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Abstract: Optical Earth Observation is often limited by weather conditions such as cloudiness.
Radar sensors have the potential to overcome these limitations, however, due to the complex radar-
surface interaction, the retrieving of crop biophysical variables using this technology remains an
open challenge. Aiming to simultaneously benefit from the optical domain background and the
all-weather imagery provided by radar systems, we propose a data fusion approach focused on the
cross-correlation between radar and optical data streams. To do so, we analyzed several multiple-
output Gaussian processes (MOGP) models and their ability to fuse efficiently Sentinel-1 (S1) Radar
Vegetation Index (RVI) and Sentinel-2 (S2) vegetation water content (VWC) time series over a dry
agri-environment in southern Argentina. MOGP models not only exploit the auto-correlations of
S1 and S2data streams independently but also the inter-channel cross-correlations. The S1 RVI and
S2 VWC time series at the selected study sites being the inputs of the MOGP models proved to be
closely correlated. Regarding the set of assessed models, the Convolutional Gaussian model (CONV)
delivered noteworthy accurate data fusion results over winter wheat croplands belonging to the 2020
and 2021 campaigns (NRMSEwheat 2020 = 16.1%; NRMSEwheat 2021 = 10.1%). Posteriorly, we removed
S2 observations from the S1 & S2 dataset corresponding to the complete phenological cycles of winter
wheat from September to the end of December to simulate the presence of clouds in the scenes
and applied the CONV model at the pixel level to reconstruct spatiotemporally-latent VWC maps.
After applying the fusion strategy, the phenology of winter wheat was successfully recovered in the
absence of optical data. Strong correlations were obtained between S2 VWC and S1 & S2 MOGP VWC
reconstructed maps for the assessment dates (R2

wheat−2020 = 0.95, R2
wheat−2021 = 0.96). Altogether, the

fusion of S1 SAR and S2 optical EO data streams with MOGP offers a powerful innovative approach
for cropland trait monitoring over cloudy high-latitude regions.

Keywords: radar vegetation index; time series; irrigated winter wheat; cross-correlation

1. Introduction

Remote sensing (RS) technology offers an appealing opportunity to continuously
quantify the health and productivity of croplands [1,2]. One of the key elements that
significantly affect crop productivity is water [3]. Sufficient water availability is necessary
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for proper plant growth, nutrient uptake, and photosynthesis. Vegetation water content
(VWC) is a useful indicator of the water status of crops and can help in monitoring the
water needs and ensuring optimal management [4–6]. Climate change has become more
pronounced over the past few decades and has caused water scarcity in many regions
of the world. Consequently, water stress manifested as among the most critical abiotic
stressors, negatively affecting plant growth and crop yield worldwide [7]. Real-time
monitoring of the plant water status is urgently required to enable effective management
of irrigation scheduling and to prevent waste of water and crop stress. Leaf water content
(LWC) is a key variable for vital physiological processes, such as stomatal conductance and
transpiration [8]. However, decoupling the spectral contributions of LWC and vegetation’s
canopy is challenging. Instead, the estimation of VWC, described by LWC × LAI, is more
feasible and often preferred [9].

Today, an unprecedented amount of Earth observation (EO) opportunities emerged
from the advent of the European Space Agency’s Copernicus programme [10]. The Sentinels
satellites guarantee long-term observational commitment and operate a variety of sensors
with different spectral configurations and spatial resolutions offering global coverage and
synergistic data exploiting possibilities [10]. The flagship land optical operational EO
system is the Sentinel-2 (S2) constellation consisting of two polar-orbiting satellites (S2-A
and S2-B) [11]. The multi-spectral instrument (MSI) on board S2, combines a relatively high
spatial resolution (10–20 m) with a good spectral resolution (13 bands), and the combination
of the two satellites ensures a high revisit time (5-day). A remarkable amount of research
applying S2 data for crop traits mapping in a quantitative way has been successfully
conducted [12–16]. Beyond the well-known benefits that optical RS provides for cropland
monitoring, the retrieval of complete vegetation traits time series along the phenological
cycle is sometimes hampered by weather conditions in high-latitude areas. In this regard,
radar-based RS brings the technology to mitigate this limitation. Sentinel-1 (S1) as a
synthetic aperture radar (SAR) sensor permits C-band image acquisition in all-weather
conditions during day or night time [17]. The S1 constellation, comprising of S1-A and
S1-B satellites, predefines the interferometric wide swath (IW) mode over land consisting
of dual-polarized (VV & VH) images, at 10 m of spatial resolution every 6 days in a single
pass. Although there is consensus that the vegetation-radar backscatter mechanisms are
complex, there is no doubt that the radar signal at C-band is altered by the vegetation’s
three-dimensional structure and biomass [18,19]. Unlike optical satellites, the observation
geometry plays a weighty role in radar acquisitions [20,21]. Multiple studies exploited radar
imagery for vegetation biophysical variables monitoring [22–25]. For instance, Caballero
et al. [25] presented a novel approach based on S1 radar observations at different local
incidence angles for winter wheat LAI monitoring. They achieved satisfactory validation
results (R2 = 0.67 and RMSE = 0.88 m2 m−2), and proved that S1-based LAI predictions
can support cropland monitoring in cloud-prone areas where the optical vegetation traits
retrieval models cannot be applied for quantitative crop mapping purposes.

The frequent coverage and the systematic observations of S1 & S2 have opened the
door to data-fusion-based RS applications for crop monitoring, land surface change detec-
tion and land cover mapping [26,27]. Several research efforts took advantage of the high
radiometric quality of S1 in synergy with the improved optical sensor of S2 [28–31]. How-
ever, processing S2 optical and S1 radar time series has always been tedious, particularly
when a substantial number of preprocessing steps must be implemented for the whole
dataset. Downloading S1 and S2 images from the Copernicus data hub [32] usually requires
a lot of time and storage space. In this regard, seeking to achieve fully automated prepro-
cessing of EO data streams, migration to cloud-computing platforms offers a solution [33].
Recently, the Google Earth Engine (GEE) platform emerged as a promising, free-access,
high-performance computing platform that enables cloud-based processing of petabytes
of S1 and S2 satellite data, among others [34]. The GEE platform not only provides the
powerful computational capability and access to the Copernicus catalog, but also allows
for the integration of machine learning (ML) algorithms [33,35].



Remote Sens. 2023, 15, 1822 3 of 29

Regarding the creation of continuous, cloud-free S1 & S2 time series data streams, ML
techniques can be implemented to explicitly learn and exploit the joint relationships of both
data streams. Gaussian processes (GP), a nonparametric Bayesian ML regression algorithm,
has had a notable impact on the remote sensing community following the pioneering
publication by Rasmussen and Williams [36]. GP has been openly and successfully ap-
plied for the learning task of analyzing the auto-correlations of single-EO-dataset-channel
models [33,37]. GP regression has advanced considerably in recent years, extending the
GP concept to multiple-channel models. For computing non-trivial dependencies between
multiple and related model outputs, multi-task Gaussian process prediction [38] widely
known as multi-output Gaussian process (MOGP) offers a set of kernel models to learn
such correlations [39]. The concept of multi-output learning emerged from the field of
geostatistics [40]. The MOGP modeling approach can capture valuable information across
correlated outputs to provide more accurate predictions than directly modeling these out-
puts independently [41]. In the context of EO data streams, developing models that exploit
the dependencies between optical and radar sensors results particularly convenient when
the optical data are affected by cloudy sky conditions leading to gaps in the data stream.
Thus, SAR imagery can be used to complement optical sources [29,33,42]. A differentiating
attribute of MOGP is the ability of the models to perform multiple channel prediction tasks
in the presence of missing input data [43]. This makes MOGP particularly appealing for
the fusion of S1 and S2 data streams.

