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Abstract: The anthocyanins are pigments responsible for a wide range of colours in 
plants, from blue, red and purple, play essential biological roles as well as their genes are 
evolutionarily conserved. Purple sweet potatoes have anthocyanins as the predominant 
colour, even though they are present in orange roots masked by carotenoids. Several 
studies have focused on molecular aspects of anthocyanin genes, mainly in wild 
Ipomoea species, although the structure and segregation analysis of those genes in 
sweet potato hexaploid species are still unknown. Based on an “exon-primed intron-
crossing” (EPIC) approach, fourteen pairs of primers were designed, on fi ve structural 
anthocyanin genes as candidates. The strategy exploits the Intron Length Polymorphism 
(ILP) from Candidate Genes (CG), resulting in 93% of successful markers giving scorable 
and reproducible alleles. The results allowed to defi ne partial structure and sequence 
of the introns and exons from the selected CG, and to determine patterns of sequence 
variation. The evaluation of marker dosage and allelic segregations in an Ipomoea 
batatas (L.) Lam mapping population identifi ed several alleles for linkage analysis. 
The study validated the utility of ILP-CG markers for genetic diversity and conservation 
applicability and a successful amplifi cation gradient across wild Ipomoea species 
validated their transferability.

Key words: anthocyanin, candidate genes, ILP-CG markers, Ipomoea batatas, genetic 
diversity, wild Ipomoeas.

INTRODUCTION 
Anthocyanins play important roles in 
plants conferring accessory pigments for 
light-harvesting and preventing photo-
oxidative damage during photosynthesis. The 
accumulation of anthocyanin provides orange, 
yellow, and red colours in fl owers, fruits, and 
other plant organs that attract pollinators 
and animals for seed dispersal. Both in 
experimental models, as in in vitro tests, clinical 
and epidemiological investigations, they have 
shown antioxidant properties and inhibition of 
various forms of cancer, cardiovascular diseases 

and neurodegenerative diseases, among others, 
recognising as a signifi cant ingredient in the 
human diet with an impact on health (Lila et 
al. 2016, Lila 2004). Gould (2004) lists the role 
anthocyanins and related compounds play 
in protecting against different leaf stressors 
(light and heavy metals). Furthermore, Shirley 
(1998) describes the entomophilic role they 
play in fl owers and how they deter pathogens 
and seed predators. The role of anthocyanin 
in underground organs is unclear; it may have 
similar protective role in these reproductive 
organs (Mano et al. 2007). Several authors (Kano 
et al. 2005, Suda et al. 2003, Matsui et al. 2002, 
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Yoshimoto et al. 1999) have focused attention 
on the multiple physiological functions of 
the anthocyanins contained in the flesh of 
purple sweet potatoes (Ipomoea batatas (L.) 
Lam). Mainly in its potent antioxidant activity, 
antimutagenicity, antihyperglycemic effect, and 
hepatoprotective and antihypertensive effects.

Anthocyanins are responsible for red and 
purple skin and flesh colour in sweet potato 
storage roots (Shi et al. 1992). Sweet potato is 
a perennial dicotyledonous plant belonging 
to the family Convolvulaceae, which can give 
satisfactory yields under adverse climatic 
and soil conditions and low or non-use of 
external inputs. Globally, the high yields and 
wide adaptability made it an important food 
crop. Sweet potato is a hexaploid (2n = 6 × 
= 90) outbreeding species with a large and 
complex genome (2205 Mb) and a high degree 
of heterozygosis (Peiyong et al. 2016). Although 
the importance of sweet potato as a source 
of anthocyanin, relatively little research has 
focused on inheritance studies whereas that 
the molecular genetics aspects of anthocyanin 
genes of this species are more studied to date 
(Yang et al. 2020, Qin et al. 2020, Amoanimaa-
Dede et al. 2020, Tanaka et al. 2012). There are 
few previous studies focused on the Mendelian 
genetics of colour in sweet potato. Hernández 
et al. (1965) found that cooper, rose, pink or 
purple colours were incompletely dominant 
over white or cream skin colour. When a parent 
with roots of white skin colour was crossed 
with a parent with anthocyanin pigments, 64% 
of the seedling roots had skin pigmented and 
transgressive segregation was observed (Arizio 
et al. 2009a). These studies remained relegated 
because of some sweet potato complex genetic 
and reproductive characteristics: polyploid 
nature, high heterozygosity, self-incompatibility, 
and a high cross-incompatibility. Consequently, 
the development of appropriate breeding 

and selection methodologies using molecular 
markers were also set aside.

