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ABSTRACT: Recent estimates of additional land available for bioenergy
production range from 320 to 1411 million ha. These estimates were
generated from four scenarios regarding the types of land suitable for
bioenergy production using coarse-resolution inputs of soil productivity,
slope, climate, and land cover. In this paper, these maps of land availability
were assessed using high-resolution satellite imagery. Samples from these
maps were selected and crowdsourcing of Google Earth images was used to
determine the type of land cover and the degree of human impact. Based on
this sample, a set of rules was formulated to downward adjust the original
estimates for each of the four scenarios that were previously used to generate
the maps of land availability for bioenergy production. The adjusted land
availability estimates range from 56 to 1035 million ha depending upon the
scenario and the ruleset used when the sample is corrected for bias. Large
forest areas not intended for biofuel production purposes were present in all scenarios. However, these numbers should not be
considered as definitive estimates but should be used to highlight the uncertainty in attempting to quantify land availability for
biofuel production when using coarse-resolution inputs with implications for further policy development.

1. INTRODUCTION

A midrange estimate of an additional 500 million ha will be
required by 2020 to meet biofuel objectives and could
potentially require up to 20% of all arable land by 2050.1,2

However, with the growing support for biofuels in the United
States and the European Union, a number of studies have
warned of the increasing competition for land that will impact
food security.3−5 Given these concerns, it has become a priority
to dedicate biofuel development only on what is being referred
to as “marginal land”. Marginal land is generally considered

land that is not productive or cost-effective for food crops yet is
still considered capable of producing bioenergy crops (e.g.,
Jatropha curcas, Pongamia pinnata, and certain perennial grasses,
etc.). For example, a report commissioned by the UK
government stressed that biofuel policies should ensure that
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agricultural expansion is “directed toward suitable idle or
marginal land, or utilizes appropriate wastes, residues or other
noncrop feedstock”.1

This has created the incentive to build global inventories
assessing land availability specifically for biofuel crops. These
inventories rely on coarse-resolution data to identify marginal
areas acceptable for agricultural expansion. Recent examples
include the HYDE database with a 10-km resolution at the
equator,6 land cover data sets based on MODIS or AVHRR
with a resolution of 1 km at the equator,7,8 and expert opinion
estimates that have declared 25% of all global land to be “highly
degraded or degraded” (9; see also 10). Abandoned agricultural
land has also been included in some marginal land inventories
with the assumption that it has been degraded to the point
where it is no longer profitable to cultivate food crops.11

However, relying on coarse-resolution data to determine land
availability is limited in three ways: first, small pockets of
cultivation may be overlooked and rolled into available
marginal land estimates because the resolution of land cover
data is too coarse to detect it.11 For example, in Ethiopia, 64.5%
of cultivated farms occupy less than one ha where 40.6% are on
land parcels of 0.5 ha or less.12,13 Second, people use land for
purposes other than smallholder agriculture that are not
reflected in land cover data.11 Certain land cover types may
be included in marginal estimates when they are areas that
communities directly rely upon for medicine, building
materials, fuels, hunting and gathering, and grazing. For
example, in Tanzania, there has been a call for an official
downgrading from official FAO figures of available land since
lands have been found to already be in use by local
communities (for their survival) and do not take competing
land use such as livestock and harvesting from forests into
account.14 Lastly, both the theoretical and the technical
potential of land available for biofuels is highly uncertain15

and coarse-resolution data do not necessarily inform whether
identified marginal areas may hold any productive potential at
all for biofuel crops. For example, a 2008 marginal lands
estimate in China considered saline land, bare land, marshland,
reed swamp, and tidal flats suitable for bioenergy crops, though
these areas might not be economically feasible or environ-
mentally desirable to develop.16

