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Abstract: Vegetation Type (VT) mapping using Optical Earth observation data is essential for the man-
agement and conservation of natural resources, as well as for the evaluation of the supply of provisioning
ecosystem services (ESs), the maintenance of ecosystem functions, and the conservation of biodiversity in
anthropized environments. The main objective of the present work was to determine the spatial patterns
of VTs related to climatic, topographic, and spectral variables across Santa Cruz province (Southern
Patagonia, Argentina) in order to improve our understanding of land use cover at the regional scale. Also,
we examined the spatial relationship between VTs and potential biodiversity (PB), ESs, and soil organic
content (SOC) across our study region. We sampled 59,285 sites sorted into 19 major categories of land
cover with a reliable discrimination level from field measurements. We selected 31 potential predictive
environmental dataset covariates, which represent key factors for the spatial distribution of land cover
such as climate (four), topography (three), and spectral (24) factors. All covariate maps were generated
or uploaded to the Google Earth Engine cloud-based computing platform for subsequent modeling. A
total of 270,292 sampling points were used for validation of the obtained classification map. The main
land cover area estimates extracted from the map at the regional level identified about 142,085 km2 of
grasslands (representing 58.1% of the total area), 38,355 km2 of Mata Negra Matorral thicket (15.7%), and
about 25,189 km2 of bare soil (10.3%). From validation, the Overall Accuracy and the Kappa coefficient
values for the classification map were 90.40% and 0.87, respectively. Pure and mixed forests presented
the maximum SOC (11.3–11.8 kg m−2), followed by peatlands (10.6 kg m−2) and deciduous Nothofagus
forests (10.5 kg m−2). The potential biodiversity was higher in some shrublands (64.1% in Mata Verde
shrublands and 63.7% in mixed shrublands) and was comparable to those values found for open decidu-
ous forests (Nothofagus antarctica forest with 60.4%). The provision of ESs presented maximum values
at pure evergreen forests (56.7%) and minimum values at some shrubland types (Mata Negra Matorral
thicket and mixed shrubland) and steppe grasslands (29.7–30.9%). This study has provided an accurate
land cover and VT map that provides crucial information for ecological studies, biodiversity conservation,
vegetation management and restoration, and regional strategic decision-making.

Keywords: rangeland; livestock; plant biodiversity; carbon balance; ecosystem services

1. Introduction

Planning and land management institutions need comprehensive information on
the types of land-use cover to provide the basis for understanding the status, trends, and
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pressures of human activity on natural resources, carbon cycles, and biodiversity [1,2]. From
this, Vegetation Type (VT) mapping using Optical Earth observation (EO) data is essential
for the management and conservation of natural resources, as well as for the evaluation
of the supply of provisioning ecosystem services (ESs), the maintenance of ecosystem
functions, and the conservation of biodiversity in anthropized environments [3–5]. VTs
are defined as distinctive lands that produce different types of vegetation with contrasting
net primary production (NPP) and land uses [6,7]. For instance, climate determines two
contrasting regions in Sothern Patagonia: a western narrow strip of land (100 km wide) with
a humid climate and precipitation of up to 1200 mm/year being forest, the predominant
vegetation type used for logging and silvopastoral systems. In the rest of the territory,
where the westerly dry winds define the steppe ecosystem with precipitation of less than
300 mm/year, the main activity is extensive sheep (mostly of Merino and Corriedale
breeds) production reared for meat and wool on natural grasslands [8–10]. Moreover, VTs
describe the potential plant species growing at a site with similar ecological responses to
natural drivers and management practices, and also, VT descriptions provide information
to farmers about which changes can be expected in response to grazing management in
productivity, carbon stocks, or potential climate change events [11–13].

VTs usually represent complex spatial structures within a heterogeneous landscape.
Vegetation heterogeneity has been studied mainly in northeastern Patagonia at microsite,
patch, and patch mosaic scales and at regional scales, where biotic and abiotic factors
determine their spatial distribution [14,15]. In contrast, studies of VTs at the landscape
or regional scale in Southern Patagonia are lacking. The creation of accurate VT maps in
heterogeneous landscapes is usually based on the classification of raw satellite imagery.
However, since the spatial and temporal resolution of satellite images is often insufficient to
classify small VT structures in the landscape, heterogeneous plant covers pose a challenge
for spectral classification methods that use EO images of a single datum [16]. In addition,
multi-temporal Landsat images can improve the accuracy of VT classification and plant
cover mapping in grasslands as they show different phases of vegetation phenology over
single growing seasons [17]. Also, the use of multi-temporal Landsat data may compen-
sate for poor quality observations (clouds, shadows) and better capture the phenological
information of VTs in classification [18].

