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ABSTRACT Maximization of genetic gain in forest tree breeding programs is contingent on the accuracy of
the predicted breeding values and precision of the estimated genetic parameters. We investigated the
effect of the combined use of contemporary pedigree information and genomic relatedness estimates on
the accuracy of predicted breeding values and precision of estimated genetic parameters, as well as
rankings of selection candidates, using single-step genomic evaluation (HBLUP). In this study, two traits with
diverse heritabilities [tree height (HT) and wood density (WD)] were assessed at various levels of family
genotyping efforts (0, 25, 50, 75, and 100%) from a population of white spruce (Picea glauca) consisting of
1694 trees from 214 open-pollinated families, representing 43 provenances in Québec, Canada. The results
revealed that HBLUP bivariate analysis is effective in reducing the known bias in heritability estimates of
open-pollinated populations, as it exposes hidden relatedness, potential pedigree errors, and inbreeding.
The addition of genomic information in the analysis considerably improved the accuracy in breeding value
estimates by accounting for both Mendelian sampling and historical coancestry that were not captured by
the contemporary pedigree alone. Increasing family genotyping efforts were associated with continuous
improvement in model fit, precision of genetic parameters, and breeding value accuracy. Yet, improve-
ments were observed even at minimal genotyping effort, indicating that even modest genotyping effort is
effective in improving genetic evaluation. The combined utilization of both pedigree and genomic infor-
mation may be a cost-effective approach to increase the accuracy of breeding values in forest tree breeding
programs where shallow pedigrees and large testing populations are the norm.
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Maximizing genetic gain in tree breeding programs depends on the
reliability of the estimated genetic parameters. Traits’ heritabilities and
their genetic correlations are among the most critical genetic parame-
ters determining potential genetic progress, therefore their precision is
of great importance. Progeny testing is the vehicle by which these ge-
netic parameters are estimated, while individual tree data, family com-
position, pedigree depth and connectedness, and field performance
determine their reliability (Huber et al. 1992). Open-pollinated testing
is often used to efficiently screen and assess large numbers of candi-
date trees (Burdon and Shelbourne 1971; Jayawickrama et al. 2000).

However, it is recognized that treating open-pollinated families as
“half-sibs” is inaccurate due to the effect of hidden relatedness, which
cannot be easily unraveled in traditional pedigree-based analyses, thus
affecting the resulting genetic parameters and candidate rankings
(Squillace 1974; Askew and El-Kassaby 1994; Namkoong et al. 2012).

The use of molecular markers can uncover hidden relatedness and
potential pedigree errors in open-pollinated populations via pedigree
reconstruction and paternity assignment (Wang 2004; Kalinowski et al.
2007). Pedigree reconstruction has been effectively used to determine
the genealogical relationship among groups of related individuals
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leading to estimating genetic parameters with increased precision
(El-Kassaby and Lstibůrek 2009; Doerksen and Herbinger 2010;
El-Kassaby et al. 2011; Koreckỳ et al. 2013; Kláp�stě et al. 2014).
Ritland (1996) proposed an innovative approach where marker-
based relationship estimates could be used for estimating traits’
heritabilities and demonstrated the method’s utility in wild popula-
tions. Capitalizing on the availability of dense genomic marker sets,
VanRaden (2008) derived estimates of marker-based relationships
between pairs of individuals as a genomic relationship matrix (G),
which can be used as a substitute to the traditional pedigree-based
average numerator relationship matrix (A) in Henderson’s animal
model (Henderson 1984; Frentiu et al. 2008; Habier et al. 2013;
Kláp�stě et al. 2014)

The advantages of usingmarker-based relationship estimates are: (1)
bypassing the classical mating designs needed for generating structured
pedigree (El-Kassaby et al. 2011; Kláp�stě et al. 2014), (2) applicability to
natural and experimental populations (El-Kassaby et al. 2012; Porth
et al. 2013; Kláp�stě et al. 2014), and (3) increased precision of genetic
parameter estimates by accounting for genetic similarity due to com-
mon ancestry (i.e., historical pedigree) (Powell et al. 2010) and Men-
delian segregation (Visscher et al. 2006; Ødegård and Meuwissen
2012).