The main genes that encode the anthocyanin 
biosynthesis pathway enzymes have been 
isolated in different species (Saito et al. 2013, 
Petroni & Tonelli 2011). Its regulation has also 
been characterised in several model species, such 
as Petunia hybrida (Zhang et al. 2019). However, 
the nucleotide variation or gene expression 
level and its relationship with anthocyanin 
pigments production are still unknown in most 
crops. However, several authors have advanced 
in characterising different phenotypes and 
their relationship with genotype. In Solanaceae, 
an anthocyaninless mutant was observed. A 
premature stop codon is responsible for that 
phenotype (De Jong et al. 2004). A 390 bp 
insertion was identified upstream from the 
putative transcription start site in the pink allele 
in the anthocyanidin synthase (ANS) gene in 
Allium cepa (Kim et al. 2005). A large insertion 
in the third exon on F3H gene synthesis of a 
truncated transcript, resulting in the production 
of pink flowers rather than purple in Ipomoea 
purpurea (Zufall & Rausher 2003). Tanaka et al. 
(2004) identified 2 Kb deletion in the intergenic 
region of the dihydroflavonol 4-reductase gene 
(DFR-B) in cultivars with high anthocyanin 
content in I. batatas storage roots. Not only 
SNPs (Single Nucleotide Polymorphisms) and 
Indels (Insertions and deletion) mutation were 
responsible for changes in anthocyanin content, 
but also the presence of different transposable 
elements inserted within genes. Inagaki et al. 
(1999), identified the mutable allele a3 flecked as 
the DFR-B gene (structural gene of anthocyanin 
biosynthesis) carrying the 6.4 Kb transposable 
element Tpn1. In I. purpurea, the mutant allele 
af in Chalcone sintetase gen (CHS) is caused by 
integrating transposable elements, named Tip10 
(Habu et al. 1998).



CARLA M. ARIZIO et al.	 ANTHOCYANIN MARKERS FOR Ipomoea SPECIES

An Acad Bras Cienc (2022) 94(3)  e20210672  3 | 21 

Candidate Genes (CGs) are suspected of 
having a functional role in the phenotype of 
interest (Pflieger et al. 2001). DNA sequence 
variation located within a CG or physically 
close to it would be associated with trait 
variation. Exploit CG polymorphism is a valuable 
alternative to investigate allelic variation 
involved in sweet potato root pigmentation and 
as a source to develop new molecular markers 
for breeding selection. Although different types 
of molecular markers have been developed 
for sweet potato (Sasai et al. 2019, Miano et 
al. 2008, Mcharo et al. 2005), no marker exists 
for anthocyanin biosynthesis gene. Only a few 
studies report the use of CG as a strategy for 
developing functional molecular markers (Arizio 
et al. 2014, Miller et al. 1999). Mapping CG and 
identifying their significant allelic associations 
with a particular trait gives primary insight into 
the molecular mechanisms and provides robust 
functional markers (Pflieger et al. 2001). The 
current availability of plant genomics resources 
[e.g. Expressed Sequence Tag (EST) databases] 
and gene function analysis in model organisms 
are sources for designing those markers which 
are valuable molecular tools for evolutionary 
biologists, conservation managers, and 
agricultural researchers (Reeves et al. 2012). 