The Google Earth Engine (GEE) stores satellite imagery in a public data archive that
includes historical Earth images, enabling researchers to select and process large volumes
of data [18]. The open access to GEE allows users to analyze all available remote sensing
images with a web-based IDE code editor without downloading these images to a local
server [18]. In addition, the cloud-based platform provides basic computational capabilities
for vector and raster data. Its high computing power enables land mapping approaches
at regional, national, and global scales. GEE has been used extensively in numerous data
processing applications and environmental studies, such as studies of forest degradation,
vegetation succession in grassland ecosystems, and farmland classification [19–21].

Furthermore, VTs provide different ecosystem services (ESs), which refer to the differ-
ent goods and benefits that society obtains directly or indirectly from natural ecosystems
that contribute to human well-being [22]. ESs include (i) provisioning services (e.g., food,
timber, and medicines), (ii) regulating services (e.g., water regulation, air quality mainte-
nance, pollination, and climate control), (iii) cultural services (e.g., recreation opportunities,
sense of place, and opportunities for education and identity), and (iv) supporting services
(e.g., soil formation, primary productivity, biogeochemistry, nutrient cycling, and provision-
ing of habitat) [23]. Soil organic carbon (SOC) plays an important role in ecosystem service
delivery, including biodiversity support, soil aggregation, soil erosion control, the capacity
of the land to sustain plant and animal productivity, and water retention capacity [24].
Biodiversity conservation at different levels (e.g., genes, species, and ecosystems) supports
the ecological processes and functions that sustain ESs and human well-being [25].

The objective of the present work was to determine the spatial patterns of VTs related
to climatic, topographic, and spectral variables across Santa Cruz province in order to
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improve our understanding of land use cover at the regional scale. Also, we examined
spatial relationships among VTs and potential plant biodiversity, ES, and SOC across our
study region.

2. Materials and Methods
2.1. Characterization of the Study Area and Land Use Cover Classes

The study area corresponded to the whole Santa Cruz province, which has an area
of 244,458 km2 and extends from latitudes 46◦ to 52◦30′ SL. In the region, precipitation
decreases from 800–1000 mm to 200 mm/year from west to east over the Andes Mountains,
which act as an orographic barrier to humid winds from the west. This determines the
aridity index (average annual ratio of precipitation to potential evapotranspiration), which
varies between 0.45 and 0.11 in most of the region (85% of the total area corresponding
to drylands), whereas aridity index values of >0.65 are found in native forest growing in
the west, with a significant water deficit in the soil in the summer. The average annual
temperatures are between 5.5 and 8.0 ◦C. The winds mainly come from the west and
often reach wind speeds of over 80 km/h in the spring and summer. Local edaphic and
topographic differences in combination with a considerable precipitation gradient have a
significant influence on forage production in the meadows.

In this work, we sampled 59,285 sites in Santa Cruz province sorted into 19 major
categories of land cover with a reliable discrimination level from field measurements:
permanent water bodies, semi-permanent water bodies, ephemeral water bodies, lava fields,
outcrop rock, bare soil, glacier, infrastructure, steppe grasslands, Mata Negra Matorral
thicket, Mata Verde shrubland, mixed shrubland, Murtillar dwarf-shrubland, wetlands,
peatbogs, Nothofagus antarctica forest, N. pumilio forest, N. betuloides forest, and mixed forest.

The cover of water bodies was evaluated considering that shallow waters usually
present a strong dynamic of expansion and contraction between the wet and dry seasons of
the year. Due to this, we obtained the frequency with which water was present from global
maps of the location and temporal distribution of surface water from 1984 to 2021 [26] to
discriminate: permanent water, when a pixel presented a >90% probability of presenting
water; semi-permanent water bodies, when its probability was between 20 and 90%; and
ephemeral water bodies, when it was <20% mainly concentrated in the late winter or
early spring.

The lava field cover consists of basaltic formations without vegetation on the surface
that originated from volcanic–tectonic between the Pliocene (3.8 million years ago) and
the Lower Pleistocene (1 million years ago) [27]. Although the name “lavic field” usually
refers to the Pali Aike lava field, located in the southeastern portion of the province, this
cover map also includes other contemporary basaltic manifestations that are not or barely
vegetated at present. Outcrop rock cover corresponds to any natural or anthropized areas
(quarrying areas) devoid of soil. In general, it represents high mountainous areas. The bare
soil category represents a soil surface devoid of any plant material or with a vegetation
cover of less than 10% originating from natural (alpine sites) or anthropogenic processes and
origins such as wind erosion, water erosion, fires, dunes, dry lagoons beds, deflation basins,
road construction, and oil platforms. To define glacier cover, a mask was applied using the
geoinformation database from the First National Glacier Inventory of the Argentine for the
period 2004–2016 [28]. The infrastructure cover that included urbanized, peri-urban, and
rural constructions was obtained and masked using polygons reported by the IGN [29].