To date, the usage of MOGP to fuse S1 and S2 data streams has only been investigated
by Pipia et al. [29] with the purpose of producing continuous LAI time series. Radar-optical
data fusion for crop monitoring purposes is a novel field of research that warrants greater
attention. For instance, the synergistic usage of S1 & S2 data streams for crop monitoring
in a cloud-computing platform by exploiting the cross-correlations of the MOGP model’s
output channels have yet to be fully explored. Therefore, this study aims to fulfill the
following three main objectives: (1) to train several MOGP models with S1 radar vegetation
index (RVI) [44] & S2 GP VWC time series data over two irrigated winter wheat paddocks
and select the best model for posterior data fusing; (2) to examine if the best-performing
MOGP model effectively retrieves crop traits under simulated cloudy conditions; (3) to
map the S1 & S2 MOGP-reconstructed VWC values for the gap-filled intervals at the pixel
level and evaluate the MOGP’s capacity for reconstructing the complete phenological cycle
of winter wheat in the absence of optical data.

2. Methodology
2.1. Theoretical Background

In the following, we notationally review the single-output GP and MOGP formulations,
adapted to the general requirements of this study.

2.1.1. Single-Output Gaussian Processes Modeling

We refer to the standard GP as a single-output Gaussian process (SOGP). It can be
formulated as follows. Let D = {xi, yi}N

i=1, be a set of N pairs of a xi ∈ RB point belonging
to the training dataset X = {xi}N

i=1 assigned to a random variable yi. GP is a random
process that uses these pairs to learn the function outputs f∗ given a test dataset X∗ of size
N∗ ×D. Let us assume an additive noise model with a zero mean:

yi = fi(xi) + Ei, Ei ∼ N
(

0, σ2
n

)
(1)

where σ2
n is the variance of the Gaussian noise and fi is the nonparametric latent function

to be found. Assuming independent Gaussian noise, the joint distribution of observations
and test predictions is:(

y
f∗

)
∼ N

([
0
0

]
,
[

K(X, X) + σ2
n I K(X, X∗)

K(X∗, X) K(X∗, X∗)

])
(2)
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where K(X, X) represents the self-similarities in the training set, K(X, X∗) = K∗ and
K(X∗, X) = KT

∗ are the similarities between training and test sets, and K(X∗, X∗) = K∗∗
express the self-similarities in the test set. SOGP models are built through parametrizing
a covariance kernel that computes the measures of similarity between two points xi and
xj. Expressive kernels allow the improved representation of complex signals. The squared
exponential kernel arises as one of the most used kernels in GP modeling. It can be
calculated as:

k
(

xi, xj
)
= σ2

f e−
1

2`2 ‖xi−xj‖2

(3)

where σ2
f (signal variance) is a scaling factor, and parameter ` (variance of the Gaussians)

controls the length scale that modules the regression process smoothness and confidence.
The model hyperparameters can be learned by maximizing the marginal likelihood of
the model [45], through a cross-validation strategy [46], or applying a Bayesian learning
process [47]. A SOGP establishes a prior distribution over functions. This can be converted
to a posterior probability distribution of X∗ given f and the previous X conditioning on
the observations, to obtain another Gaussian:

p( f∗|X∗, X, y) ∼ N
(

y∗|µSOGP, σ2
SOGP + σ2

n I
)

(4)

According to the SOGP formulation, f∗ is normally distributed with mean (µSOGP)
and variance (σ2

SOGP) given by:

µSOGP(x∗) = k(x∗, X)
[
K(X, X) + σ2

n I
]−1

y (5)

σ2
SOGP(x∗) = k(x∗, x∗)− k(x∗, X)

[
K(X, X) + σ2

n I
]−1

k(X, x∗) (6)

To sum up, SOGP offers a natural mechanism to construct and calibrate uncertainties
automatically.

2.1.2. Multi-Output Gaussian Processes Modeling

Let us now assume the S1 and S2 synergy case, where different outputs have different
training input points, this model is called heterotopic in the geostatistics literature [48].
For simplicity, we assume an isotopic setting where each model output has the same set
of inputs. In the following, we assume that the mean vector of the Gaussian distribution
is zero in a free-noise environment. Let D1 = {(ti, f1(ti))|i = 1, . . . , N} be a set of N
pairs of RVI random functions fi extracted from S1 SAR data acquired at times ti and
D2 = {(ti, f2(ti))|i = 1, . . . , N} the corespondent VWC samples derived from S2 optical
data, if f1 and f2 follow a GP we can write:

f1(t) ∼ GP(0, k1(t, t∗)) (7)

f2(t) ∼ GP(0, k2(t, t∗)) (8)

where k1 and k2 are the covariance kernels then the vector valued functions for f1 and f2
can be expressed as Gaussian distributions f1 ∼ N (0, K1) and f2 ∼ N (0, K2) being K1 and
K2 the covariance kernel matrixes. Now we create a stacked larger vector f containing f1
and f2. Assuming that the two processes are independent we can obtain:[

f1
f2

]
∼ N

([
0
0

]
,
[

K1 0
0 K2

])
(9)
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where the blocks outside the main diagonal are zero because the dependency between f1
and f2 was supposed to be zero. The easiest way to extend the SOGP to MOGP cases is
to model each of the model’s channels singly with a SOGP. If the outputs are correlated,
the SOGP approach fails to account for correlations between the outputs of the model
impairing regression processes performance [38]. If we want to account for dependencies
between the processes, the joint multivariate Gaussian distribution can be written as:

[
f1
f2

]
=



f1(t1)
...

f1(tN)
f2(t1)

...
f2(tN)


∼ N

([
0
0

]
,
[

K f1, f1 K f1, f2

K f2, f1 K f2, f2

])
(10)

Equation (10) can be simplified to f ∼ N
(
0, K f , f

)
. The main challenge of MOGP is

to build a cross-covariance function cov[ f1(t), f2(t∗)] such that the matrix K f , f ∈ RNxN is
positive semi-definite and symmetric [39,41]. The properties of the SOGP are immediately
transferred to MOGP because it can straightforwardly be interpreted as SOGP on an
extended input space. For a detailed review of the K f , f matrix development see the
publication by Álvarez et al. [39].

One particular approach for building the covariance functions is known as process
convolution. Each output of the model results from the convolution of a smoothing kernel
and a latent random GP. It was firstly introduced by Barry and Hoef [49] to construct
covariance functions for SOGP, and later for MOGP [50,51].

2.2. Study Area

The Region of Interest (ROI) selected for the study is an irrigated crop area located
in Buenos Aires Province, in the southeast of Argentina (see Figure 1). The extension of
the cultivated area of the Bonaerense Valley of Colorado River (BVCR) is approximately
91,163 ha, comprising winter crops such as wheat, barley, forage, and cereals and horticul-
ture [52]. Since 2016, a team of experts from Argentina’s National Institute of Agricultural
Technology (INTA) Hilario’s Ascasubi Experimental Station (HAEE) has been gathering
in situ data to create a land cover map each year [25]. The appointed study area mainly
corresponds to a dryland agri-environment, and gravity irrigation has enabled most of the
agricultural practices in the region [53]. This study focused on two winter wheat fields
(triticum aestivum) belonging to the BVCR’s 2020 and 2021 crop campaigns [54].
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Figure 1. Overview of BVCR test sites (ROI) for the winter wheat campaigns of the years 2020
and 2021. The red and orange dotted rectangles delimit the MOGP subsets analyzed in Section 3.3.
Reference system: WGS84 (EPSG 4326). (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article).