For these reasons, land availability for biofuels may be
overestimated yet none of the maps used as a basis for making
marginal land estimates have been assessed. However, with new
very high-resolution imagery available on Google Earth (GE)
and with the power of the crowd,17 a true picture of the
landscape is available at nearly all locations on the globe, and
large-scale assessment exercises of these maps are now possible.
Crowdsourcing is increasingly being used to gather environ-
mental data that would otherwise be prohibitively expensive to
collect by agencies and researchers, and although the quality of
crowdsourced data is still the subject of debate,18,19 the
potential for gathering considerable amounts of data for
assessment purposes is considerable. This applies not only to
the specific example provided in this paper, i.e. examination of a
map of land availability for biofuel production by the crowd,
but to any application where more in situ data are required,
where validation of remotely sensed information is needed,
particularly coarse-resolution data, or where maps are created
using the crowd. While it would still not be possible to
conclude with certainty that areas categorized as grassland are
not being used by nomadic pastoralists, GE and crowdsourcing
can be used to discern the degree to which land previously

classified via coarse-resolution data is used for smallholder
agriculture. Assessment using very high-resolution imagery of
this type can also identify to a certain degree land that is already
likely put to some other social or economic end requiring more
localized assessment. Finally, it can help resolve whether
identified marginal land is conducive to growing any crops at
all.
Complementing these estimates with robust assessment is

especially important given the widespread societal impact of
recent inventories. Although the original idea behind the study
reported in Cai et al.7 was not to provide definitive estimates of
land availability for bioenergy production but rather to provide
a range of estimates, the biofuel lobby has cited this study,
quoting the upper bound rather than the lower. For example,
news reports20,21 have referred to the recent estimates of ref 7
in order to stress land availability for biofuel development even
though the referenced maps have not yet been evaluated. This
work is also vital given the recent controversial trend of large-
scale land acquisition for biofuels in food-insecure states. Large
tracts of land are being leased to foreign investors for export
agriculture, putting tenure-insecure smallholders and pastor-
alists at risk for losing their land as well as access to resources
necessary for their livelihoods.22,23 Since the perceived
availability of land appears to be one important factor in
determining the probability of being a destination country for
these acquisitions,24 figures that reflect a more refined estimate
of true land availability are needed.
Estimates range from 385 to 472 million hectares by

Campbell et al.8 to the most recent comprehensive assessment
of global land availability for biofuels on marginal and degraded
lands reported by Cai et al.7, who generated estimates of 320 to
1411 million hectares. The authors acknowledge that there are
a number of different definitions for marginal land, some of
which refer to low productivity for agriculture while others are
more related to economics and agricultural policy. They also
refer to other types of land that are also considered marginal,
i.e. wasteland, or land that is unfavorable for agriculture;
degraded land, which is land that will continue to lose
ecosystem services without interventions; abandoned land,
which is land that is no longer used for agriculture and remains
unused; and idle land, which comprises all the previous types of
land and those not developed or set aside for conservation
purposes.
To develop the global land availability for biofuels map, Cai

et al.7 produced a productivity layer generated by combining
soil productivity, slope, soil temperature, and a humidity index
to yield three categories: land with marginal productivity, low
productivity, and regular productivity. This productivity layer
was then overlaid onto the IGBP land cover map25 in order to
calculate the amount of marginal land available in 8 classes,
which were aggregations of the IBGP legend (see Supporting
Information Tables S1 and S2). Available land for biofuels was
considered to be land with marginal productivity that
overlapped with combinations of the following landcover
types: cropland, mixed crop and vegetation, grassland, savanna,
and shrubland under four different scenarios. Scenario 1 (S1)
considers only marginal land in the mixed crop and natural
vegetation class of the IGBP map (see the class entitled
cropland/natural vegetation mosaic in Table S2), where the
estimate is 320 million. Scenario 2 (S2) considers the cropland
class in addition to the mixed crop and natural vegetation class,
which raises the land available to 702 million ha. Scenario 3
(S3) is once again additive and also considers marginal
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shrubland, savanna, and grassland classes in addition to the land
available from S2 for a total of 1411 million ha. However, the
authors recognized that this scenario is probably unrealistic
since marginal land in these land cover types could be used for
grazing. Thus, scenario 4 (S4) was designed to take this
unrealistic assumption into account and considers cropland
with marginal productivity, and mixed crop and natural
vegetation, grassland, savanna, and shrubland with either
marginal or regular productivity. A pastureland data set from
the Food and Agriculture Organization of the United Nations
(FAO) was used to remove these areas, resulting in a final
estimate of 1107 million ha of land available for biofuel
production.
The aim of this paper is to critically assess these estimates of