The VT of steppe grasslands includes two different physiognomies: grass–shrub
steppe in the center and north of the region and grass steppes in the south. The grass
steppe is dominated by grasses and sedges (Bromus, Carex, Festuca, Hordeum, Jarava, Poa,
Rytidosperma virescens, and Trisetum) with dwarf shrubs and herbs such as Nardophyllum,
Perezia, Azorella, and Nassauvia admixed. The grass–shrub steppe is dominated by Jarava,
Agrostis, Festuca, Hordeum, Trisetum, and shrubs (Berberis, Adesmia, Chuquiraga, Mulinum,
Mulguraea tridens, Schinus, and Senecio). The VT category of shrubland, defined as an area
where vegetation is dominated by woody plants (>40%) generally less than 3 m in height,
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has been divided into three distinctive categories. The Mata Negra Matorral thicket is
dominated by the evergreen shrub M. tridens, which is sclerophyllous (“hard-leaved”)
and grows continuously and intermixed with xeric steppe vegetation, creating spatial
heterogeneity in the landscape as a result of vegetation patches. The Mata Verde shrubland
is dominated by Lepidophyllum cupressiforme, a woody endemic species of 0.50 m in height,
which develops in saline and sandy depressions on seashores and riverbeds, jointly with
halophytic steppe species [30]. The mixed shrubland is dominated mainly by tall shrubs,
such as Colliguaja integerrima, Chuquiraga, Anartrophyllum rigidum, Lycium, and Mulinum,
and is dominated by grass-rich undergrowth including Bromus, Hordeum, Jarava, and Poa.
The Murtillar dwarf-shrubland vegetation class is dominated by Empetrum rubrum, and
dwarf-shrub heaths are associated with acidic, poor nutrient soils of coarse texture and
disturbances such as overgrazing and fires [31]. Wetlands of Cyperaceae, Juncaceae, and
Gramineae, locally known as “mallines”, are developed in association with conditions of
the landscape where an unusual amount of water is available for plants [32]. Mallines
provide the most productive soils for livestock production, and these are mainly located
in floodplains, glacial plains, and hydro-eolian basins. Peatbogs are distinctive Sphagnum
wetlands of Patagonia that represent a valuable natural resource that provides peat, moss
fibers, and water, as well as the natural products that grow on its surface [33,34]. For this
work, we used permanent plots across Santa Cruz province from the PEBANPA (Parcelas
de Ecología y Biodiversidad de Ambientes Naturales en Patagonia Austral—Biodiversity
and Ecological Long-term Plots in Southern Patagonia) network located in all VTs.

Nothofagus forests are mainly associated with the mountain areas, occupying a narrow
strip in the west. Four main forest types occur in the region of Santa Cruz province [35,36].
The southern beech, ñire (Nothofagus antarctica), one of the main deciduous native species
in this region, grows in pure stands and occurs naturally in different habitats such as
poorly drained sites at low elevations, exposed windy areas with shallow soils, depressions
under cold air influence, or drier eastern sites near the Patagonian steppe [37]. Pure
deciduous Nothofagus pumilio (lenga) forests occur in the subalpine zone and commonly
form the upper tree limit in mountain environments [36]. Pure evergreen Nothofagus
betuloides (guindo) forests generally grow along the coast of the lake, where temperatures
are milder and rainfall is higher. The mixed forests are dominated by evergreen N. betuloides
and other Nothofagus species, as well as other secondary tree species (Drimys winteri,
Embothrium coccineum, and Maytenus boaria) that grow in wet areas associated with mountain
environments, mainly located in protected natural areas. To define the native forest cover,
a mask was applied using the geoinformation database from forestry inventories across
Santa Cruz province [35,36].

2.2. Environmental Predictors for the Land Cover Map

We selected 35 potential predictive environmental dataset covariates, which represent
key factors for the spatial distribution of land cover such as climate (4), topography (3),
and spectral (28) factors. All covariate maps were generated or uploaded to the Google
Earth Engine cloud-based computing platform for subsequent modeling [38]. The original
covariates’ spatial resolution was adjusted to a common resolution of 30 m.

We included climatic variables (more specifically, precipitation and temperature) because
the distribution of VTs is closely coupled with corresponding climate types, and also because
climate affects net primary productivity (NPP) [39]. Data on the mean (1970–2000) annual
precipitation and monthly mean, minimum, and maximum temperature were obtained from
the WorldClim global database. Derived from these monthly temperature and precipitation
data, we used a group of 17 maps of bioclimatic variables [40].