2.3. Sentinel-2 Time Series Preprocessing

The COPERNICUS/S2_SR image collection over the ROI was assembled using GEE,
where the S2 multispectral surface reflectance (S2-L2A) images are available in the form of
tiles from December 2018 to current. The cloudy pixel percentage (CPP) was configured
to 5 % and the bitmask QA60 band with cloud mask information was used to filter the S2
image collection. The cloud mask permits cloudy and cloud-free pixels to be identified.
The 60 m resolution QA60 band includes both cirrus clouds and dense clouds with an
indicator specifying the cloud type. Bits 10 and 11 are clouds and cirrus, respectively. The
standard GP regression model presented in Caballero et al. [54] was tailored to be scalable
into the GEE framework to generate VWC time series at 10 m using the methodology
proposed by Pipia et al. [33]. The S2 GP VWC hybrid model was trained with in situ mea-
surements collected in the BVCR during the 2020 crop campaign using Gaussian Processes
as a core machine learning regression algorithm (MLRA) and an active learning technique
(AL) [55] to estimate VWC of irrigated winter wheat (R2 = 0.75, RMSE = 416 g m−2). With
AL strategies, the number of samples in hybrid modeling can be effectively decreased.
Therefore, using an “optimal” statistical technique, the MLRA selects the most represen-
tative samples from the training dataset, which leads to the GP hybrid model reaching
superior accuracies [56]. Several research efforts have successfully used AL to intelligently
reduce the training dataset’s size [54,57–59]. The in situ VWC values considered the total
amounts of water stored in all wheat plant organs including leaves, fruits, flowers, and
stalks. The VWC values were then obtained by calculating the difference between the fresh
(FW) and dry (DW) organic matter and referring it to the sowing area (A) implicated in the
field data collection process. Additionally, seeking to integrate the bare soil contribution, we
introduced the fractional vegetation cover (FVC) in situ measured values to the calculations
of VWC:

VWC =
(FW − DW)

A
× FVC

[
g m−2

]
(11)

FVC is defined as the ratio of green vegetation’s vertical projected area to the consid-
ered land surface extension [60–64]. This approach arises as a necessity for the improvement
of the concept of canopy water content (CWC) defined as the total mass of water in all
plants’ leaves per surface unit (see Section 2.5.1 of Caballero et al. [54] for a thorough
explanation of the formulas used to determine the VWC values). The S2 GP VWC hybrid
model accepts as input the S2 spectral bands at 10 m and 20 m and predicts VWC along with
associated uncertainties. The availability of S2 images strongly depends on sky conditions
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over the study site and differs from one crop campaign to other. A total of 44 and 52
cloud-free atmospherically corrected S2 scenes were collected unequally spaced between
December 2018 and January 2021 (11 S2 images correspond to the winter wheat 2020 crop
campaign from 29 August to 12 December 2020) (see also Caballero et al. [54] for details),
and between November 2019 and January 2022 (8 S2 images correspond to the winter
wheat 2021 crop campaign from 24 August to 22 December 2021), respectively.

2.4. Sentinel-1 Time Series Preprocessing

Only descendent orbits were found suitable for monitoring the ROI due to the S1
acquisition configuration over the study site. Two relative orbits are thus available for EO
purposes: orbits 68 for S1-A and S1-B and 141 for S1-A. A detailed overview of the S1 acqui-
sition over the BVCR at multiple incidence angles is provided by Caballero et al. [25]. In the
case of S1, the acquisitions are equally spaced. One S1-A or S1-B descendent pass is avail-
able every 6 days over the study site for the relative orbit 68 approximately at 6.20 a.m. local
time. The S1-A acquisitions for the relative orbit 141 have a revisit time of 12 days. Radar
data was collected from the GEE catalog accessing the COPERNICUS/S1_GRD_FLOAT
dataset. It provides S1 Interferometric Wide Swath (IW) Ground Range Detected (GRD)
scenes in dual-polarization VH+VV, that have been processed using the Sentinel-1 Toolbox
to generate radiometrically calibrated, ortho-corrected products. For each BVCR crop
campaign, two completed collections of S1 images were created for the two observation
geometries, covering a time span of more than 3 years. From December 2018 to January
2021, there were 64 S1–orbit 141 and 103 S1–orbit 68 images (21 S1–orbit 68 images and 11
S1–orbit 141 images correspond to the 2020 winter wheat crop campaign) and 66 S1–orbit
141 and 115 S1–orbit 68 images from November 2019 to January 2022 (21 S1–orbit 68 images
and 10 S1–orbit 141 images correspond to the 2021 winter wheat crop campaign). For each
S1 scene, the dual-pol Radar Vegetation Index (RVI) Kim et al. [44], was initially generated
as follows:

RVI =
4VH

VH + VV
(12)

The coherent integration of signals backscattered from different targets in the resolu-
tion cell induces the speckle noise to be generated in the S1 data. The use of local statistics is
one of the simplest ways to reduce the speckle noise in SAR data [65]. Spatial speckle filter-
ing 7 × 7 Refined Lee [66] as coded in https://github.com/senbox-org/s1tbx/ (accessed on
11 January 2023), was applied. The refined Lee approach makes use of local gradient data.
It does not blur the edges and minute details, and it does not require picture modeling.
Depending on how the edge is oriented, the local mean and variance for both the additive
and multiplicative noise instances are calculated from a smaller number of pixels. As a
result, the edge becomes sharper and the noise around it is reduced [66]. Veloso et al. [28]
analyzed the temporal trend of the cross-polarized ratio VH/VV for a variety of winter and
summer crops (wheat, rapeseed, maize, soybean and sunflower) in southwest France. They
suggested a 7 × 7 window size for filtering the speckle of the cultivated region observed
by S1. To recover the essential curve shape, S1 time series smoothing is required [67].
Smoothing has the dual objectives of removing random noise and, ideally, maintaining
the true spectral signal. For signal denoising purposes, RVI temporal profiles were filtered
using an additional Savitzky–Golay (S–G) smoother [68] (window length = 9, polynomial
order = 2) at the pixel level. The S–G smoother whit these predefined parameters, fits
a polynomial of order 2 to the 9 RVI samples in the window length to locally smooth a
noisy signal employing the least-squares concept. Regarding the S–G parametrization,
lower values of the polynomial order can cope with low-rate changing phenomena such
as crop rotation in the BVCR. The size of the windows is related to the frequency of the
S1 acquisitions. The S–G parameters selection methodology was based on the analysis
of the power spectrum associated with the S1–RVI signal. High-frequency components
in the power spectrum result from the noise’s (if it’s genuinely random) ability to shift

https://github.com/senbox-org/s1tbx/
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unpredictably from pixel to pixel. On the other hand, the lower frequency range has a
greater concentration of signal power [69].

2.5. MOGP Models Parametrization

The MOGP processing was entirely conducted within the Multi-Output Gaussian
Process Toolkit (MOGPTK) [43] version 0.3.2. The MOGPTK is a Python toolkit for per-
forming multi-output GP regression with kernels utilizing the cross-correlation information
between channels to better model time-series signals. The set of MOGP kernels imple-
mented is particularly pertinent for signal reconstruction in the case of missing data. The
toolkit provides the functionality for training and interpreting GP models with multiple
data channels and includes plotting functions for the case of single input with multiple
outputs. More information can be found at: https://github.com/GAMES-UChile/mogptk/
(accessed 11 January 2023).

