationships among all trees
(26 mothers without records plus 1101 offspring). Finally, e ¼ ½e01; e02; e03� is
the vector of random residuals distributed as e�Nð0;R0IÞ where R0 is the
residual (co)variance matrix for the three sites with dimension 3 × 3. We
assumed an unstructured (co)variance matrix for the genetic effects (Σa).
The column vector of 1s X1, X2 and X3, and the matrices Za1 , Za2 and Za3
relate the observation to the means of the site effects in β, and the
additive genetic effects for each tree in a. The symbol (´) indicates the
transpose operation.
The additive multi-trait multi-site individual-tree ABLUP-A model and the

GBLUP models, which used a G-matrix calculated using all available SNPs
(8767; GBLUP-ALL) and 5628 SNPs selected by GWAS (based on their SNP
absolute effect without imposing any variance contribution limits) (GBLUP-
GWAS) (see below), respectively, were fitted as:
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where y¼½y011;;y0ij� is the vector of adjusted-phenotypes for each i trait
(i=DBH, HT and WD) and j site (j= 1, 2, 3); β ¼ ½β011; ;β0ij � is the vector of trait-
site combination fixed effects (i.e., overall mean for each trait-site
combination); a ¼ ½a011; ;a0ij � is the random vector of additive genetic effects
distributed as a�N 0;ΩaAð Þ, where Ωa is the unstructured genetic (co)
variance matrix for each of combination of the three traits and the three sites
with dimension 9 × 9. Finally, e ¼ ½e011; ; e0ij � is the vector of random residuals
distributed as e�Nð0;RIÞ where R is the residual (co)variance matrix with
dimension 9 × 9 between traits within sites; the residual (co)variance
between traits across sites is assumed to be zero for the three sites, given
that the sites were assessed separately. The matrices X ij and Zaij related the
adjusted-phenotypes to the means of the trait-site combinations in β0ij and
the genetic effects in a0ij . In order to fit the GBLUP-A model, the pedigree-
based relationship A-matrix of the multi-site model [1] and the multi-trait
multi-site model [2] was replaced by the G-matrix (VanRaden 2008):

G¼ WW 0

2
P

k pkð1� pkÞ
where,W is the centeredmatrix of SNP covariates, and pk is the current (or
observed) allele frequency of the genotyped trees for marker k.
Finally, the extended multi-site GBLUP model that included the

dominance d ¼ ½d0
1; d

0
2;d

0
3�

� �
and the additive by dominance epistatic

p ¼ ½p01; p02;p03�
� �

genetic effects (GBLUP-ADE) were fitted for each trait.
These dominance and epistatic genetic effects are distributed as
d�N 0;ΣdDð Þ and p�N 0;ΣpE

� �
, respectively, where Σd and Σp are the

(co)variance matrices of dominance and additive by dominance (epistatic)
genetic effects, and D and E are the average dominance and additive by
dominance relationship matrices, respectively. Following Gamal El-Dien
et al. (2016), the average dominance relationship matrix D was computed
using the R function Gmatrix from the R-package (http://www.r-
project.org) “AGHmatrix” (Amadeu et al. 2016) using Vitezica et al.
(2013)’s method. The average relationship matrix for the additive by
dominance epistatic effects was computed using the Hadamard product of
the additive and dominance average relationship matrices (Muñoz et al.
2014).

Pedigree network
We generated network visualization for the A- and G-matrices (Rincent
et al. 2012) in which two individuals are either linked, when their estimated
pairwise relationship coefficient is larger than 0.05 and 0.10 or else
unlinked. The observed difference in networks topology between the 0.05

and 0.10 thresholds highlights the role of ancestral pedigree. We used the
R-package (http://www.r-project.org) “network” (Butts 2008) to generate
the network representation.

Heritability estimates
Average across-site pedigree- and genomic-based narrow-sense individual
heritability values for each trait ith, h2i , were estimated as:
ĥ
2
i ¼ σ̂2ai=ðσ̂2ai þ σ̂

2

ei
Þ, where σ̂2ai is the estimated genetic variance for the

ith trait, and σ̂2ei is the estimated residual variance for the ith trait from the
multi-site model [1] and multi-trait multi-site model [2]. For the GBLUP-ADE
models, the denominator of the above equation also included the
estimated variance of dominance and epistatic effects.
Variance components and their respective heritability estimates for the

ABLUP and GBLUP-based SNP selection methods were estimated in R
(www.r-project.org), with the function remlf90 from the ‘breedR’ package
(Muñoz and Sanchez 2020) using the Expectation-Maximization (EM)
algorithm followed by one round of an Average Information (AI) algorithm
to compute the standard deviations (Chateigner et al. 2020) for the
variance components and heritability estimates. The remlf90 function in
R-package ‘breedR’ is based on REMLF90 (for the EM algorithm) and
AIREMLF90 (for the AI algorithm) of the BLUPF90 family (Misztal et al.
2018). The program postGSF90 from the BLUPF90 family (Aguilar et al.
2019) was also used to estimate SNP effects.