Topography has the potential to control the spatial patterns of vegetation communities
and cover and, therefore, models that take topographic variables into account can provide
better estimates of VTs and land cover [41]. This is because topography, through its
influence on gravity, solar insolation, and micro-climate, determines the water, solute, and
sediment fluxes throughout the landscape. Altitude, slope, and aspect data derived from the
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ALOS World 3D at 30 m (AW3D30) digital elevation model (JAXA/ALOS/AW3D30/V3_2
Collection) were used [42].

For spectral variables, Landsat 8 satellite images of surface reflectance (Collection
LANDSAT/LC08/C02/T1_L2) corresponding to the period 1 January 2017–21 December
2022 were used. Scenes with cloud cover greater than 30% were eliminated. For this, the
QA_PIXEL band was used to filter those pixels with poor quality that were associated with
the presence of clouds, shadows, or aerosols. Then, the images with median reflectance
values for each pixel were obtained using the spectral bands B2 (blue), B3 (green), B4
(red), and B5 (Nir) in January–February, March–April, May–June, July–August, September–
October, and November–December. From the median reflectance data of the bands, four
vegetation indices were calculated for each time window: NDVI (Normalized Differential
Vegetation Index) [43], EVI (Improved Vegetation Index) [44], ARVI (Atmospheric Resistant
Vegetation Index) [45], and SAVI (Soil-Adjusted Vegetation Index) [46].

2.3. Supervised Land Cover Classification and Validation

The algorithm used for the classification process was Random Forest. This algorithm
consists of an ensemble of decision trees that delivers the modal class of the total set of
results [47]. A total of 100 decision trees were run, and each pixel was assigned the land
cover/use class that had the most frequent appearance (mode). A total of 270,292 sampling
points were used for validation of the obtained classification map. To evaluate the quality
of the land cover classification, a confusion matrix was created to determine the precision
of each discriminated class in the obtained map. A confusion matrix (also known as an
error matrix or contingency table) is a cross table that represents the difference between the
field values and predicted classifications [48].

Then, several classic metrics were derived from the confusion matrix to evaluate
the performance of the land cover classifications [49,50]. Overall Accuracy (OA) and the
Kappa coefficient (K) were estimated for global assessment. OA was calculated by dividing
the total correctly classified samples by the total number of observations. The Kappa
coefficient measures the agreement between classification and true values. A kappa value
of 1 represents perfect agreement, while a value of 0 represents no agreement. Producer’s
and user’s accuracies, omission (OE), and commission errors were estimated for class
analysis. Producer’s accuracy (PA) describes how well features on the ground are correctly
classified on a map. User’s accuracy (UA) represents the proportion of classified sample
plots that correctly represent that category on the ground. Errors of omission (errors of
exclusion) represent the fraction of values that belong to a class but were predicted to be in
a different class. They are a measure of false negatives. The commission error (errors of
inclusion) is the complementary measure to the user’s accuracy and can be calculated by
subtracting the user’s accuracy from 100%.

2.4. Vegetation Classes and their Relationships with Biodiversity, Soil Carbon, and
Ecosystem Services

The VT classes obtained from the land use map were characterized by soil organic
carbon content (SOC, kg C m−2), potential biodiversity (PB, %), and the provision of
ecosystem services (ESs, %). For this, we employed models previously developed for
the Santa Cruz province: (i) SOC was modeled for the first soil profile (30 cm) by Peri
et al. [12] and mapped in grids of 90 × 90 m pixels; (ii) PB was calculated by Rosas et al. [51]
including a multi-taxa approach (e.g., birds, plants, insects, lizards, mammals) and mapped
in grids of 90 × 90 m pixels; and (iii) provision of ESs was calculated by Rosas et al. [51,52]
including the different proxies of each type (e.g., provisioning, regulating, supporting, and
cultural) and mapped in grids of 90 × 90 m pixels. Both, the PB and ES models result
in a continuous map expressing a range from 0 (minimum) to 100 (maximum potential
habitat suitability or ESs). We extracted the average and standard deviation (SD) of the
pixels at each VT by using Qgis v.3.30.2 (http://www.qgis.org, accessed on 15 December
2023). With these data, we also graph the average ± SD to analyze the relationships among

http://www.qgis.org
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the different variables (SOC, PB, ES), and we fit simple linear regressions to determine the
adjustment between variables.