The preprocessed S1 and S2 time series were first loaded into MOGPTK creating two
and three-channel models: (i) S2 GP VWC (CH-1), (ii) S1 orbit 68 RVI (CH-2), (iii) S1 orbit
141 RVI (CH-3). Then we removed a range of data from the CH-1 to simulate the S2 data
loss corresponding to the winter wheat cycles (From the beginning of September to the end
of December, we removed 9 S2 images for the 2020 campaign and 6 S2 scenes related to
the 2021 winter wheat crop campaign) and additionally removed 10% of the data points
for CH-2 and CH-3 randomly. Regarding 2020 and 2021 crop campaigns, 35 S2 (CH-1) +
92 S1–orbit 68 (CH-2) + 53 S1–orbit 141 (CH-2) images and 46 S2 (CH-1) + 103 S1–orbit 68
(CH-2) + and 59 S1–orbit 141 (CH-3) images were synergistically used to train the MOGP
models, respectively. Aiming to improve training results each data channel was linearly
detrended and normalized to have zero mean and unit variance utilizing the transforma-
tions provided by the MOGPTK. We analyzed four MOGP spectral kernels: (i) the Spectral
Mixture Kernels for Multi-Output Gaussian Processes (MOSM) [70], (ii) the Cross-Spectral
Mixture (CSM) [71], (iii) the Linear Model of Coregionalization (LMC) [39,40], and (iv) the
Convolutional Model (CONV) [72,73] with four spectral components per channel (Q = 4).
The MOGP kernels’ parameters were randomly instantiated to establish an initial set of
reasonable values for the S1 & S2 dataset using Independent Spectral Mixture (SM) as an
estimation method. SM fits an independent GP model for each channel of the dataset with
a spectral mixture kernel. Posteriorly it uses the tuned parameters as initial values of the
MOGP kernels. For each channel, the noise was initialized with 1/30 of the variance. The
MOGP models were then trained using the Adam optimizer [74]. During the training
stage, the hyperparameters of the kernel are optimized to approach the training data. The
learning rate was set up to 0.1 and the number of iterations for initialization in 500.

In addition, we also considered the SOGP SM kernel using the Bayesian Nonpara-
metric Spectral Estimation (BNSE) [75] as the initialization method to estimate the kernel
parameters from the S1 & S2 dataset. BNSE aims to assess the power spectral density
of a time series signal and then select the Q greater peaks in the estimated spectrum.
The kernel’s mean, magnitude, and variance are initialized based on the peak’s position,
magnitude, and with of the detected spectral components, respectively.

2.6. Experimental Setup

Two distinct ROIs were considered for training the MOGP algorithms and evaluating
the S1 and S2 synergy capacity to map VWC over an irrigated area of winter wheat crop.
Table 1 shows the geographic boundaries, the dimension in pixels, and the area expressed
in hectares for each selected ROI belonging to the winter wheat paddocks of the BVCR 2020
and 2021 crop campaigns. The S2 GP VWC maps were stacked along with S1 orbit 68 and S1
orbit 141 RVI products and the mean for the ROI was then calculated. An exhaustive detail
of S1 & S2 acquisition dates for models validation corresponding to the winter wheat 2020
and 2021 crop campaigns is given in Tables A1 and A2 correspondingly. S1 & S2 datasets
were used to initialize and train the MOGP models. Aiming to completely reconstruct the
VWC cycles over winter wheat cropland, we created artificial S2 GP VWC data gaps (latent

https://github.com/GAMES-UChile/mogptk/
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S2 GP VWC data). Seeking to explore the S1-derived RVI capability to reconstruct S2-based
VWC maps at distinct acquisition geometries, the MOGP performance was subsequently
assessed given models with two and three input channels. Three tests for each ROI were
conducted analyzing the following MOGP model input configurations: (i) S2 & S1 orbit
68 (2-channel model), (ii) S2 & S1 orbit 141 (2-channel model), and (iii) (i) S2 & S1 orbits
68 and 141 (3-channel model). Several goodness-of-fit metrics were evaluated to select the
best MOGP model: the mean absolute error (MAE, Equation (13)), the root mean square
error (RMSE, Equation (15)), the mean absolute percentage error (MAPE, Equation (14)),
the normalized root mean square error (NRMSE, Equation (16)), and the training time were
recorded. Below we display the formulation used for MAE, MAPE, RMSE and NRMSE
calculations:

MAE =
1
N

N

∑
i=1
|yi − ŷi| (13)

MAPE =
1
N

N

∑
i=1

|yi − ŷi|
yi

(14)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)2 (15)

NRMSE =
RMSE

(ymax − ymin)
(16)

where {yi}N
i=1 are the S2 GP VWC latent observations used for model assessing, {ŷi}N

i=1 are
the VWC retrieved values based on S1 RVI data, (ymax − ymin) is the S2 GP VWC data range
and y is the mean of the VWC S2-derived values. To investigate the correlation between
each channel of the S1 & S2 dataset, we also plotted the cross-correlation matrix for each
evaluated MOGP model. Finally, the best MOGP model was applied to winter wheat 2020
and 2021 sites (see Figure 1). A MOGP model was iteratively trained per pixel using the S1
& S2 three-channel dataset. Each S1 & S2 MOGP VWC reconstructed subset was compared
against the latent S2 GP VWC by calculating the coefficient of determination (R2) and the
linear regression.

Table 1. ROI boundaries in geographic coordinates (WGS84), x-pixels quantity (Qty-x), y-pixels
quantity (Qty-y), and ROI area selected for training the MOGP models with the S1 & S2 dataset.
ROI-1 belongs to the winter wheat 2020 site whereas the ROI-2 to 2021 site.

North West South East Qty-x Qty-y Area
[ha]

ROI-1 −39.398 −62.645 −39.404 −62.636 10 12 1.2
ROI-2 −39.391 −62.618 −39.392 −62.616 12 13 1.56

2.7. Delineation of Retrieval Workflow

Figure 2 gives an overview of the complete processing workflow. Three well-defined
processing blocks are depicted, starting with an S2 and S1 imagery acquisition and pre-
processing section, followed by MOGP best model selection, and the retrieval of VWC
applying MOGP to S1 and S2 time series datasets. To sum up, the implemented processing
workflow consisted of the following six main steps:

1. Building of VWC time series applying a GP model trained with in situ data of the
BVCR 2020 crop campaign to S2 imagery, and pre-processing of RVI time series for S1
orbit 68 and orbit 141 imagery, respectively;

2. Assembling the S1 & S2 dataset containing multitemporal VWC retrieved values and
S1 post-processed RVI data for a specific ROI of the BVCR study site;
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3. Setting up the MOGP kernels with Q = 4 and initializing the parameters using SM;
4. Training the MOGP models with the S1 & S2 dataset using the Adam optimizer and

assessing the regression statistics error metrics (MAE, MAPE, RMSE, and NRMSE)
for best model selection;

5. Multi-seasonal mapping of VWC retrieved given the best evaluated MOGP model
and S1 & S2 stacked datasets at pixel level over two distinct bounded fields and
corresponding process performance;

6. Reconstructing of artificially removed S2 GP VWC data gaps over winter wheat
cropland considering the BVCR 2020 and 2021 crop campaigns.

Figure 2. Illustration of the processing workflow to obtain maps of vegetation water content over
irrigated winter wheat, as described in Section 2.7. The ordinal numbers in the graph refer to the
workflow processing steps. The maps show the output obtained by our MOGP VWC models over
the BVCR study site in Argentina.
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The entire software framework was implemented in Python version 3.6.13 (https:
//www.python.org/downloads/release/python-3613/, accessed on 22 September 2022)
utilizing the geemap package version 0.19.1 (https://github.com/giswqs/geemap/, ac-
cessed on 11 January 2023) for mapping interactively with Google Earth Engine.

3. Results
3.1. S1 SAR RVI & S2 GP VWC Temporal Profiles

In an attempt to analyze multi-seasonal VWC time series over the averaged ROI-1
presented in Table 1, the temporal profiles of S2 GP VWC and S1 RVI orbits 68 and 141 over
the irrigated winter wheat sites 2020 are displayed in Figure 3. It is worth highlighting that
the typical crop rotation at the study site is: maize-sunflower-wheat [53].