Combining theAwith the marker-based relationshipmatrixG; in a
single genetic covariance matrix H (Legarra et al. 2009; Misztal et al.
2009), has proven to be an effective way to improve relationship coef-
ficients for better estimation of genetic parameters and tracking of ge-
netic diversity in animal breeding systems. This method was dubbed
“HBLUP,” since the best linear unbiased predictors (BLUPs) of breed-
ing values are derived using the combined, H; genetic covariance ma-
trix. The HBLUP method may be particularly useful in forest tree
progeny test evaluation as the cost and logistics of genotyping the
entirety of trials is prohibitive; thus, combining the marker-based re-
lationship from a subset of trees from some families from few sites with
the pedigree-based relationship estimator would be an efficient option
for improving the derived genetic parameters’ precision for the entire
test.

The aim of this study is to compare the traditional ABLUP approach
to the HBLUP approach by comparison of the precision of genetic
parameters, accuracy of breeding values, and rankings of selection
candidates using variable proportions (0, 25, 50, 75, and 100%) of
genotyped individuals within the open-pollinated families.

METHODS

White spruce open-pollinated progeny test, phenotype
data, and genotyping
Data for the present study was obtained from Beaulieu et al. (2014)
and downloaded from the Dryad Digital Repository: doi 10.5061/
dryad.6rd6f. Briefly, this study concerns a single white spruce
[Picea glauca (Moench) Voss] provenance-progeny test site that

was established in 1979 in Québec, Canada. The test site contains
214 open-pollinated families from 43 Québec provenances planted
in randomly assigned five tree row plots at 2.4 m between row and
1.2 m within row spacing to attain a randomized block design with
six blocks. A subset of 1694 trees were sampled from the site, the
mean number of trees per family was �7.9, and the mean number
of trees per family per block was �1.3. Complete details of the test
site are available in Beaulieu et al. (2014). Phenotypic data for this
study included 22 yr tree HT (cm) and WD (kg/m3) obtained via
X-ray densitometry.

Single-nucleotide polymorphisms (SNPs) of the 1694 trees were
genotyped using Illumina Infinium HD iSelect bead chip PgAS1
(Illumina, San Diego, CA) (Beaulieu et al. 2014). The SNPs were
located within 2814 genes and separated by a minimum distance of
200 bp. Genes were selected from the white spruce gene catalog
“GCAT” (Rigault et al. 2011) and were those of diverse functions
(Pavy et al. 2013). A total of 6716 SNPs were available for use in the
analyses.

Data analyses
Traditional pedigree-based genetic analyses were performed under the
assumptions of unrelated half-sibling family structure and a minimal
population structure effect, as shown by Beaulieu et al. (2014). Variance
components, heritabilities, genetic correlations, and individual tree
breeding values were estimated with the bivariate animal model (herein
referred to as “ABLUP”) (Henderson 1984) as follows:

y ¼ Xbþ Z1aþ Z2uþ e (1)

where y is the response matrix of individually scaled and centered
phenotypic observations for the two traits; X is the incidence matrix
for the fixed effect b (trait means); Z1 and Z2 are the corresponding
incidence matrices related to random additive genetic effects [breed-
ing values, a � Nð0;GÞ] and block effects [u � Nð0;UÞ]; and
the random residual error effects are distributed as e � Nð0;RÞ:
The covariance matrix for the random additive genetic effects
was modeled using the heterogeneous covariance structure as

G ¼
�

s2
a1 sa1a2

sa2a1 s2
a2

�
5A, whereA is the average numerator relation-

ship matrix, sa1a2 is the additive covariance between traits 1 and 2,
and5 is the Kronecker product operator. The covariance matrix for
the random block effects was modeled using diagonal structure as

U ¼
�
s2
u1 0
0 s2

u2

�
5I where I is an identity matrix. The random re-

sidual error effect was modeled using an unstructured covariance

matrix structure as R ¼
�
s2
e1 se1e2

se2e1 s2
e2

�
5I, where se1e2 is the resid-

ual covariance between the two traits. Random effects were assumed
to be independent.