land available from each of the four scenarios using GE and
crowdsourcing via the Geo-wiki tool.17 The sampling method-
ology and development of the rules for downgrading the
estimates in scenarios S1 to S4 are described in the
Methodology section that follows. The results are then
presented along with the implications of these results in
terms of estimating land availability for biofuel production in
the future.

2. METHODOLOGY

2.1. Data Collection via Crowdsourcing with Google
Earth (GE). A campaign to assess the biofuel map was
undertaken in the autumn of 2011 using the Geo-wiki
crowdsourcing tool (http://humanimpact.geo-wiki.org). A
random sample of pixels at a resolution of 1 km × 1 km was
first extracted from the biofuel maps produced by Cai et al.7

These were then provided randomly to the crowd for
assessment. For each pixel, the crowd was asked to indicate
the type of land cover from a set of 10 simple classes that
included the following: [1] tree cover; [2] shrub cover; [3]
herbaceous vegetation/grassland; [4] cultivated and managed;
[5] mosaic of cultivated and managed/natural vegetation; [6]
flooded/wetland; [7] urban; [8] snow and ice; [9] barren; and
[10] open water. These land cover types are a simplified
version of the generalized land cover classification of Loveland

et al.,25 which has been mapped to the IGBP land cover legend
and is therefore compatible with the classes used by ref 7 in
their determination of a productivity layer by land cover class
(see Table S1). The crowd was then asked to indicate the
degree of human impact that was visible from GE in that same
pixel. A training manual with an interpretation key was supplied
so that participants could see examples of different land cover
types and different degrees of human impact. Figure S1
provides user-classified human impact for 4 representative
images as an illustration of the concept, while Figure S2
provides examples of how GE images would be classified in
terms of the land cover classes relevant to this paper.
For this particular competition the crowd was generally

composed of remote sensing experts, postgraduate students in
the areas of remote sensing and spatial sciences, and scientists
working in a related field. A total of ∼18 000 viable pixels were
collected during the 2-month campaign for use in the
assessment. Figure 1 shows the distribution of these pixels
within the map of land availability for S3, plotted by varying
degrees of human impact. From this sample, 299 pixels were
control points, which were used to judge the quality of the
crowd. These 299 pixels were first independently assessed by
three experts, who then examined and discussed each one of
the pixels as a group and agreed on a final set of answers. The
first 99 pixels were provided to the crowd at the beginning of
the competition, the next 100 were provided in the middle, and
the final 100 were provided at the end. The overall accuracy for
these three sets of controls was 66.4%, 66.5%, and 76.2%,
respectively, although if some confusion was accounted for
between the classes, this increased to 81.4%, 81.3%, and 86.0%,
respectively.26 Accuracies by class and individual participant
have also been calculated using four different measures of
accuracy,27 and a latent class analysis undertaken by Foody et
al.28 has shown that the relative accuracy of different volunteers
can be characterized very accurately.
For those pixels where no controls were available, we

examined those which were classified more than once to
determine how often a majority agreement was reached. Of the
17 924 pixels assessed inside the map, 11 524 were examined
once by one participant and the remaining 6400 were assessed