(a)

(b)

(c)

(d)

Figure 3. Temporal profiles (mean value and standard deviation) of averaged selected ROI-1 over
a winter wheat parcel belonging to the BVCR 2020 crop campaign. S2 GP VWC time series from
December 2018 to the end of January 2021 (a). S1 RVI orbit 141 smoothed (dashed blue line) and
original (dashed black line) time series (b). S1 RVI orbit 68 smoothed (dashed red line) and original
(dashed black line) time series (c). S1 RVI Orbit 68 (red line) and S1 orbit 141 (blue line) RVI time
series (d).

https://www.python.org/downloads/release/python-3613/
https://www.python.org/downloads/release/python-3613/
https://github.com/giswqs/geemap/
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The temporal profiles for S2 GP VWC and S1 RVI for orbits 68 and 141 for the winter
wheat 2021 averaged ROI-2 are shown in Figure 4. Regarding the winter wheat crop for
the 2021 campaign, it can be seen that the summer predecessors’ crops were sunflower for
hybrid seed in 2021 and maize in 2020. An appreciable difference can be distinguished
when the S1 RVI for orbits 68 and 141 are plotted jointly (see Figures 3d and 4d). Note that
there is a time asynchrony between S1 acquisitions as both satellites S1-A and S1-B share
descendent orbit 68. Moreover, the RVI amplitude offset between orbits 68 and 141 is due to
the different SAR sensor’s acquisition geometry [25]. The mean local incidence angle over
the study site for S1 orbit 141 is approximately 33º, whereas for orbit 68 it is around 43º.

(a)

(b)

(c)

(d)

Figure 4. Temporal profiles (mean value and standard deviation) of averaged selected ROI-2 over
a winter wheat parcel belonging to the BVCR 2021 crop campaign. S2 GP VWC time series from
October 2019 to the end of January 2022 (a). S1 RVI orbit 141 smoothed (dashed blue line) and original
(dashed black line) time series (b). S1 RVI orbit 68 smoothed (dashed red line) and original (dashed
black line) time series (c). S1 RVI Orbit 68 (red line) and S1 orbit 141 (blue line) RVI time series (d).

3.2. Training MOGP Kernels for VWC Time Series Modelling

Two S1 & S2 three-channel datasets were created for training the MOGP models. We
first assessed quantitatively the performance of four spectral-mixture kernels for selecting
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the best MOGP model and also the outcomes of SOGP to establish a ranking between them.
We then explored the contribution of the S1 RVI data at two distinct descendent orbits and
its effect on the MOGP models’ metrics. To do so, several trials were conducted considering
2 or 3 channels from the S1 & S2 datasets. The space of possible combinations is as follows:
(a) S2 GP VWC and S1 RVI orbit 68; (b) S2 GP VWC and S1 RVI orbit 141; and (c) S2 GP
VWC, S1 RVI orbit 68 and S1 RVI orbit 141.

Table 2 presents the prediction statistics for the MOGP modeling when the S1 & S2
data streams are used to reconstruct time series data of VWC over the averaged BVCR 2020
winter wheat ROI-1. For each MOGP model and S1 & S2 data stream configuration, we
evaluated the following error metrics: MAE, MAPE, RMSE, NRMSE and the training time.

Table 2. Error metrics and training time of the MOGP and SOGP evaluated kernels for the 2020
winter wheat averaged ROI-1.

S2 GP VWC and S1 RVI Orbit 68

MOGP Kernel MAE [g m−2] MAPE [%] RMSE [g m−2] NRMSE [%] Time [s]

MOSM 828.85 56.42 927.56 44.34 10.58
CSM 242.7 15.43 360.55 17.24 17.85

SM-LMC 346.16 22.56 495.49 23.69 12.68
CONV 250.17 19.48 313.11 14.97 21.42

SM 881.4 58.91 1005.71 48.07 6.03

S2 GP VWC and S1 RVI orbit 141

MOSM 1025.79 69.92 1116.62 53.38 9.37
CSM 283.95 19.76 378.01 18.07 16.06

SM-LMC 482.25 31.99 580.76 27.76 11.49
CONV 255.42 25.25 419.36 20.05 19.25

SM 883.69 59.05 1009.05 48.23 4.98

S2 GP VWC, S1 RVI orbit 68 and S1 RVI orbit 141

MOSM 907.21 62.61 992.18 47.43 18.56
CSM 472.31 32.75 512.23 24.49 35.18

SM-LMC 463.04 30.75 546.85 26.14 22.67
CONV 249.3 21.83 336.74 16.1 40.27

SM 881.77 58.93 1006.25 48.1 10.29

The MOGP modeling outcomes for the 2021 winter wheat averaged ROI-2 can be
visualized in Table 3. A linear increase in runtime can be noted when the three channels are
used to train the MOGP regression models.

By eliminating S2 GP VWC samples from the S1 & S2 datasets, we artificially produced
data gaps. Subsequently, we used the extracted values as a baseline for the evaluation
of the MOGP models’ predictions. For that reason, from the S2 GP VWC time series in
Figures 3a and 4a, we deleted 9 samples from September 8 to December 12 of 2020 and
6 samples from August 19 to November 27 of 2021, which corresponds to the 2020 and 2021
complete phenological winter wheat cycles, respectively, at the study site. It is noteworthy
that the number of S2 acquisitions is different for the 2020 and 2021 crop campaigns due
to the cloud coverage dynamic over the study region (see Section 2.3). These latent S2 GP
VWC observations exemplify realistically the cloudy image acquisition conditions of S2 at
high latitudes. The MOGP regressions for the evaluated models are shown in Figure 5. The
MOGP results are also compared to the SM SOGP predictions.
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Table 3. Error metrics and training time of the MOGP and SOGP evaluated kernels for the 2021
winter wheat averaged ROI-2.

S2 GP VWC and S1 RVI Orbit 68

MOGP Kernel MAE [g m−2] MAPE [%] RMSE [g m−2] NRMSE [%] Time [s]

MOSM 1606.97 91.26 1746.35 77.76 11.59
CSM 1420.06 79.84 1549.94 69.02 19.85

SM-LMC 1229.57 64.98 1362.06 60.65 13.9
CONV 238.07 41 328.01 14.61 22.31

SM 1408.52 75.06 1550.67 69.05 7.23

S2 GP VWC and S1 RVI orbit 141

MOSM 1606.95 91.26 1746.33 77.76 9.96
CSM 864.12 54.02 928.28 41.33 18.25

SM-LMC 1262.46 69.72 1378.87 61.4 12.24
CONV 274.33 43.77 352.11 15.68 21.78

SM 1408.52 75.06 1550.67 69.05 6.98

S2 GP VWC, S1 RVI orbit 68 and S1 RVI orbit 141

MOSM 1640.51 94.6 1778.6 79.2 21
CSM 1446.8 82.65 1576.08 70.18 36.08

SM-LMC 1395.58 74.98 1535.22 68.36 24.21
CONV 190.44 25.69 227.12 10.11 45.02

SM 1408.52 75.06 1550.67 69.05 10.2

(a)

(b)

Figure 5. Performance of the SOGP and MOGP models predictions for VWC data reconstruction
based on the S1 & S2 synergy. The green dots represent the latent S2 GP VWC data used to compute
the error metrics whereas the red dots correspond to the S2 GP VWC cloud-free observations utilized
to train the regression models. The red-shaded area represents the artificially created S2 data gap.
SOGP and MOGP predictions performance for the selected winter wheat ROI-1 of the year 2020 (a)
and 2021 (b).

As observable in Figure 5, the convolutional model reaches the best results in the
predictions of VWC values for both 2020 and 2021 winter wheat test sites. The complete
phenological profile of the crop (green dots) is fully recovered, and all latent VWC val-
ues are predicted accurately by the CONV model in the absence of optical observations.
Consequently, the CONV model is selected for the posterior task of reconstructing VWC
at a pixel level. Although CSM and SM-LMC models indeed delivered good results for
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the 2020 winter wheat ROI, they have almost zero capacity when applied to the 2021
site. Furthermore, SOGP showed an extremely low capacity to reconstruct VWC in the
artificially created gapped windows.