SNP selection protocol
We examined the impact of SNP-marker number on the estimated
genomic-based narrow-sense heritability and the theoretical accuracies of
breeding values (equation [3] below) using the multi-site model [1]. To that
end, subsets of 1096, 2192, 3288, 4384, 5479, 6575, 7671, and 8767 SNPs
(increments of ≈1000) were randomly selected from all available SNP data
and were used to build the corresponding genomic additive relationship
matrices. In addition, the impact of SNP-marker type and number on
heritability and theoretical accuracy was studied using additional two SNP
selection strategies; namely, (1) based on their minor allele frequency
(MAF) with increasing order from the rarest to the most common, and (2)
based on their GWAS absolute value effect ranked from the largest to the
smallest and averaged across sites using a single-step multi-site genome-
wide association analysis (ssGWAS) (Aguilar et al. 2019; Uffelmann et al.
2021), using the same SNP increments as above (i.e., ≈1000).
To unravel the overlap of SNPs across traits selected by their effects, a

Venn Diagram was built using subsets of 3288 SNPs each. Thereafter, the
total of 5628 SNPs (Supplementary Information, Fig. S1) was used to
generate a combined G-matrix associated with the three studied traits.

Genetic parameters theoretical accuracy
Estimates of the theoretical accuracy (TA) of the additive genetic variance
were used to compare different genomic- and pedigree-based analytical
methods. Therefore, the TA of tree i was calculated across all traits and
ABLUP and GBLUP models using the following equation:

TAi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� PEVi

σ̂2a

s
(3)

where PEVi (prediction error variance) that corresponds to individual i is
obtained from the diagonal entry of the inverse of the coefficient matrix
derived from the mixed model equations (MME).

Optimum contribution selection (OCS)
To select the top 30 individuals for the product development phase (i.e.,
seed orchard establishment), we implemented OCS to optimize the trade-
off between the genetic gain (ΔG) and the degree of co-ancestry (ΔF)
build-up. We conducted two optimizations with ΔF ≤ 0.25 and 0.125.
Additionally, the observed negative correlation between both height and
diameter and wood density required the implementation of an additional
constraint in which we maintained the wood density of the selected
individuals to be similar to the base population (i.e., no wood density loss).
The optimizations were conducted using Gurobi 10.0 (https://
www.gurobi.com) (Gurobi Optimization 2023).

Availability of R code
Software code(s) used in the present study are posted in the Dryad Digital
Repository, https://datadryad.org/stash/dataset/doi:10.5061/dryad.7h44j101d.
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RESULTS
One of the most critical aspects of using the G-matrix in
quantitative genomic analyses is the selection of a subset of SNPs
that provide the most informative pairwise kinship information
among individuals (Bernardo 2014). To address this, we imple-
mented three SNP sampling approaches to construct the G-matrix
and compared the results to those obtained using the entire SNP
sample (≈9 K). These SNP sampling methods consecutively
selected subsets of ≈1000 SNPs based on: (i) random sampling
(with 10 replications), (ii) rare allele frequency (ranking SNPs from
rarest to most common), and (iii) GWAS-based selection (ranking
SNPs based on their GWAS absolute value regardless of their
statistical significance threshold to circumvent the statistical
threshold limitations of GWAS and leverage potential LD between
SNPs and causal genes). In this context, GWAS-SNPs were
incorporated in a sequential manner without imposing specific
lower inclusion criteria, aside from considering their absolute
effect. To evaluate the proposed framework, we compared
pedigree- vs. genomic-based approaches in terms of pedigree
network and theoretical breeding value accuracy and heritability
estimates.