The genomic relationship matrix (GRM) (G) was constructed after
VanRaden (2008):

G ¼ ZZ9

,
2
X
j

pj
�
12 pj

�
(2)

let n be the number of individuals and m be the number of markers,
then Z is an n · mmatrix of centered genotype scores with missing
values replaced with zeros (i.e., mean imputation), and pj is the ref-
erence allele frequency of the jth marker.

In the single-step model (herein referred to as “HBLUP”), the A
matrix was substituted by the combined additive relationship matrixH
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(Legarra et al. 2009; Christensen and Lund 2010), resulting from ac-
commodation of the genomic marker-based relationship matrix G :

H ¼
�
A11 þ A12A21

22 ðG2A22ÞA21
22 A21 A12A21

22 G
GA21

22 A21 G

�
(3)

where A11 is the block of A for the nongenotyped individuals of the
population,A22 is the block of genotyped individuals, andA12 andA21

are the blocks containing the expected additive genetic relationships
between genotyped and nongenotyped individuals. The inverse of H
(H21) can be obtained via (Aguilar et al. 2010; Christensen and Lund
2010):

H21 ¼ A21 þ
�
0 0
0 G212A21

22

�
(4)

where A21 is the inverse of the pedigree-based relationship matrix A,
and G21 and A21

22 are the pedigree and the genomic relationship
matrices for the genotyped individuals, respectively.

Prior to calculation of H; the GRMs were scaled as G� ¼ bGþ a;

such that the average of diagonal and off-diagonal elements of G were
equivalent to those of A22 by solving the following system of equations
for the parameters a and b (Christensen et al. 2012).�

AvgðdiagðGÞÞbþ a ¼ AvgðdiagðA22ÞÞ
AvgðGÞbþ a ¼ AvgðA22Þ (5)

To avoid potential problems with inversion of G�; it was weighted as
(Aguilar et al. 2010):

Gw ¼ 0:95 ·G� þ ð12 0:95Þ·A22 (6)

Five levels of genotyping effort were tested in the HBLUP method:
0, 25, 50, 75, and 100%. In the case of 0% of genotyping effort,
variance components, genetic correlations, and breeding values
were obtained strictly using expected additive genetic relationships
defined in A (i.e., ABLUP). At 100% genotyping effort, theGmatrix
used in Equation 4 containing all possible genotyped individuals
was combined with the A matrix. In this last case, A11 represents
only the unrelated and nongenotyped maternal parents (i.e., a di-
agonal square matrix of order 214). To avoid possible sampling
bias, a replicated resampling scheme was used to obtain parameter
estimates at 25–75% genotyping effort. In detail, two, four, or six
individuals per family, of a possible maximum of eight, were ran-
domly removed from the G and A22 matrices prior to rescaling and
combining withA in Equation 4. This process was repeated 30 times
at each level of genotyping effort and mean values for the results are
reported.

The restricted maximum likelihood (REML) was used to estimate
variance and covariance for the random effects in the bivariate mixed
model (1), and were obtained with the ASReml-R v3.0 program (Butler
et al. 2009).

The single-trait narrow-sense heritability for of each trait from the
bivariate ABLUP and HBLUP models were estimated as:

ĥ
2 ¼ ŝ2

a

ŝ2
a þ ŝ2

e
(7)

where ŝ2
a and ŝ2

e are the estimates of additive genetic and residual
variances, respectively (Falconer and Mackay 1996).

The additive genetic correlation between the two traitswas estimated
as Pearson’s product moment: n
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r̂G ¼ ^cov1;2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2
a1ŝ

2
a2

q (8)

where, ^cov1;2; ŝ
2
a1; and ŝ2

a2 are the genetic covariance and additive
genetic variances for traits 1 and 2 respectively, estimated from the
bivariate model (1) (Falconer and Mackay 1996).

The theoretical accuracy of breeding values (̂r) was estimated after
(Dutkowski et al. 2002):

r̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

SE2i
ð1þ FiÞŝa

2

s
(9)

where SEi is the standard error, and Fi is the inbreeding coefficient of
the ith individual. SEs of the breeding values were obtained from the
bivariate model with variance components fixed to estimates from the
same model with 100% genotyping effort for the respective traits,
under the assumption that these were most accurate.