3. Results
3.1. Land Use Map

The classification of land cover and VTs of Santa Cruz province using multi-temporal
Landsat images and climatic and topographic variables in the Google Earth Engine Platform
achieved high levels of accuracy for most of the 19 classes considered in the assessment
(Figure 1). The main land use cover area estimates extracted from the map at the regional
level identified about 142,085 km2 of steppe grasslands (representing 58.1% of the total
area), 38,355 km2 of Mata Negra Matorral thicket (15.7%), and about 25,189 km2 of bare soil
(10.3%) (Table 1). The native forest VT represented 3728 km2 (1.5%), where pure N. pumilio
forest would cover about 2538 km2 (1.0%) followed by pure N. antarctica forest, occupying
1000 km2 (0.4%). Permanent water bodies and glaciers were mapped at 5428 (2.2%) and
3484 km2 (1.4%), respectively.

Table 1. Area and percentage of land use cover in Santa Cruz province (Southern Patagonia, Ar-
gentina).

Cover Class Area (km2) Class Percentage (%)

Permanent water bodies 5427.9 2.22
Semi-permanent water bodies 1625.8 0.67

Ephemeral water bodies 909.3 0.37
Lava field 70.2 0.03
Glaciers 3484.1 1.43

Infrastructure 224.4 0.09
Nothofagus pumilio forest 2538.4 1.04

N. antarctica forest 1000.5 0.41
N. betuloides forest 84.3 0.03

Mixed forest 104.4 0.04
Mata Verde shrubland 183.0 0.07

Mata Negra Matorral thicket 38,355.4 15.69
Mixed shrubland 9103.3 3.72

Murtillar dwarf-shrubland 702.4 0.29
Wetland 2120.0 0.87
Peatbog 44.5 0.02

Steppe grassland 142,085.2 58.12
Outcrop rock 11,205.7 4.58

Bare soil 25,189.3 10.31

Total 244,458 100

Table 2 shows the confusion matrix for land use classifications. It can be highlighted
that the Overall Accuracy and the Kappa coefficient values are 90.40% and 0.87, respectively.
User’s and producer’s accuracies for most land cover categories were higher than 0.8.
The unit with the lowest producer’s accuracy (highest omission error) was shrubland,
which was sometimes classified as bare soil. The class with the lowest user’s accuracy
(highest commission error) was bare soil, which, in the terrain, was sometimes ephemeral
water bodies or grasslands. Meanwhile, the most accurately classified unit from the
producer’s standpoint was glacial ice, almost always classified as such, while from the
user’s standpoint, the best-classified class was N. pumilio forest.
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Table 2. Confusion matrix of the main land use cover classification of Santa Cruz province, Southern
Patagonia, Argentina. W: water (permanent water bodies, semi-permanent water bodies, ephemeral
water bodies). LF: lava field. Gl: glacial ice. NP: Nothofagus pumilio forest. W: wetland. Sh: Shrubland
(Mata Verde shrubland, Mata Negra Matorral thicket, mixed shrubland). Mu: Murtillar dwarf-
shrubland. NA: N. antarctica forest. G: grassland/steppe. OR: outcrop rock. BS: bare soil. UA (%):
user’s accuracy; PA (%): producer’s accuracy; CE (%): commission error; OE (%): omission error.

Field

Predicted

Classes W LF Gl NP W Sh Mu NA G OR BS Total UA CE

W 21,527 17 37 67 67 43 2 86 557 280 169 22,906 0.940 0.060
LF 0 527 0 0 0 13 0 0 163 13 1 717 0.735 0.265
Gl 200 0 20,071 3 5 0 0 0 3 1640 0 21,928 0.915 0.085
NP 0 0 0 11,281 20 1 0 181 9 29 0 11,552 0.977 0.023
W 216 0 0 35 12,012 44 50 132 1185 67 59 13,820 0.869 0.131
Sh 36 0 0 0 57 37,035 7 0 4599 138 133 42,006 0.882 0.118
Mu 2 0 0 0 77 25 7062 1 764 17 0 7949 0.888 0.112
NA 1 0 0 150 115 6 5 3490 43 2 0 3849 0.907 0.093
G 45 4 0 14 855 3027 272 72 105,114 697 593 110,817 0.949 0.051

OR 351 8 285 68 29 123 0 14 935 18,060 285 20,207 0.894 0.106
BS 3320 0 0 59 70 39,132 3 13 2336 435 8061 14,482 0.557 0.443

Total 25,698 556 20,393 11,677 13,307 40,449 7401 3989 115,708 21,378 9301
PA 0.838 0.948 0.984 0.966 0.903 0.560 0.954 0.875 0.908 0.845 0.867
OE 0.162 0.052 0.016 0.034 0.097 0.440 0.046 0.125 0.092 0.155 0.133