3.2.1. Cross-Correlation Matrixes for the MOGP Trained Kernels

The cross-correlation matrixes for the MOGP evaluated models over the wheat 2020
and 2021 study sites are displayed in Figure 6. The off-diagonal elements represent the
dependencies between channels in the S1 & S2 dataset. These dependencies account for
cross-spectral coupling among channels in the S1 & S2 dataset.

(a) (b)

(c) (d)

(e) (f)

Figure 6. Cont.
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(g) (h)

Figure 6. Cross-correlation matrix of the S1 & dataset among the channels of the trained MOGP
models. The elements of the matrix’s diagonal show the auto-correlations of each channel in the
dataset. MOSM model for wheat 2020 (a). CSM model for wheat 2020 (b). SM-LMC model for wheat
2020 (c). CONV model for wheat 2020 (d). MOSM model for wheat 2021 (e). CSM model for wheat
2021 (f). SM-LMC model for wheat 2021 (g). CONV model for wheat 2021 (h).

The empirical cross-correlation matrices in general terms are showing strong correla-
tions between CH-2: S1 RVI orbit 68 and CH-3: S1 RVI orbit 141 in all cases. Nevertheless,
the S1-S2 dependencies are determined by the specific MOGP kernel. In some cases CH-1:
S2 GP VWC has a negligible correlation with the remaining channels.

3.2.2. Optimized MOGP Kernel for Mapping the VWC of the Winter Wheat 2020 and 2021

In this section, we further explore the CONV model’s results. Figure 7 shows the
CONV predictions for a three-channel trained model, the S1 & S2 dataset were fused over
two different winter wheat ROIs belonging to the BVCR 2020 and 2021 campaigns. It
can be noticed that the posterior mean (dashed blue line) for each channel follows the
temporal trend of the original observations (red dots). The uncertainty in the form of ± σ
is represented by the limited shaded-blue area around the estimations. The S2 GP VWC
and S1 RVI curves for orbits 68 and 141 follow similar behavior showing the potential of S1
RVI for crop monitoring purposes. Although the prediction uncertainty increases in the
presence of latent data, our trained CONV model is able to recover the more significant
trend in the VWC time series for winter wheat 2020 and 2021 minimizing the error (see
Tables 2 and 3). The S1 & S2 datasets of Figure 7 are used to optimize the hyperparameters of
the CONV model for the wheat site 2020 and 2021. Their values are reported in Appendix B,
Tables A3 and A4 correspondingly.
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(a)

(b)

Figure 7. CONV posterior predicted mean for a three-channel model. Red dots indicate the original
observations for S2 GP VWC (CH-1), S1 RVI orbit 68 (CH-2), and S1 RVI orbit 141 (CH-3) while the
green ones are the latent samples. Winter wheat 2020 ROI-1 (a). Winter wheat 2020 ROI-2 (b).

3.3. Spatiotemporal Mapping of Reconstructed VWC Based on S1 & S2 Synergy

The S1 & S2 temporal trends presented in Figures 3 and 4 and the best MOGP model
selected in Section 3.2.2 were used to demonstrate the feasibility of VWC maps recon-
struction based on the S1 & S2 synergy. To accomplish this, we trained an independent
CONV model per pixel over two subsets of the BVCR study site. The first subset (red
dotted rectangle in Figure 1) contains three winter wheat paddocks that belong to the 2020
crop campaign and its surface is 56 hectares (71 × 79 pixels at 10 m). The second subset
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(orange dotted rectangle in Figure 1) consisted of a large homogeneous parcel of winter
wheat from the crop campaign 2021 located not far from the first, its size is 58.5 hectares
(76 × 77 pixels at 10 m). For each pixel in the S1 & S2 dataset, a CONV model was initial-
ized with the parameters described in Section 2.5 and then trained using 500 iterations. It
is worth pointing out that both spatial subsets selected for the application of the MOGP
regression, have had the same crop rotation and management according to the agronomic
practices of the HAEE. Winter wheat irrigation has been conducted during three distinct
vegetative stages along the phenological cycle. While it is true that we applied the CONV
model to the whole S1 & S2 dataset for both spatial subsets reconstructing 44 S1 & S2
MOGP VWC maps for the 2020 winter wheat site and 52 for 2021, we focused on the
removed ranges to perform a posterior error metrics analysis. The global R2 values for
the complete spatiotemporal regression were R2

subset1 = 0.72 and R2
subset2 = 0.67 and their

related processing time: tsubset1 = 70 h and tsubset2 = 54 h approximately (processor: 11th
Gen Intel(R) Core(TM) i7-1195G7 @ 2.90 GHz 64 bits, RAM: 16 GB). The MOGP technique
allowed the reconstruction of each channel in the S1 & S2 dataset independently. It means
that, regardless of the acquisition dates of S1 and S2, the CONV model generated a VWC
map that coincides with the S2 pass over the study area. Similarly, a reconstructed RVI
map was also produced for each S1 acquisition date. The main advantage of MOGP is that
there is no need for synchronicity between the acquisitions of S1 and S2. Although the
MOGP regression models support the daily temporal resolution (the temporal resolution
of each channel can be adjusted independently), we did not modify the S1 and S2 original
observation dates. In summary, the temporal resolution of each reconstructed independent
channel follows the same pattern as the acquisitions of S1 and S2 over the study area.
Consequently, we obtained 44 S1 & S2 MOGP VWC maps for the 2020 wheat campaign
and 52 for 2021. Figure 8 show the spatiotemporal reconstruction of VWC maps over the
winter wheat paddocks of the BVCR 2020 crop campaign. The vegetation phenology (left)
and the scatter plots (right) underpin the S1 & S2 MOGP VWC maps accurately for each
assessment date. It is desirable to present the synergy results for the greenness stage of
winter wheat at two different locations of the study site. Furthermore, the reconstructed
VWC maps for the 2021 winter wheat site are shown in Figure 9. Seeking to prioritize the
evaluation of the MOGP within the vegetative development stage of winter wheat plants,
we calculated the average R2 values for the scatter plots presented in Figures 8 and 9, we
obtained R2

wheat2020 = 0.95 and R2
wheat2021 = 0.96, which shows the strong correlation of S2

GP VWC and S1 & S2 MOGP VWC maps.
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Figure 8. Comparison of S2 GP VWC (original) and S1 & S2 MOGP VWC (reconstructed) maps over
a selected subset of the study site (red-dashed rectangle in Figure 1) corresponding to the artificially
removed dates: 2020/9/23, 2020/10/13, 2020/11/2, 2020/11/17, and 2020/11/27 of the winter
wheat 2020 phenological cycle. For each assessment date, the position of the extracted samples on the
phenological curve (yellow dot), the S2 GP VWC map, the reconstructed S1 & S2 MOGP VWC map
and the scatterplot between the original and reconstructed VWC maps are shown.
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Figure 9. Comparison of S2 GP VWC (original) and S1 & S2 MOGP VWC (reconstructed) maps
over a selected subset of the study site (orange-dashed rectangle in Figure 1) corresponding to the
artificially removed dates: 2021/10/3, 2021/10/8, 2021/10/18, 2021/11/2, and 2021/11/17 of the
winter wheat 2021 phenological cycle. For each assessment date, the position of the extracted samples
on the phenological curve (yellow dot), the S2 GP VWC map, the reconstructed S1 & S2 MOGP VWC
map and the scatterplot between the original and reconstructed VWC maps are shown.
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4. Discussion

We explored the feasibility of fusing S1 & S2 data streams with a MOGP approach
for cloud-free VWC time series mapping. This study provides a potentially powerful
research line that deserves to be carefully analyzed. In the following, time and frequency
domain similarities in the S1 & S2 dataset (Section 4.1), MOGP modeling and assessment
(Section 4.2), S1 & S2-based spatiotemporal mapping of VWC (Section 4.4), and finally
advantages and opportunities for improvement of the fusion approach (Section 4.3) are
discussed.