Additionally, the Akaike information criterion (AIC) was com-
puted to compare the fit of the bivariate ABLUP andHBLUPmodels.
A smallerAIC value indicates better fit. Furthermore, Spearman rank
correlations and the proportion of common candidates in the top 5%
of mothers and progenies were also calculated to compare whether
the predicted breeding values differed among the ABLUP and
HBLUP models.

Data availability
The data used are available from the Dryad Digital Repository:
doi:10.5061/dryad.6rd6f (Beaulieu et al. 2014).

RESULTS

Relationship matrices
Descriptive statistics for the expected (A) and combined (H) relation-
ship estimators presented the ranges of theH relationship groups to be
larger than that of A (Table 1). As expected, the Pearson correlation
between A and the H relationship matrices decreased with an increase
in genotyping effort. The ranges of the values within the various rela-
tionship groups also tended to expand with increasing genotyping
effort. Particularly noteworthy was the presence of non-zero relation-
ship coefficients between maternal parents given by the H relationship
estimators, indicating that maternal parents are not completely unre-
lated as assumed in the pedigree. Likewise, large differences from the
expected pairwise half-sib and unrelated values in A were observed in
theH relationship estimators. These deviations imply the possible pres-
ence of pedigree errors on one side, and full-sibs within the half-sib
families on the other side.

Family and provenance structure was visually evident in the heat
maps of the relationship estimators (see Supplemental Material, Figure
S1, Figure S2, Figure S3, Figure S4, Figure S5 in File S1). Samples were
sorted according to family and provenance, then the pairwise relation-
ship coefficients of the matrices were plotted. Historical relationships
(i.e., provenance) not captured by the pedigree estimator A (Figure S1)
were visually apparent in H with as little as 25% genotyping effort
(Figure S2). Further, potential pedigree errors not accounted for in
the contemporary pedigree were uncovered, these errors may be due
to mislabeling or technical errors in the lab. Population structure and
potential pedigree errors were further evidenced by the large deviations
observed between the ranges maternal parent–parent, half-sib, and
unrelated relationship coefficients between A and the H relationship
estimators (Table 1). n
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ŝ
2 b
(H
T)

ŝ
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ŝ
2 b
(W

D
)

ŝ
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Variance components
The additive genetic variance estimates obtained from the bivariate
HBLUP models were substantially lower than the bivariate ABLUP
model estimates for both HT and WD (Table 2). Further, the additive
genetic component estimates of the HBLUP models continually de-
creased as a result of increased genotyping effort. It should be noted
that the observed differences in additive genetic variance estimates be-
tween the ABLUP and HBLUP models reflects on the known bias
associated with considering wind-pollinated offspring as half-sib prog-
eny, which often results in the overestimation of additive genetic var-
iance and subsequently incorrect parental and progeny rankings. This
bias is attributable to hidden relationships in assumed open-pollinated
half-sib pedigrees.

Narrow-sense heritability estimates of the bivariate HBLUPmod-
els mirrored those of the additive genetic variance estimates (HT:
from 0.178 to 0.295; WD: from 0.310 to 0.594). These estimates at
100% genotyping effort for HT and WD were intermediate to the
polygenic and marker-based estimates described by Beaulieu et al.
(2014). The trend observed in the estimates of additive genetic var-
iance was coupled with an increase in the residual variance compo-
nent for the HBLUP models compared to the ABLUP model, with
the lowest estimates observed for the ABLUP model, indicating
that some residual variance was shifted to the additive variance,
hence the overestimation of heritability (Table 2). Comparison of
the block variance estimates provided no pattern of association
with any factor, and the estimates were relatively stable across all
models for both WD and HT. Across all the models, the additive
genetic correlations between HT andWDwere minor, negative, and
not significant (based on SEs). The variation in model parameters’
estimates under 25, 50, and 75% genotyping effort, due to random
sampling, was low, indicating that the selection of genotyped indi-
viduals within family has minimal impact (see Table S1, Table S2,
and Table S3 in File S1).

Large incremental improvements in the model fit, determined by
AIC,were observed for theHBLUPmodels over theABLUPmodelwith
increasing genotyping effort. Model fit was optimal in the case with
complete genotyping effort (100%), using the H relationship estimator
(Table 2).