3.2. Vegetation Type Classes and their Relationships with Biodiversity, Soil Carbon, and
Ecosystem Services

Pure and mixed forests presented the maximum SOC (11.3–11.8 kg C/m2), followed by
peatlands (10.6 kg m−2) and deciduous Nothofagus forests (10.5 kg C/m2) (Table 3). Murtillar
dwarf-shrubland and wetlands also presented higher SOC contents (9.3–10.0 kg C/m2),
while the other open environments presented lower contents (<7.3 kg C/m2). The potential
biodiversity was higher in some shrublands (64.1% in Mata Verde shrublands and 63.7% in
mixed shrublands) and was comparable to those values found for open deciduous forests
(N. antarctica forest, with 60.4%) (Table 3). N. betuloides presented lower values for forests
(47.8%), which increased in mixed forests (54.8%) and N. pumilio forests (52.9%). In the other
open lands, the Mata Negra Matorral thicket (55.9%) and steppe grasslands (53.3%) presented
higher values compared with peatbogs (48.9%), wetlands (44.3%), and Murtillar dwarf-
shrublands (41.0%). The provision of ESs presented maximum values in pure evergreen forests
(56.7%); medium values in the other forest types (45.6–48.8%), some shrublands (e.g., Mata
Verde shrubland and Murtillar dwarf-shrubland, 43.6–45.3%), wetlands (47.7%), and peatbogs
(45.1%); and minimum values at the other shrubland types (Mata Negra Matorral thicket and
mixed shrubland) and steppe grasslands (29.7–30.9%) (Table 3).

Table 3. Characterization (average and standard deviation) of vegetation types in Santa Cruz province.
SOC = soil organic carbon content (kg C/m2), PB = potential biodiversity (%), ESs = ecosystem ser-
vices (%).

Vegetation Type SOC PB ESs

Nothofagus pumilio forest 10.45 (2.16) 52.9 (12.3) 47.1 (14.6)
N. antarctica forest 10.49 (1.85) 60.4 (9.9) 45.6 (9.9)
N. betuloides forest 11.81 (2.48) 47.8 (14.6) 56.7 (15.1)

Mixed forest 11.37 (2.19) 54.8 (12.9) 48.8 (14.8)
Mata Verde shrubland 7.32 (1.50) 64.1 (16.8) 43.6 (9.3)

Mata Negra Matorral thicket 4.30 (0.78) 55.9 (13.3) 29.7 (7.9)
Mixed shrublands 4.72 (1.44) 63.7 (13.4) 30.1 (10.2)

Murtillar dwarf-shrubland 9.95 (1.18) 41.0 (8.8) 45.3 (8.0)
Wetlands 9.28 (2.16) 44.3 (14.3) 47.7 (11.7)
Peatbog 10.60 (2.01) 48.9 (12.6) 45.1 (11.2)

Grassland steppe 4.67 (1.24) 53.3 (14.9) 30.9 (8.4)
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The relationships among the studied variables (SOC, PB, ES) showed some trends
and separated groups depending on the VT classes (Figure 2): (i) One group with low
SOC and medium-high PB values (steppe grasslands and Mata Verde shrubland–Mata
Negra Matorral thicket–mixed shrublands) and a second one represented by the rest of the
VT classes with high SOC content. There was a negative linear regression between these
variables (R2 = 0.206). (ii) A close relationship was observed between ESs and SOC, where
two groups were identified. The first group showed low values of both variables (steppe
grasslands and Mata Verde shrubland–mixed shrublands) and the second one with the
other VT classes with high values of both variables. The linear regression showed a strong
positive relationship between the variables (R2 = 0.897). Finally, (iii) no clear relationship
was detected between ESs and PB, without separation among VT classes, represented by a
weak negative linear regression (R2 = 0.196).
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sity (PB, %), and (C) ecosystem services (ESs, %) of the vegetation types in Santa Cruz (NP = Nothofagus
pumilio forests, NA = N. antarctica forests, NB = N. betuloides forests, MIX = mixed forests, MVS = Mata
Verde shrublands, MNS = Mata Negra Matorral thicket, MS = mixed shrublands, M = Murtillar
dwarf-shrubland, W = wetlands, P = peatbogs, G = steppe grasslands). Bars indicate the standard
deviation for both axes. Yellow lines represent simple linear regressions between variables.
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4. Discussion