Figure 1. Distribution of crowdsourced validation points by human impact sampled from the land availability map for S3.
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by more than one participant for a total of 20 063 times. Of this
total, a majority could be established for 4438 of the images
which were classified 15 947 times, with participants reaching
an agreement for 13 253 classifications (the sum of the
maximum, i.e. agreed land cover class per image). Therefore,
agreement was reached 83% of the time using a majority rule.
To account for the accuracy of the crowd in the subsequent

use of the data and therefore the uncertainty in the estimates of
land availability, the bias of the crowd in relation to the control
pixels for both the land cover classification and human impact
was calculated. The details of these calculations are provided in
the Supporting Information. The bias was then used to provide
additional estimates of land availability for each scenario as
outlined in more detail below.
2.2. Rules for Downgrading the Original Estimates

Generated by Scenarios S1−S4. The scenarios from Cai et
al.7 specify the type of land cover that should be included in the
land availability estimates under various considerations from
more to less conservative ones, roughly corresponding to a
mosaic of cropland and natural vegetation, cropland, shrubland,
savannah, and herbaceous/grassland. The land’s productivity is
not considered here. Information on land cover type and the
amount of human impact as supplied by the participants was
extracted for each scenario and evaluated using the set of rules
described in more detail below. Figure 2 shows the distribution

of land cover types in the crowdsourced sample, which are
found in areas that correspond to the maps of ref 7. Note that 7
did not consider the potential of converting current forest land
into bioenergy cropland. Although there has been an ongoing
dynamic exchange between forest and agricultural land in many
regions, e.g. forest land has been cleared for cropland and
abandoned croplands have reverted back to forest like that
which occurred in the eastern U.S. during the 20th century,29

for a more environmentally conservative scenario, forested land
is not currently considered for biofuel development even
though a recent study by Kraxner et al.30 suggests that biomass
will, to a large extent, be sourced from the conversion of
unmanaged forest into managed forests in the future. However,
based on Figure 2, 22% of the sample includes tree cover. We
acknowledge the occurrence of two possible situations. The
first is that small areas of forest may have been included
erroneously in the estimates of ref 7. These small forested areas
could be located within cropland and cropland mosaics, which
would be more likely to occur using coarse-resolution imagery.

The second situation is that areas of continuous tree cover
identified by the crowd using GE that were simply wrong on
the original IGBP land cover map yet were included in the land
availability map. The downward estimation therefore adjusts for
the presence of tree cover in the sample.
Each scenario was evaluated by estimating the percentage of

the expected land cover types that was present in the
crowdsourced sample. The percentage of the remaining land
cover types, which should not be considered as available land,
e.g. forest cover, was then used to downward adjust the
estimates of ref 7. A sample of pixels from GE that fall inside
the land availability map for different scenarios is provided in
Figure 3. These pixels were taken directly from humanimpact.

geo-wiki.org where the blue lines indicate a single pixel of 1 km
× 1 km, which are seen by the users as the area of reference for
each contribution provided. The projection of Google Earth is
WGS84, which is a geographic projection in latitude longitude.
In this projection the pixels are square at the equator and they
become more rectangular as one moves away from the equator.
These pixels illustrate examples of forest cover and intensive
agriculture where the land is clearly not available for biofuels
yet they appear as potential areas of available land. To apply
these downward adjustments, we devised a series of rules for
each scenario as described below.
S1 in ref 7 considers land classified as mixed crop and natural

vegetation based on the IGBP land cover map that has marginal
productivity as determined by a fuzzy logic land productivity
assessment model. These areas are taken to represent
abandoned or idle agricultural lands or wastelands. The
following two subscenarios were devised:

Figure 2. Distribution of land cover types in the validation sample for
S3 taking into account the majority response for land cover at each
pixel.