Pedigree networks
When genomic pairwise kinship threshold of 0.05 is considered,
the comparison yielded astonishing results insofar as the
pedigree-based approach produced 26 (the original 25 as well
as the added small 9-member family (see pedigree verification
above)) independent entities representing the tested HS families,
along with 13 mislabelled individuals, while the genomic-based
showed complete connectedness among all individuals, including
the mislabelled, and generated a complete pairwise kinship matrix
leveraging both contemporary and ancestral pedigrees (Fig. 2A, B).
Naturally, the degree of connectedness among individuals is
dependent on the set minimum kinship level used. It is interesting
to note that the network topology between the 0.05 and 0.10
thresholds resulted in a different degree of connectedness among
individuals with lower connectedness for the 0.10 threshold (Fig.
2C); however, the G-matrix used in our quantitative genomics
analyses considered all possible pairwise relationships irrespective
of the threshold. To leverage both contemporary and ancestral
pedigree, we did not impose any pairwise kinship lower limit and
used the complete set of 8767 SNPs or subsets (3288 for single
trait and 5628 for multi-traits) in our analyses. As indicated above,
mislabelling is common in traditional tree breeding, leading to
erroneous genetic parameters, ranking, and gain estimates
(Muñoz et al. 2014).

Single-trait multi-site analyses
As expected, the theoretical accuracies of ABLUP derived additive
genetic variances were higher than their GBLUP counterparts.
However, the DBH-ABLUP estimates overlapped with those from
the different SNP sampling methods and sample sizes (Fig. 3).

Generally, the GWAS additive genetic variance theoretical
accuracies were better compared to random and rare allele
sampling. Plateaued accuracy was observed between 3000 and
4000 SNPs, indicating that selecting GWAS-informative SNPs
added significant value to the resultant G-matrix (Fig. 3).
Furthermore, the difference in theoretical accuracy between the
two GBLUP models (additive (GBLUP-A) vs. additive, dominance
and epistatic (GBLUP-ADE)) was negligible, suggesting minimal
dominance and epistatic variance of these traits (Fig. 3). Notably,
the additive genetic variance theoretical accuracy of the complete
SNP set (8767) was lower than that obtained from the reduced
GWAS-SNP set, suggesting that adding more SNPs after reaching
the optimal number is detrimental to the resulting G-matrix
(Fig. 3).

Heritability estimates
The heritability estimates exhibited a trend similar to the additive
genetic variance theoretical accuracies. Importantly, the GWAS-
SNP sampling yielded higher estimates compared to random and
rare allele sampling (Fig. 3). Overall, ABLUP produced higher
heritability estimates than GBLUP, primarily due to the ABLUP
inflated additive genetic variance (Beaulieu et al. 2022). Our results
showed no significant differences between the GBLUP-A and
GBLUP-ADE models, further supporting minimal dominance and
epistatic genetic variances (Table 1).

Multi-trait multi-site analysis
Breeding programs select for multiple traits while considering
the “correlated response” among traits. Our data revealed
negative genetic correlations between wood density and both
height (−0.53) and diameter (−0.72) (Supplemental Fig. S2).
Furthermore, the GWAS-SNP single-trait multi-site analyses
indicated that 3000 to 4000 was the optimal number of SNPs
needed for obtaining reliable genetic parameters (Fig. 3) and a
SNP overlap existed among the studied traits (Supplemental Fig.
S1). Thus, we constructed a new G-matrix from each trait’s top
3288, resulting in a total of 5628 SNPs that were subsequently
used for further analyses. Overall, the ABLUP multi-trait multi-
site heritability estimates were comparable to those of the
single-trait multi-site, and the GWAS-SNP approach yielded
better estimates than the entire SNP sample (Table 1). The
superiority of the GBLUP-GWAS heritability estimates can be
attributed to the refinement of residual variances, which
removed the influence of dominance and epistatic genetic
variances as well as their interactions with environments, from
the “error” term. This refinement reduced their respective
denominators and produced higher estimates and thus
enhanced the expected genetic gain as compared to those
from the ABLUP models (Table 1). Ignoring the inflated additive
genetic variance and hereditability estimates produced and the
time saving associated with use of OP families, we compared the
percentage of expected genetic gain between the ABLUP and

Fig. 2 Pedigree networks. Pedigree (A)- and genomic-based networks with a minimal genomic pairwise kinship threshold set at 0.05 (B) and
0.10 (C) for 1101 Interior spruce individuals with the 5628 markers used in the multi-trait multi-site GWAS analysis. The black circle in (A)
identifies the added 9-member OP family.
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GBLUP models after selecting the top 30 individuals for
improved seed production (El-Kassaby 1995). The results
showed greater gains from the GBLUP compared to ABLUP for
two traits (diameter: 8.18 vs. 4.35% and wood density: 14.91 vs.
10.77%), while height gain remained consistent (10.77 vs.
10.88%), supporting our proposed framework.