The construction of accurate and simple models and VT maps for extracting land use
cover information could be highly relevant for natural resource management [53]. Field
methods are a useful tool for the accurate identification and classification of VTs, but these
traditional methods are challenging to implement due to personnel (expertise), logistical,
and budget limitations. Remote sensing technology offers a practical and economical
complement to studying VTs and land use changes within and across VTs over large
areas [54] like the Patagonian region. In the present study, the classification of land cover
and VTs of Santa Cruz province using multi-temporal Landsat images and climatic and
topographic variables in the Google Earth Engine Platform achieved high levels of accuracy
for most of the 19 land cover classes considered in the assessment. We selected the RF
algorithm for VT class mapping. This classification algorithm’s success in land cover
classification was also demonstrated by Sluiter [55], who investigated a wide range of
vegetation classification methods in the Mediterranean for remote sensing imagery. They
determined that the Random Forest and support vector machine methods showed better
performances than traditional classification techniques. Also, land cover and VT maps using
multi-temporal Landsat images have been used in broader environmental and ecological
studies around the world [56–58]. We determined an Overall Accuracy of 90.4% and a
Kappa coefficient of 0.87. According to Monserud and Leemans [59], Kappa coefficient
values greater than approximately 0.85 indicate an excellent agreement. Classifying and
mapping VTs is an important technical task for managing natural resources as vegetation
provides several ESs and plays an essential role in affecting global climate change by
influencing terrestrial CO2 [3,10,60]. For example, in a comprehensive review of the
vegetation response to climate change, Afuye et al. [61] highlighted the importance of
innovative tools in vegetation mapping based on multi-time series analyses to foster
specific management programs toward ecological conservation and restoration policy.

The user’s (UA) and producer’s (PA) accuracy values for most land cover categories
were higher than 0.8, highlighting a very good performance of the land use cover map. The
obtained classes are very essential to characterize information on the natural environment
and human activities in the region and to monitor spatial–temporal patterns. The main VTs
extracted from the map were the grassland steppe (142,085 km2 representing 58.1% of the
total area) and Mata Negra Matorral thicket (38,355 km2, 15.7%). Traditionally, steppe and
shrubland areas present provisioning ecosystem services related to livestock production
where different management proposals have been implemented [10]. Also, we highlighted
the good accuracy determined for N. pumilio forest (PA = 0.966; UA = 0.977) and N. antarctica
forest (PA = 0.875; UA = 0.907) for the regional use of these ecosystems. N. antarctica forests
are used mainly as silvopastoral systems that combine trees and grasslands or pastures
under grazing in the same unit of land, which have become an economical, ecological,
and productive alternative land management practice in Patagonia [9]. Pure N. pumilio
forests have been important in the region for timber production [36]. However, there was
some confusion between a few classes. The results suggested a relatively high degree of
confusion between shrublands and bare soil (lowest PA), where shrubland sometimes was
classified as bare soil. We expect this response due to a high vegetation heterogeneity
in shrublands in Patagonia at the microsite, patch (bare soil and vegetation), and patch
mosaic scales, where abiotic (mainly water) factors play an important role in generating
these patterns [13,14,62]. The effect of these mixing classes is most pronounced in high
spatial heterogeneity ecosystems such as Mediterranean wooded grasslands and open
shrublands [63]. This is a result of satellite resolution limitations related to landscape
fragmentation into various patch types and ecotones. Developments in image processing
techniques facilitating generalized patch delineation and transitional patterns analysis
would be instrumental for a better shrubland classification, as it was addressed for the
highly seasonal and heterogeneous Cerrado ecosystems [64]. Also, the bare soil class
(lowest UA) in the terrain was sometimes classified as ephemeral water bodies. This is
because the seasonal (dry summer and wet–cold winters) and inter-annual rainfall and
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evapotranspiration variability result in shallow waters (e.g., lagoons) presenting a strong
dynamic of expansion and contraction of bare soils [26]. High temporal resolution over
decades is needed to create robust baseline reference maps that can be used to train machine
learning algorithms for monitoring and detecting changes in ephemeral water classes in
complex and highly seasonal landscapes.

SOC values were higher in native forests (10.5–11.8 kg C/m2) and peatbogs (10.6 kg C/m2)
compared with the other VTs. This is consistent with Peri et al. [12], who reported that SOC
was higher in forests than in shrublands due to climate variables (isothermality and seasonality
precipitation) and vegetation cover, as represented by the Normalized Difference Vegetation
Index (NDVI). The highest SOC values found in the native forest compared with the other VTs
may be due to better environmental conditions (mainly soil water availability), input of organic
residues, and soil microbial biomass and activity [65]. The high values of carbon storage in
peatlands in Patagonia are mainly driven by the physiological state of primary producers, the
limitation of photo-assimilation by external conditions, and a low decomposition rate that is
less than net primary productivity (NPP) over time [33,34].