Figure 3. Examples of pixels (denoted by the blue lines) as shown on
Google Earth that fall within the land availability for biofuel map of Cai
et al.7 in different scenarios. The top two pixels show areas of existing
forest with some already cultivated land, while the bottom two pixels
show areas under intensive cultivation, which indicate that these pixels
are not available for additional biofuel production.
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• Adjustment of the estimates of S1 for land cover (1A):
Only mixed crop and natural vegetation land is
considered, which corresponds to the land cover type
mosaic of cultivated and managed/natural vegetation in
the crowdsourced sample. All other land cover types are
considered as land that is not available for biofuels.
Therefore, the original estimate for S1 was multiplied by
the percentage of pixels in the sample that correspond to
mosaic of cultivated and managed/natural vegetation.
Whether the land is marginal is not considered and
therefore this subscenario represents the most con-
servative downward adjustment. This calculation was
repeated taking the unweighted and weighted bias-
corrected percentage values into account (see Supporting
Information) resulting in a range of estimates for S1A
that account for uncertainty.

• Adjustment for human impact (1B): Same as 1A but use
100% minus the degree of human impact (expressed as a
percentage) to account for the portion of the mosaic that
could be used for biofuels. Information about the degree
of human impact was collected as part of the
crowdsourcing exercise as described previously. The
original estimate for S1 was therefore multiplied by the
percentage of pixels in the sample that are a mosaic of
cultivated and managed/natural vegetation scaled by
100% minus the percentage of human impact. Similar to
that outlined above in S1A, two additional estimates were
calculated to account for the combined bias correction in
land cover and human impact.

Scenario S2 in 7 adds the cropland class from the IGBP land
cover map with marginal productivity, which represents
degraded or low quality cropland, in addition to the abandoned
land and wasteland already considered in S1. Two adjustment
scenarios were devised as follows:

• Adjustment for land cover (2A): Mixed crop and natural
vegetation and cropland is considered, which corre-
sponds to the land cover types mosaic of cultivated and
managed/natural vegetation, and cultivated and managed
cropland in the crowdsourced sample. Once again no
assumptions were made about whether the land is
marginal so this represents a conservative adjustment.

• Adjustment for human impact (2B): Same as 2A but
100% minus the degree of human impact is used to
account for the portion of the mosaic and cropland
classes that could be used for biofuels.

As in Scenario S1, additional estimates were calculated using
the values corrected for the bias in land cover and human
impact.
Scenario S3 in 7 adds the grassland, savannah, and shrubland

classes from the IGBP land cover map with marginal
productivity as potential areas for biofuels. Considering only
these land cover types, two adjustment scenarios were
considered (with and without the bias corrections):

• Adjustment for land cover (3A): In addition to the land
cover types mosaic of cultivated and managed/natural
vegetation, and cultivated and managed, two others are
included: shrub cover, and herbaceous vegetation/
grassland.

• Adjustment for human impact (3B): Same as 3A but the
land cover type shrub cover is adjusted for human
impact, i.e. 100% minus the degree of human impact in
order to discount shrub covered areas that show signs of

being used. In addition, the cropland and mosaic classes
are adjusted for human impact similar to scenario 2B.

S4 in 7 was devised to address shortcomings in S3 where
some of the marginal grassland, savanna, and shrubland will
likely be used for grazing. Therefore, S4 considers only the
mixed crop and natural vegetation, and the grassland, savanna,
and shrubland classes from the IGBP legend regardless of
productivity but then removes pastureland as determined by
FAO. For the purpose of downgrading these estimates,
pastureland is taken into account via human impact. If
human impact is greater than 50% of the herbaceous land
cover, we consider it to be pastureland and it is therefore not
available for biofuels.