Optimum contribution selection (OCS)
The translational component of breeding programs is the
production of improved seed, which in forestry is achieved
through establishing seed orchards comprising the highest
genetic worth individuals. We implemented OCS (Woolliams et
al. 2015) to select the top 30 individuals and optimized genetic
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Fig. 3 Theoretical accuracy and narrow-sense heritability of breeding values. Estimates are shown with SNP-marker increments ranging
from 1096 to 8767. Boxplots illustrate results for 10 replications of random SNP selection; black circles indicate SNPs ranked by minor allele
frequency from rarest to most common; red and orange circles represent SNPs selected based on their GWAS absolute values ranked from
largest to smallest effects for additive and additive, dominance, and epistatic genomic-based GBLUP models, respectively; dashed black line
indicates the theoretical accuracy and narrow-sense heritability estimates for the average breeding values from the conventional pedigree-
based ABLUP model; red and orange “x” marks show theoretical accuracy and narrow-sense heritability estimates for the breeding values
using the additive and additive, dominance, and epistatic genomic-based GBLUP models with the full set of 8767 SNPs.
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gain (ΔG)/co-ancestry (ΔF) trade-off, with an additional constraint
to prevent wood density loss. Regardless of the analytical method
used (ABLUP or GBLUP), the highest relative gains of 0.83
(diameter) and 1.10 (height) were achieved under no co-
ancestry constrain (i.e., individuals were selected irrespective of
their family affiliation) (Fig. 4). Compared to the unconstrained co-
ancestry approach, the unrelated ABLUP resulted in diameter
(0.83: 100%) and height (0.42: 35%) gains with only seven
individuals, an insufficient number to maintain broad genetic
diversity (Fig. 4). Under ΔF ≤ 0.25 constraint, the GBLUP-GWAS
produced gains comparable to those under no constraint, yielding
diameter (0.80: 96%) and height (1.04: 92%) gains with 30 carefully
selected individuals. Under ΔF ≤ 0.125 constraint, reduced gains in
diameter (0.22: 27%) and height (0.35: 32%) were obtained with
only 24 individuals (Fig. 4). The superiority of OCS was clearly
demonstrated in successfully capturing a significant portion of the
available gains without compromising co-ancestry, specifically for

ΔF ≤ 0.25. It should be noted that the implementation of OCS was
critical in avoiding the pitfalls of exclusive genomic selection
(GBLUP-GWAS), which tends to select related individuals, resulting
in the accumulation of co-ancestry and depletion of genetic
variation (Sonesson et al. 2012).

DISCUSSION
During the 1950s, large-scale selective tree breeding programs
were initiated worldwide (White et al. 2007). Despite variation in
geography, species, and breeding strategies, most programs
followed the recurrent selection, with some reaching their fourth
generations (Jing et al. 2023), yet limited pragmatic changes have
been implemented (Cotterill 1986). These breeding programs
involve thousands of parents and their crosses, and the resulting
offspring are evaluated over multiple test sites located within
expansive geographic areas known as breeding zones (White et al.
2007). These test sites exhibit considerable heterogeneity,
requiring innovative experimental designs (Libby and Cockerham
1980) and statistical analyses that account for spatial and
competition effects (Cappa et al. 2017) to separate genetic and
non-genetic effects. Historically, these breeding zones were
considered “static”, and the focus was on identifying individuals
for future breeding or inclusion in seed orchard populations.
However, due to climate change, these breeding zones are now in
constant state of flux (Cortés et al. 2020). The existing traditional
test sites, with their confounding factors and evolving environ-
mental heterogeneity, are inadequate for addressing crucial
climate change questions, such as identifying genotypes that
are resilient to abiotic and biotic stresses (Surówka et al. 2020).
Additionally, conventional breeding methods necessitate using
structured pedigree (White et al. 2007), which is time-consuming
and impractical and can be overcome using the proposed
framework.
The effectiveness of the proposed selective breeding framework

can be illustrated within the context of the breeder equation (ΔG
= i r σa / L), where ΔG, i, r, σa, and L represent the genetic gain,
selection intensity, accuracy of selection, additive genetic variance
estimate, and breeding cycle length, respectively (Lush 1937).
When considering equal i for ABLUP and GBLUP, the GBLUP yields
higher estimates for r and σa. Furthermore, if OP families are
utilized, the breeding cycle length (L) would be significantly
shortened for bypassing the structured pedigree requirement,
confirming the superiority of our approach. Additionally, tradi-
tional tree breeding programs required extensive pedigree control
to mitigate the adverse effects of inbreeding depression (Williams
and Savolainen 1996). Our results showed pedigree errors (A-
matrix); thus, it is suggested that the G-matrix information should
be employed for effective pedigree and genetic diversity manage-
ment (El-Kassaby et al. 2019).
Despite the considerable size of the spruce genome (20 Gb;