Biodiversity is assumed to be a critical regulator of ecosystem function, ecosystem
productivity, and the provision of ESs [66]. In the present study, the highest potential
biodiversity occurred in shrublands (64.1% in Mata Verde and 63.7% in mixed shrublands)
and N. antarctica forest (60.4%). This is consistent with Rosas et al. [67], who reported that
shrublands in Southern Patagonia (Argentina) presented the highest values in shrublands
followed by humid and dry steppes, where different climate (temperature, rainfall) and
environmental (elevation, NDVI) drivers strongly influenced plant species distribution.
According to Paruelo et al. [7], the distinct plant communities of steppes were mainly due
to long-term differences in water availability, where most of the species presented similar
ecological requirements (e.g., low specialization and middle marginality values). Similar
to our results, for the same region, Rosas et al. [52] found higher potential biodiversity
values in the N. antarctica forest associated with environmental heterogeneity in the ecotone
between grasslands and mountain forests compared with other natural environments. The
ecotone zone where the N. antarctica forest grows provides multiple micro-environments
that allow for the survival of a higher number of species, as well as the existence of
potential synergies among the species occurrence [66,68]. Besides this, multiple vegetation
stratification in the N. antarctica forest and adjacent open areas (more shrubs and grasses
species) promoted more species diversity than other close Nothofagus forests [6,35,36].

The provision of ESs showed maximum values in native forests (45.6–56.7%) and min-
imum values in the shrubland types (Mata Negra Matorral thicket and mixed shrubland)
and steppe grasslands (29.7–30.9%). The highest ES values in the native forest compared
with the other VTs in Southern Patagonia (Santa Cruz province) may be a result of better
overall provisioning ESs such as timber from native forests [36] and livestock and firewood
from silvopastoral systems [9,35]; regulating ESs such as soil carbon [12] and nitrogen con-
tent [69,70]; and cultural ESs at landscape level [70]. For example, Peri et al. [10] reported
that lamb and wool production across vegetation types had the highest values in more
productive N. antarctica forests (0.51 g lamb/m2/year and 0.15 g greasy wool/m2/year)
than in shrublands and dry grass steppe. Martínez Pastur et al. [71], by mapping cultural
ecosystem services at a regional scale in Southern Patagonia, found that native forests were
important in determining the enjoyment of existence values (phytophilia phenomena) and
aesthetic values related to water bodies and mountains because people preferred those
landscapes in comparison with dry steppe.

The relationship among the studied variables showed that most VTs (except steppe
grasslands, Mata Verde shrubland, Mata Negra Matorral thicket, and mixed shrublands)
showed medium-high PB values with high SOC content. Similarly, Albuquerque et al. [72]
reported that soil carbon significantly improves the performance of a biodiversity surrogate
elaborated using abiotic variables to predict the presence of species. Thus, any effort
to protect ecosystems with relatively high soil carbon stocks will also benefit threatened
plant species. Biodiversity is also important because contributes to soil formation, thereby
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contributing to enhancing SOC content [73,74]. Many studies showed that higher plant
diversity promotes higher litter accumulation in natural ecosystems [75,76]. In contrast,
no clear relationship was detected between ESs and PB without separation among the VT
classes. Furthermore, a positive relationship was observed between ESs and SOC for most
VTs (except steppe grasslands and Mata Verde shrubland–mixed shrublands) with high
values of both variables. Rosas et al. [51] reported that the highest ES values were related
to soil nutrient stock and carbon sequestration in Southern Patagonia ecosystems. In Santa
Cruz province (Argentina), the livestock provisioning ES (lamb and wool) was positively
related to net carbon balance and SOC by influencing variables directly related to forage
productivity [10].

5. Conclusions

This study has provided an accurate land cover and VT map (Overall Accuracy of
90.4%, Kappa coefficient of 0.87) that provides crucial information for ecological studies,
biodiversity conservation, vegetation management and restoration, and regional strategic
decision-making. We conclude that the VT map provides useful indicators that were
integrated with SOC, biodiversity, and ecosystem services. SOC values were higher in
native forests (10.5–11.8 kg C/m2) and peatbogs (10.6 kg C/m2) compared with the other
VTs. The highest potential biodiversity occurred in shrublands (64.1% in Mata Verde and
63.7% in mixed shrublands) and N. antarctica forest (60.4%). The provision of ESs showed
maximum values in native forests (45.6–56.7%) and minimum values in shrubland types
(Mata Negra Matorral thicket and mixed shrublands) and steppe grasslands (29.7–30.9%).
The relationships among the studied variables showed that most VTs showed medium-high
PB values with high SOC content. Further characterization of mixing patterns between
land cover classes (e.g., bare soil and ephemeral water bodies or shrublands and bare soil)
requires higher resolutions and better classification methodologies than those provided by
existing satellite sensor systems. Future research is needed to improve knowledge related
to grazing and forest harvesting impacts on vegetation and grasslands ecosystem services.
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