4.1. Time and Frequency Domain Similarities in the S1 & S2 Dataset

GEE proved to be an invaluable tool for processing and downloading Copernicus data
quickly, efficiently and accurately. Cloud-processed time series of VWC derived from S2
data produced the typical phenological profile of winter wheat at the study site as was also
presented by Caballero et al. [54]. The LAI mapping of winter wheat at the BVCR based on
S1 radar data was explored by Caballero et al. [25], demonstrating the efficacy of merging
distinct S1 acquisition geometries to retrieve wheat LAI in southern Argentina. In the
present study, we analyzed the RVI for two distinct S1 orbits that allow having two radar
channels to merge the S1 & S2 time series. Regarding the wheat growth cycle at the focused
area, we found the same temporal trends for S1 RVI and S1 LAI GP model developed
by Caballero et al. [25]. In Figures 3d and 4d an amplitude offset of RVI for orbit 68 and
orbit 141 can be appreciated. These RVI differences, which are related to the mismatch of
the local incidence angle, provide valuable information on the three-dimensional structure
of the vegetation. The BVCR’s representative crop rotation at the study site was faithfully
reproduced by long time series of S2 GP VWC (see Figures 3a and 4a). The S2 GP VWC
and S1 RVI time series follow the same temporal patterns, so three phenological cycles
(corn-sunflower-wheat) can be captured at the study sites (see Figure 1). In addition, this
time correspondence enabled us to gauge the spectral similarities in the S1 & S2 dataset.
The frequency domain analysis determines the peak and position of the principal spectral
components that are mainly related to crop rotation and phenology. Seeking to customize
the response of the SM kernels we selected Q = 4 prioritizing the most representative
spectral components in the S1 & S2 dataset (see Section 2.5).

4.2. MOGP Modelling and Assessment

We evaluated several MOGP kernels as well as the SOGP SM approaches aiming to se-
lect the best one for the spatiotemporal reconstruction of VWC maps. We presented a set of
error metrics in Tables 2 and 3 for each MOGP kernel, but finally, we adopted the NRMSE for
cross-model comparison. The poor capability of SOGP to reconstruct VWC in the absence of
optical data can be easily observed for winter wheat ROI-1 and ROI-2. All latent values are
remarkably underestimated, therefore, the true VWC profiles are entirely lost (see Figure 5).
In the SOGP approach, the spectral mixture kernels are trained independently on each
channel, which fails to account for the cross-spectral similarity between S1 & S2 time series.
While it is true that other MOGP kernels such as CSM and SM-LMC reached an acceptably
high performance for the 2020 winter wheat site, the CONV model was the only one able
to tackle the VWC time series reconstruction for both averaged ROIs (see Figure 7). CONV
makes use of the convolution theorem to model cross-channel dependencies in the S1 & S2
datasets by means of cross-convolution in the spectral domain. The cross-spectral similarity
of the S1 & S2 time series, in this regard (see Section 4.1), is the backbone of the spectral mix-
ture approach (see Figure 6). In terms of S1 & S2 dataset configuration, we assessed two or
three-channel fusion models. Regarding the CONV model, superior results were found for
both winter wheat averaged ROIs (see Tables 2 and 3) when the S1 & S2 dataset is fused with
S1 RVI orbit 68 instead of S1 RVI orbit 141. We obtained NRMSE(S2&S1,orbit68) = 14.97% and
NRMSE(S2&S1,orbit141) = 20.05% for winter wheat 2020 ROI-1 and a two-channel dataset.
In the same way, NRMSE(S2&S1,orbit68) = 14.61% and NRMSE(S2&S1,orbit141) = 15.68% for
ROI-2. When it comes to three-channel S1 & S2 datasets, the following scenarios were
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encountered: (i) the accuracy of the CONV kernel increases for ROI-2 (wheat 2021),
NRMSE(S2&S1,orbits68&141) = 10.1% and; (ii) a slight accuracy loss is reflected by the CONV
model over the ROI-1 (wheat 2020), NRMSE(S2&S1,orbits68&141) = 16.1%. These results are
directly connected to the fact that the number of S2 cloud-free acquisitions over ROI-1 and
ROI-2 is different. Furthermore, they are unevenly spaced, so the S2 GP VWC time series
have different frequency spectra in each case.

4.3. S1 & S2-Based Spatiotemporal Mapping of Vegetation Water Content

The outstanding reconstruction results delivered by the CONV model over the two
selected subsets of the study site highlight its ability to fuse EO S1 & S2 data for cloud-free
crop trait mapping purposes. Thanks to the guidance of the radar data stream, CWV
maps were reconstructed by MOGP even in the absence of optical data. Accurate recon-
structed VWC maps were obtained for both studied subsets when a CONV model was
trained on a per-pixel basis. The land cover spatiotemporal heterogeneity was correctly
captured thanks to this strategy. We focused exclusively on the mapping of winter wheat
paddocks, nevertheless, other crop types are present in the scenes such as pasture and
legumes and even more differ across multiple crop seasons. The CONV model was able to
accurately reconstruct the VWC maps over all parcels, regardless of the land cover type
(see Figures 8 and 9). It suggests that the MOGP technique can be generically applied, as
long as there is sufficiently complementary information present in the radar signal. At the
same time, as a Bayesian nonparametric probabilistic ML regression algorithm, MOGP
provides an automatic mechanism to construct and calibrate uncertainties. Uncertainty
maps offer the opportunity to assess the confidence of predictions and construct reliability
maps at pixel level [76].

4.4. Advantages and Opportunities for Improvement of the Fusing Approach

The S1 & S2 time series fusing approach presented here offers attractive and powerful
opportunities to be further exploited. Firstly, there is the actual feasibility of successfully
implementing cloud-free VWC map reconstruction techniques by taking advantage of the
all-weather availability of S1 radar data. Fusing S1 SAR and S2 optical imagery proved
particularly useful for monitoring crops’ VWC in southern Argentina, and can be easily
extrapolated to high-latitude cloudy regions worldwide. Secondly, MOGP can also be
used for gap-filling S2 time series by combining optical data from other EO systems like
Landsat-8 or Sentinel-3. Likewise, also other optically-derived variables can be targeted
that align well with radar data, such as LAI [29]. Furthermore, thirdly, the ever-increasing
supply of emerging radar satellite constellations in different frequency bands poses a
revolutionary paradigm [77]. Altogether, the Earth observation scenario for the next few
years is extremely promising and requires further exploration of MOGP techniques.

On the downside, it is worth emphasizing that the training time was rather long (see
Tables 2 and 3) when the data from S1 and S2 were combined to reconstruct the VWC
maps (see Section 3.3). The long runtime constitutes the main bottleneck of the MOGP
technique. Training MOGP algorithms is a challenging task as it involves a large number of
hyperparameters to model all the inter-channel cross-correlations in the spectral domain.
Some attempts were explored to further improve the results. Seeking to substitute the
per-pixel optimization step Belda et al. [37] suggested optimizing a GP for an averaged ROI
and then using the hyperparameters of the optimized model. This approach could reduce
the long processing time of S1 & S2 datasets but is at a risk to account for the cropland’s
spatiotemporal variability. We had tested that approach; however, it appeared that the
results in our context were unsatisfactory, and this path was therefore discarded. Follow-up
research may attempt to address this limitation. Several alternative mechanisms can be
explored to accelerate the training phase of MOGP. They can be divided into two groups:
technical and theoretical solutions. Technical solutions include using a more powerful
computer (RAM ≥ 64 GB), considering fewer observations for model training, reducing
the number of spectral components, or deploying the code in a Graphics Processing Unit
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(GPU) environment. Theoretical solutions include using a sparse model, e.g., as presented
by Titsias [78], or a stochastic gradient descent [79].