Even though transcribed regions have 
been less polymorphic due to DNA sequence 
conservation within and among plant species 
(Varshney et al. 2005), this can be overcome, 
for genetics mapping purposes by exploiting 
intron polymorphisms. The detection of Intron 
Length Polymorphisms (ILPs) and Intron Single 
Nucleotide Polymorphisms (ISNPs) can be 
done through exon-primed intron-crossing PCR 
(EPIC-PCR) approach (Wang et al. 2005, Bierne 
et al. 2000). The proximity of introns to exons 
makes them especially well-suited for linkage 
disequilibrium studies that promise to add a 

powerful new dimension to the understanding 
and crop improvement.

By exploiting intron length polymorphism 
(ILP-CG), the present study reports the first set of 
polymorphic functional markers for anthocyanin 
genes in I. batatas and demonstrated their 
transferability in six wild Ipomoea species. We 
identified important structural features in the 
intron regions of CG, like mobile elements and 
sequence repeats. Also, we provide information 
about genomic constitution and allelic dosage 
of CG and their partial structure that might 
be useful for future studies related to the 
improvement of I. batatas and its wild relatives.

MATERIALS AND METHODS
Plant material 
Forty-one accessions of I. batatas from INTA in 
vitro collection (Table I) were used to assess the 
ILP-CG marker’s polymorphism. The accessions 
were chosen under different genetic diversity 
criteria, geographic origin and storage root 
colour (Manifesto et al. 2010). We use seven wild 
Ipomoea species (15 accessions) representing 
two subgenera to test the marker’s transferability 
(Table II). Segregation rates and allelic dosage 
were evaluated in a double pseudo-testcross 
mapping population (113 F1 individuals) among 
two highly heterozygous parents: “30BG” (a clone 
with white flesh and skin root colour) and “45BG” 
(a clone with yellow flesh with orange dots and 
purple skin root colour). Genomic DNA of all 
plant material was extracted from lyophilised 
young leaves using a modified CTAB procedure 
(Doyle & Doyle 1990), and the quality was tested.



CARLA M. ARIZIO et al.	 ANTHOCYANIN MARKERS FOR Ipomoea SPECIES

An Acad Bras Cienc (2022) 94(3)  e20210672  4 | 21 

Development, amplification and sequencing 
validation of Intron Length Polymorphism 
markers for the Anthocyanins Candidate Genes 
(ILP-CG) 
Fourteen primer pairs were designed to anneal in 
five structural anthocyanin biosynthesis genes, 
generating amplicons ranging from 200-600bp 
(Table III): Chalcone isomerase (CHI), Chalcone 

synthase (CHS), Flavanone 3-hydroxylase 
(F3H), Dihydroflavonol 4-reductase (DFR), 
Anthocyanidin synthase (ANS) and UDP-glucose 
flavonoid 3-oxy-glucosyltransferase (UF3GT) 
(Durbin et al. 2000). The protocol for PCR 
amplification and purification products were 
according to Arizio et al. (2014).

Table I. Set of 41 I. batatas accessions used for allelic diversity analysis.

INTA Code (CIP 
Code) Root colour (Skin/flesh) INTA Code (CIP 

Code) Root colour (Skin/flesh)