Birol et al. 2013) and the “limited” likelihood of our ≈9000 SNPs
being in linkage disequilibrium (LD) with the studied traits, we
have confidence in the efficacy of our method for the following
reasons: (1) it is widely recognized that 3000 to 4000 SNPs are
generally sufficient for resolving relatedness (Thistlethwaite et al.
2020), and our SNP count falls within this range and (2) the
selected SNPs have been established to exert an effect on the
studied attributes through GWAS, even if these effects are modest.
Collectively, they still contribute to explaining a portion of the
variance in the studied traits. Therefore, we believe that despite
the relatively small number of SNPs (≈9000) used in our study,
these selected SNPs effectively capture some of the variance in
the traits, with the added advantage of elucidating the pedigree.
Comparing the proposed genomic-based approach with the

two previously used “time-saving” testing and evaluation methods
(i.e., OP testing and pedigree reconstruction (Breeding without
Breeding)) can be summarized as follows: (1) while both methods

Table 1. Single-trait multi-site and multi-trait multi-site average
heritability.

Single-trait multi-site

Trait ABLUP GBLUP-A GBLUP-ADE

HT 0.71 (0.06) 0.54 (0.09) 0.54 (0.09)

DBH 0.32 (0.16) 0.42 (0.21) 0.40 (0.21)

WD 0.54 (0.20) 0.42 (0.17) 0.42 (0.17)

Multi-trait multi-site

Trait ABLUP GBLUP-ALL GBLUP-GWAS

HT 0.69 (0.02) 0.52 (0.09) 0.62 (0.09)

DBH 0.34 (0.01) 0.44 (0.21) 0.66 (0.21)

WD 0.52 (0.01) 0.43 (0.17) 0.52 (0.17)

Heritability estimates (standard error) for heigh (HT), diameter (DBH), and
wood density (WD) for average numerator relationship (ABLUP), additive
genomic-based (GBLUP-A), and additive, dominance and epistatic
genomic-based (GBLUP-ADE) relationships (GBLUP-ALL: full 8767 SNPs
and GBLUP-GWAS: 5628 SNPs selected by GWAS absolute effects).

Fig. 4 Comparison of the relative gains from optimum contribu-
tion selection between ABLUP and GBLUP-GWAS. ABLUP is
represented by ‘All_pedigree’, including all individuals in the
pedigree and reflecting no co-ancestry constraint, and by ‘Unre-
lated’ having only unrelated individuals. Results of GBLUB-GWAS
show the gains under ΔF ≤ 0.25 (ΔF ≤ 0.25) and ΔF ≤ 0.125 (ΔF ≤
0.125) for diameter (DBH) and height.
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capitalize on the readily available natural matings and invoke
either half-sib (OP families) or full-sib (pedigree reconstruction)
family structure and thus avoiding the creation of structured
pedigree (i.e., the breeding phase), the OP testing produces
inflated additive genetic vicariance and heritability estimates
(Askew and El-Kassaby 1994) which the pedigree reconstruction
considers (El-Kassaby and Lstibůrek 2009) and (2) both OP testing
and pedigree reconstruction are anchored on the use of the A-
matrix and therefore both do not benefit from the information
gained from ancestral pedigree (VanRaden 2008) and thus hidden
relationships and inbreeding are not accounted for.
Lastly, it is essential to underscore that the presented frame-

work is exceptionally well-suited for evaluating climate change-
related adaptive attributes. These attributes can be conveniently
assessed at a very young age owing to their notably high
heritability values. Examples of such attributes include vegetative
phenology (Guo et al. 2021), drought tolerance (Moran et al. 2017),
frost tolerance (Gomory et al. 2010), salt tolerance (Khasa et al.
2002), and insect resistance (Klápště et al. 2022).

CONCLUSIONS
Tree selective breeding methods have remained static since their
inception, with no pragmatic changes implemented to expedite
the process or to address environmental contingences. Here, we
introduced an innovative approach that integrates genomic data
and optimization protocols for evaluating and selecting superior
individuals. The proposed framework leverages the existing OP
families, eliminating the need for the traditional breeding phase
and resulting in greater gains with a shorter timeline.
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