Breeding value accuracy
The mean breeding value accuracies for HT andWD are presented for
three classes of individuals: maternal parents and genotyped and non-
genotyped progeny (Table 3). Comparison of H and A relationship
estimators on mean breeding value accuracies for the maternal parents
showed minor increases for HT (differences were limited to only the
second decimal place; from 0.520 to 0.539) and no changes for WD
(from 0.635 to 0.635) with increasing family genotyping efforts. The
mean breeding value accuracy of nongenotyped progeny using the H
estimator across all levels of genotyping effort was stable and equivalent
to the mean breeding value accuracy of the progeny using the A esti-
mator, for both HT and WD. As expected, the largest improvements
over the A relationship estimator were noted for genotyped progeny
using the H estimators. Increasing genotyping effort produced large
increases in mean breeding value accuracy for both HT and WD over
mean breeding value accuracies of the progeny using A (HT: 0.474;
WD: 0.605), with the effect greater for HT (HT: from 0.498 to 0.536;
WD: from 0.626 to 0.661).

Candidate rankings
The Spearman rank correlations for maternal and progeny breeding
values, and the proportion of common candidates in the top 5% of
maternal and progeny rankings, between the A and H relationship
estimator at 25, 50, 75, and 100% genotyping effort, for both HT and
WD, are presented in Table 4. The pairwise Spearman rank correlations
were always less than perfect indicating at least some disagreement in
the rankings of candidate maternal parents and progeny. Overall, ma-
ternal and progeny Spearman rank correlations between the HBLUP
models and the ABLUP model were greater for WD than HT, further
suggesting that genomic information was less impactful on candidate
rankings for the higher heritability trait. Furthermore, the Spearman
rank correlations between the ABLUP model and the HBLUP models
decreased with increasing genotyping effort in all cases. The top 5%
analysis again showed overall better agreement for WD over HT for
both maternal and progeny candidates. Furthermore, agreement with
the top 5% ABLUP candidates decreased with increasing genotyping
effort in the HBLUP models. In summary, the Spearman rank corre-
lations and the proportion of common candidates in the top

n Table 3 Mean breeding value accuracy estimates (̂r) for white spruce tree height and wood density using pedigree-based (A) and
combined pedigree marker-based (H) relationship estimators at 0, 25, 50, 75, and 100% genotyping effort for three classes of individuals:
maternal parent, genotyped progeny, and nongenotyped progeny

Estimator (GE) (%) Class
HT WD

r̂ r̂

A (0%) Maternal 0.521 (NA) 0.635 (NA)
Genotyped NA NA
Nongenotyped 0.474 (NA) 0.605 (NA)

H (25%) Maternal 0.525 (0.0007) 0.635 (0.0007)
Genotyped 0.499 (0.0008) 0.626 (0.0007)
Nongenotyped 0.474 (0.0003) 0.604 (0.0002)

H (50%) Maternal 0.527 (0.0010) 0.635 (0.0009)
Genotyped 0.514 (0.0006) 0.640 (0.0004)
Nongenotyped 0.473 (0.0004) 0.602 (0.0003)

H (75%) Maternal 0.530 (0.0007) 0.635 (0.0007)
Genotyped 0.528 (0.0004) 0.651 (0.0003)
Nongenotyped 0.475 (0.0003) 0.601 (0.0002)

H (100%) Maternal 0.539 (NA) 0.635 (NA)
Genotyped 0.536 (NA) 0.661 (NA)
Nongenotyped NA NA

SD of sampling distribution in parentheses. HT, height in cm; WD, wood density in kg/m3; r̂ ,breeding value accuracy estimates; A, pedigree-based relationship
estimator; NA, not applicable; H, combined pedigree marker-based relationship estimator.
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5% suggests that the inclusion of genomic information affects candi-
date rankings and has the potential to alter both forward and back-
ward selections.