3. RESULTS AND DISCUSSION
Figure 4 provides the percentage by which the original
estimates of land available are downgraded for each scenario

as a result of no correction and the correction for bias, with and
without weighting. The adjusted areas are provided in Table 1.
The bias correction results in an increase in the amount of land
available by varying but small amounts. For example, in S1, the
estimates of land available would be reduced by around 69%
taking only land cover into account (S1A) with no correction
for bias, which leads to a new estimate of 98 million ha. If bias is
considered, then the amount of land available increases to 106
and 113 million ha for an unweighted and weighted bias
correction in land cover, respectively. Taking human impact
into account (S1B), land availability would be further
downgraded for a total reduction of around 89% of the original
(or 82% if a bias weighted by participant contribution is
considered).
The land availability estimate under S2 can be reduced by

28−33% when considering only land cover with and without
bias correction but this reduction increases to 79−88% with
human impact. Similar values of downward adjustment of
around 26−29% were found in S3 and S4 when considering
only land cover, while this increases to between 63% and 80%
with human impact, respectively.
Thus, all of the scenarios of land availability for biofuels can

be downscaled considerably. This is in line with the findings of
Young31, who suggested a reduction of at least 50% in land
available for cultivation based on the estimates provided by the
FAO. The reasons offered for this reduction were a result of
three possible explanations, i.e. the amount of arable land was

Figure 4. Percentage of the area downgraded for each of the scenarios.
The bar including all three shaded areas for each scenario indicates
downgrading without a bias correction. The bias corrections indicate a
decrease in the total area downgraded.
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overestimated, there has been an underestimation in land
already cultivated, and there are demands on land other than
cultivation, which have not been considered sufficiently in the
original estimates. However, there are two additional sources of
uncertainty that must be recognized. First there will be some
land available outside of the areas identified by 7 due to
misclassification errors. It is not possible to quantify this error
using crowdsourcing since productivity is a key element in
determining whether the land is available or not, which is a
modeled parameter. However, as many of the assumptions
made in the methodology were conservative in terms of their
effect on the downscaling, there will already be some
underestimation factored into the figures. A second source of
uncertainty, which could not be factored into this analysis, is
the bias in the original IGBP land cover classification (Table
S3) due to the same reason given above since the productivity
layer is modeled. When looking at the bias of each individual
class, there would be little change to S1 (only 4.4% more land
available), there could possibly be some changes to S2 (22%
more cultivated and managed), and small changes for S3 and S4
(7.6% more shrub cover and 0.4% more herbaceous vegetation/
grassland). That said, it must be recognized that the assessment
of the IGBP land cover product undertaken in 1999 was highly
uncertain since the basis for the assessment was Landsat type
validation data.32

The downward adjustment can also be justified by the
possible overestimation resulting from use of the coarse-
resolution inputs. For example, the IGBP land cover map for
identifying cropland, mosaic, shrub cover, and grasslands has
not been updated and therefore it does not have information as
recent as that found in GE. Moreover, it has been shown that a
high amount of spatial disagreement can be found when
comparing even more recent global land cover maps, with
overall differences of 20% in the cropland domain.33 Other
examples of coarse-resolution input data used in the original
land availability maps include slope and soils, which were used
to generate the productivity layer, and the pastureland layer
provided by FAO. The coarse resolution of these input layers
may result in the inclusion of land that is hilly or otherwise
uncultivable, which may be small individual patches yet
contribute to a large area overall.31 The high-resolution data
used in this study has helped to highlight the uncertainty
associated with using rough-resolution input data for such an
exercise. S1 is the most conservative scenario and was originally
designed to provide a lower bound for land availability
estimates given coarse-resolution inputs. The results of this
study suggest that this lower bound could be adjusted
downward by at least half. However, what it really serves to
do is to highlight the uncertainty surrounding the development
of these estimates. The real implications for these types of
studies are when they move beyond academic exercises in
methodological development and become the trusted inputs to
real policy making. We must ensure that appropriate caveats are

provided with such estimates while continuing to carry out
research in developing better methodologies for generating
global estimates of land availability for biofuel production.
Although the example provided here was focused specifically

on the evaluation of a map of land availability for biofuels, the
methodology has potential applicability to many other domains
in which coarse-resolution remotely sensed information is used
as an input to environmental models. Not only can
crowdsourced information be used to evaluate maps, the data
can also be used to create maps which would otherwise be
difficult to derive through remote sensing or modeling alone.
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