5. Conclusions

Cloud-free optical imagery is usually scarce over cloud-prone agroecosystems, imply-
ing that crop monitoring is often limited to a few observations during key phenological
development stages. The synergy of optical with complementary all-weather SAR data
can provide valuable insights into specific agricultural areas, even in the presence of per-
sistent cloud cover. In our study, we demonstrated that fusing time series of S1 SAR and
S2 optical data through MOGP proved to be a powerful and innovative methodology to
reconstruct cloud-free time series data streams over the entire growing season. Pursuing
the development of a powerful fusion approach that learns the dependencies of S1 & S2
time series data, we applied a processing framework for selecting the best MOGP model.
The S1 & S2 MOGP CONV model was validated with relatively high accuracy against
S2 GP VWC retrieved data over two winter wheat fields belonging to the BVCR 2020
and 2021 crop campaigns (wheat 2020: NRMSE(S2&S1,orbits68&141) = 16.1% and wheat 2021:
NRMSE(S2&S1,orbits68&141) = 10.1%). The CONV models were afterward applied iteratively
at the pixel level to reconstruct removed S2 acquisitions. The reconstructed VWC maps
in the absence of optical data showed spatiotemporal consistency and made it possible to
accurately capture complete phenology curves. We conclude that the cross-correlation of
the time series of S1 and S2 data can be exploited for the purpose of cloud-free large-scale
reconstructing of optical-imagery-derived crop trait data streams. Further research must be
conducted to deploy the MOGP strategy over other croplands and target other vegetation
traits while keeping the runtime within acceptable limits.
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Appendix A. Sentinel–1 & Sentinel–2 Acquisition Dates

Table A1. Sentinel–2 and Sentinel–1 acquisition dates corresponding to the winter wheat 2020 crop
campaign at the BVCR. The (–) symbol means no acquisition. The (*) indicates the S2 removed images
from the S1 & S2 dataset for model validation.

Winter Wheat 2020 Crop Campaign

S2 Acquisition Date S1(Orbit 68) Acquisition Date S1(Orbit 141) Acquisition Date

- 2020-08-27 -
2020-08-29 - -

- - 2020-09-01
- 2020-09-02 -

2020-09-13 * - 2020-09-13
2020-09-18 * - -

- 2020-09-20 -
2020-09-23 * - -

- - 2020-09-25
- 2020-09-26 -

2020-09-28 * - -
- 2020-10-02 -
- - 2020-10-07
- 2020-10-08 -

2020-10-13 * - -
- 2020-10-14 -
- - 2020-10-19
- 2020-10-20 -
- 2020-10-26 -
- - 2020-10-31
- 2020-11-01 -

2020-11-02 * - -
- 2020-11-07 -
- - 2020-11-12
- 2020-11-13 -

2020-11-17 * - -
- 2020-11-19 -
- - 2020-11-24
- 2020-11-25 -

2020-11-27 * - -
- 2020-12-01 -
- - 2020-12-06

2020-12-07 * 2020-12-07 -
- 2020-12-13 -
- - 2020-12-18
- 2020-12-19 -

2020-12-22 - -
- 2020-12-25 -
- - 2020-12-30
- 2020-12-31 -
- 2021-01-06 -
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Table A2. Sentinel–2 and Sentinel–1 acquisition dates corresponding to the winter wheat 2021 crop
campaign at the BVCR. The (–) symbol means no acquisition. The (*) indicates the S2 removed images
from the S1 & S2 dataset for model validation.

Winter Wheat 2021 Crop Campaign

S2 Acquisition Date S1(Orbit 68) Acquisition Date S1(Orbit 141) Acquisition Date

- 2021-08-16 -
- 2021-08-22 -

2021-08-24 * - -
- - 2021-08-27
- 2021-08-28 -
- 2021-09-03 -
- - 2021-09-08
- 2021-09-09 -
- - 2021-09-20
- 2021-09-21 -
- 2021-09-27 -
- - 2021-10-02

2021-10-03 * 2021-10-03 -
2021-10-08 * - -

- 2021-10-09 -
- - 2021-10-14
- 2021-10-15 -

2021-10-18 * - -
- 2021-10-21 -
- - 2021-10-26
- - 2021-10-27

2021-11-02 * 2021-11-02 -
- 2021-11-08 -
- 2021-11-14 -

2021-11-17 * - -
- - 2021-11-19
- 2021-11-20 -
- 2021-11-26 -
- - 2021-12-01
- 2021-12-02 -

2021-12-07 - -
- 2021-12-08 -
- - 2021-12-13
- 2021-12-14 -
- 2021-12-20 -

2021-12-22 - -
2022-01-01 2022-01-01 -



Remote Sens. 2023, 15, 1822 26 of 29

Appendix B. Hyperparameters of the CONV Models Trained over the Winter Wheat
Test Sites

Table A3. Hyperparameters of the MOGP CONV model trained with the S2 GP VWC and S1 RVI
orbits 68 and 141 time series over the winter wheat 2020 ROI-1.

Name Range Value

M[0].CONV.weight (1× 10−8, ∞) [0.16140878 0.12014237 0.25099972]
M[0].CONV.variance (0.0, ∞) [[4.57955225× 10−6] [1.48168009× 10−5] [4.89282973× 10−5]]
M[0].CONV.base_variance (1× 10−8, ∞) [29.65490441]
M[1].CONV.weight (1× 10−8, ∞) [0.18422568 0.12714211 0.09511325]
M[1].CONV.variance (0.0, ∞) [[0.00208712] [0.00021101] [0.00029573]]
M[1].CONV.base_variance (1× 10−8, ∞) [3.84536139× 10−6]
M[2].CONV.weight (1× 10−8, ∞) [0.161608 0.36756376 0.38364755]
M[2].CONV.variance (0.0, ∞) [[5.97699880× 10−6] [8.28188220× 10−4] [2.73658687× 10−3]]
M[2].CONV.base_variance (1× 10−8, ∞) [55.15439607]
M[3].CONV.weight (1× 10−8, ∞) [0.45055456 0.09223841 0.01531059]
M[3].CONV.variance (0.0, ∞) [[3.78006500× 10−6] [2.45277978× 10−7] [3.81411018× 10−7]]
M[3].CONV.base_variance (1× 10−8, ∞) [54.76679359]
Gaussian.scale (1× 10−8, ∞) [0.07039943 0.05906305 0.03154559]

Table A4. Hyperparameters of the MOGP model trained with the S2 GP VWC and S1 RVI orbits 68
and 141 time series over the winter wheat 2021 ROI-2.

Name Range Value

M[0].CONV.weight (1× 10−8, ∞) [0.05051712 0.27439207 0.38695247]
M[0].CONV.variance (0.0, ∞) [[4.86858144× 10−6] [7.13908231× 10−6] [1.31486331× 10−3]]
M[0].CONV.base_variance (1× 10−8, ∞) [34.01715996]
M[1].CONV.weight (1× 10−8,∞) [0.07826687 0.21647057 0.08729357]
M[1].CONV.variance (0.0, ∞) [[2.67026775× 10−5] [2.09623224× 10−6] [3.66018092× 10−5]]
M[1].CONV.base_variance (1× 10−8, ∞) [19.31982864]
M[2].CONV.weight (1× 10−8, ∞) [0.5937755 0.30263363 0.22857684]
M[2].CONV.variance (0.0, ∞) [[1.10220013× 10−4] [1.21975560× 10−2] [6.16156520× 10−6]]
M[2].CONV.base_variance (1× 10−8, ∞) [49.46172915]
M[3].CONV.weight (1× 10−8, ∞) [0.0563912 0.01698611 0.03144775]
M[3].CONV.variance (0.0, ∞) [[2.51113006× 10−5] [1.23150713× 10−5] [1.27814011× 10−2]]
M[3].CONV.base_variance (1× 10−8, ∞) [0.08717407]
Gaussian.scale (1× 10−8, ∞) [0.04004209 0.06703326 0.0397214 ]
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