DISCUSSION
The investigation of genetic architecture in forest trees requires the
establishment of large scale testing populations with predefined mating
design. The results’ quality (i.e., accuracy and precision of genetic pa-
rameters) are often a reflection of the extent of efforts invested into the
design of the field experiment. Commonly, quantitative genetics anal-
yses are based on the animal model implemented in mixed model
theory (Henderson 1984). Such analyses are based on the average nu-
merator relationship matrix tracking probability of identity by descent
(Amatrix). The mixedmodel theory operates with the assumption that
variance–covariance matrices of random terms used in the animal
model are error free (Henderson 1984). The average numerator rela-
tionship matrix cannot fulfill this assumption as it is based on the
pairwise expected relationship values and does not account for the
Mendelian sampling term. Moreover, the contemporary shallow ped-
igrees of many forest tree breeding programs are unable to account for
historical coancestry. The use of genotypic data enables greater insight
into genetic covariances and the precise mapping of the Mendelian
sampling term (Visscher et al. 2006). The use of marker-based relation-
ship matrix analyses can be beneficial even in small populations with
limited pedigree information (El-Kassaby et al. 2012; Ødegård and
Meuwissen 2012; Porth et al. 2013; Cappa et al. 2016)

However, the cost and logistics of obtaining genotypic information
for the large testing populations in tree improvement programs still
represents a barrier to widespread implementation of this methodology
(Beaulieu et al. 2014). Additionally, deployment of genetic analysis
using the entire testing population (i.e., genotyped and nongenotyped
individuals) is important to eliminate bias connected to the total reli-
ance on using genotyped individuals only or error-prone multi-step
methods. While the genomic information benefits from lower inbreed-
ing build-up during the selection phases as compared to pedigree-based
BLUP (Liu et al. 2014) due to the added knowledge about the Mende-
lian sampling term and historical coancestry, it is recommended that
including nongenotyped individuals in the same data analysis is ben-
eficial as it effectively reduces the bias associated with selection of
individuals for genotyping (Ducrocq and Patry 2010). This is increas-
ingly important, especially in forest tree breeding programs, which are
based on shallow pedigree selection from large base populations. The
HBLUPmethod combining both pedigree- andmarker-based relation-
ship matrices generally provides as good as, or better, results over
pedigree-based BLUP (Christensen et al. 2012) or multi-step approaches
(Vitezica et al. 2011).

By permitting both pedigree and marker information in a single
genetic evaluation analysis, the combined HBLUP approach offers
resolution to these problems. Information gained through genomic
relationship estimates for a subset of genotyped individuals is reflected
via pedigree relationships to the nongenotyped individuals in the re-
lationshipmatrixH (Legarra et al. 2009). Thus,more accurate estimates
of relatedness are obtained in a cost-efficient manner. Our results sup-
port this notion through large improvement in the model fit as repre-
sented by the AIC statistics from the exclusive pedigree-basedmodel to
models utilizing the combination of marker and pedigree information
at various genotyping efforts (Table 2). Furthermore, the presence of
hidden relatedness, particularly in open-pollinated trials, can be a se-
rious problem in their genetic evaluation resulting in upwardly biased
estimates of heritability (Squillace 1974; Askew and El-Kassaby 1994;
Namkoong et al. 2012) (Table 2). This bias is caused by overestimationn
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of additive genetic variance due to the unrealistic assumption of pure
half-sibling relatedness within the open-pollinated families, as well as
complete unrelatedness among the parental donors. Reality and em-
pirical evidence suggests the existence of hidden relationships within
these families (i.e., full-sibs, half-selfs, and full-selfs) (Squillace 1974;
Askew and El-Kassaby 1994; Namkoong et al. 2012; Gamal El-Dien
et al. 2016). Our results confirm that hidden relatedness within the OP
families and historical coancestry exists in this P. glauca population,
and was better accounted for through the HBLUP method, with in-
creasing genotyping effort helping to approach more realistic estimates
of genetic parameters and better model fit as compared to the analysis
performed on the complete pedigree alone (Table 2). It should be stated
that all hidden relatedness can only be accounted for under the GBLUP
analysis, where individuals are genotyped (including parents); however,
the HBLUP is composed of a mixture of genotyped and nongenotyped
individuals, thus a slight overestimation of the additive genetic variance
is expected. The degree of additive variance overestimation should lie
between the GBLUP and pedigree analyses (Beaulieu et al. 2014).

The accuracy of the estimated breeding values is of practical im-
portance to tree breeders. Correct ranking of the selection candidates
based on accurate estimates of relatedness is an important factor.While
traditional pedigree-based analyses have been proven to deliver in-
creased genetic gain, a reduction in the size of the testing population can
be achieved with improvement in accuracy through the use of genetic
markers in the evaluation. The comparison of breeding value accuracies
in this study was based on the assumption that the variance component
estimates produced by the bivariateHBLUPmodel with full genotyping
effort were most accurate. We fixed the variance components of each
model to these estimates prior to calculating theoretical breeding value
accuracy for each scenario. Our results show incremental improvement
in the accuracy of progeny breeding values for the genotyped subset for
bothHT andWDwith increasing genotyping effort (Table 3). However,
this improvement was not translated to the nongenotyped progeny
subset in either trait. The simple, disconnected pedigree structure of
this population is a probable explanation for this observation, as the
genomic information is only transferred from genotyped to nongeno-
typed individuals via pedigree relationships. We expect that in systems
with more complex and interconnected pedigree structure, such as
diallel mating designs, multi-generational complex pedigrees will ben-
efit more from the HBLUP method as genomic information can be
inferred frommultiple family sources to the nongenotyped individuals.

Furthermore, family or maternal parent breeding value accuracy
remained constant across all levels of genotyping effort for the trait with
greater heritability, WD, whereas slight increases were observed for the
lower heritability trait, HT, at 25, 50, 75, and 100% genotyping effort
(from 0.525 to 0.539). The difference in contrasting heritabilities of the
traits and these findings agree with previous discussions that genomic
selection is expected to be more efficient in low heritability traits (Calus
et al. 2008; Grattapaglia and Resende 2011). Yet, the inclusion of even a
small proportion (i.e., 25%) of genomic information per family pro-
duced differences in ranking the top 5% of both maternal and progeny
candidates for both traits (Table 4).

The accuracy of estimated breeding values in HBLUP is not a
function of only average diagonal and off-diagonal elements in the G
matrix, but also the difference between them as it reflects the level of
relatedness in the testing population (Forni et al. 2011). Generally, the
genomic relationship matrix uses actual allele frequencies instead of
those of the base population, which are usually unknown (in this case,
the base population is treated as the studied pedigree population), and
sets the genomic-base population as the genotyped population (Oliehoek
et al. 2006). However, such analysis is affected by incompatibility

between pedigree- and marker-based relationship matrices due to the
inferences made about the base population using information from
the studied population. Powell et al. (2010) highlighted the impor-
tance of scaling these matrices by correcting the genomic relationship
matrix by a factor reflecting the mean difference between the A and G
matrices. Several approaches were proposed to rescale the G matrix
according to the Amatrix (Meuwissen et al. 2011; Vitezica et al. 2011;
Christensen et al. 2012); however, an opposite approach was also
proposed by Christensen et al. (2012), whereby the A matrix is
rescaled according to its G counterpart. To avoid incompatibility be-
tween the G and A matrices, a normalized G matrix containing the
average of diagonal elements equal to one needs to be constructed.
Such a matrix is efficient when the population is inbreeding free, and
if inbreeding is present then inbreeding coefficients have to be in-
cluded in the denominator (Forni et al. 2011). We chose to scale G
according to Christensen et al. (2012); however, all analyses were
tested without scaling G and yielded comparable results (results not
shown). This result is likely due to the shallow pedigree structure
and minor differences between the A22 and Gmatrices. Additionally,
Vitezica et al. (2011) observed discrepancies in the accurate genomic
breeding values with incorrectly scaled G, but only under strong
selection (i.e., nonrandom) of genotyped individuals and when
genotyping was across 10 generations. However, in the present study,
the 25–75% of genotyped trees were randomly removed (i.e., unse-
lected) and all these trees came from only one generation.

Asapreliminary investigation into the combineduse of genomic and
pedigree information in the applied genetic analysis of white spruce, the
HBLUPmethodhas proven to be a beneficial tool to forest tree breeders.
The inclusion of nongenotyped and genotyped trees in a single analysis
produced improvements in breeding value accuracy and model fit,
particularly for the trait with low heritability (HT). Further, discordance
in candidate rankings between the HBLUP and the traditional method
that utilizes A were observed. Improvement in the results were contin-
uous with increasing genotyping effort; however, improvements were
also seen at the minimum level of 25% genotyping effort.
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