1 2 (CIP3338) Purple/yellow cream 22 218 (DLP4727) Cream/white

2 4 Purple/pale yellow 23 225 Cream/cream

3 7 (CIP31) Cream/cream 24 227 (DLP4709) White/white

4 15 Purple/dark cream 25 243 (DLP4879) White/cream

5 20 Cream/pale yellow 26 246 (DLP4793) Cream/dark cream

6 30 (CIP17) Cream/cream 27 264 (DLP4803) Orange/pale orange

7 31 (CIP16) Cream/cream 28 281 Pink/cream

8 45 Purple/yellow with 
orange spots 29 324 (DLP4883) Purple red/cream

9 59 (DLP3983) White/white 30 358 (CIP9) Purple/yellow with orange 
spots

10 83 (DLP4013) Purple red/orange 31 6 Purple red/dark yellow

11 85 (DLP4017) Red/yellow cream 32 18 Purple red/dark orange

12 93 (DLP4025) Purple red/purple 33 35 Cooper/intermediate orange

13 100 (DLP4042) Cream/cream 34 48 Cooper/cream

14 108 (DLP4053) White/cream 35 306 (Beauregard) Cooper/intermediate orange

15 127 (DLP4080) White/cream 36 336 Red/pale yellow

16 129 (DLP4083) Cream/white 37 338 Red/ dark yellow

17 134 (DLP4092) White/cream 38 339 Red/ dark orange

18 148 (DLP4115) Purple red/cream 39 340 Red/cream

19 166 (DLP4144) Cream/yellow with 
orange spots 40 341 Dark Purple/white

20 171 Purple red/cream with 
purple spots 41 353 (USDA ID531154) No data

21 178 (DLP4059) Purple red/purple
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Identity of the sequences (ABI3130XL, Applied 
Biosystems) was confirmed through multiple 
alignments using BLAST (Basic Local Alignment 
Search Tool). Different types of polymorphism 
among sequences (SNP, InDels, Simple Sequence 
Repeat -SSR- and transposons) were also 
determined using ClustalW (Thompson et al. 
1994), BioEdit 7.0.5.3 (Hall 1999), BLAST (https://
blast.ncbi.nlm.nih.gov/Blast.cgi) and GDR SSR 
(Genome Database for Rosaceae; http://www.
rosaceae.org)

Genetic diversity and segregation ratio 
analysis
We performed genetic diversity studies 
in Ipomoea accessions to evaluate the 
discrimination power of the ILP-CG markers. Each 
band was scored as an individual dominant locus 
like presence (1) or absence (0) (Rodzen et al. 
2004, Zhang et al. 2000) to obtain a binary matrix. 
Similarity among accessions was determined 
using Jaccard’s coefficient, and a cluster analysis 
was performed to reveal relationships among 
them using the UPGMA method (Sneath & Sokal 

1973). Pearson’s product-moment calculated 
correlations between arrays through Mantel’s 
test (10,000 permutations) (Mantel 1967). Every 
analysis was executed using the NTSYSpc 2.11W 
program (Rohlf 1997). The binary matrix from the 
F1 population was used for ILP-CG segregation 
ratio analysis. Both polymorphic and biparental 
fragments (presence in both parents but 
segregating in the population) were taken into 
account. F1 data was analyzed as a double 
pseudo-testcross (Grattapaglia & Sederoff 1994). 
The allelic dosage and segregation analysis 
details are available in Arizio et al. (2014).

RESULTS
ILP-CG markers development and allelic 
diversity assessment in I. batatas
We designed 14 pairs of primers to amplify different 
introns for five anthocyanin biosynthetic genes 
of sweet potato using reference sequences of I. 
batatas, I. nil, Arabidopsis thaliana, Nicotiana 
tabacum and Solanum lycopersicum, available 
at NCBI (Figure 1, Table III). PCR products 

Table II. Set of wild Ipomoeas species used for transferability analysis.

Subgenus Section Series Species ID

Eriospermum Eriospermum

Batatas

Ipomoea grandifolia (Dammer) O’Donell CIP460440 CIP460448 
CIP460457 CIP460788

Ipomoea x leucantha Jacq. (pro) sp.
CIP460204
CIP460710

Ipomoea cordatotriloba
CIP460712

ND

Jalapae Ipomoea amnicola Morong
CIP470235 CIP470368

ND

Quamoclit

Calonyction - Ipomoea alba L. ND

Tricolores
- Ipomoea aristolochiifolia (Kunth) G. Don

BBC17798
ND

- Ipomoea parasítica Kunth G. Don CIP470232

ND: no data.
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amplified in both parents (“30BG” and “45BG”) 
were sequenced in order to confirm the identity 
of the target regions. Only one pair of primer 
(Ib-CHI3) amplified alleles without sequence 
homology. Four pairs of primers amplified a 
single band, whereas ten pairs amplified from 
two to four bands in parental genotypes. 

Chalcone isomerase (CHI) (EC 5.5.1.6) 
The alignment of P. hybrida (X14590.1) genomic 
DNA and cDNA sequences from I. batatas 
(AB037396.1) showed homology (blast e-value: 
3e-26) with the last three exons out of four of 
P. hybrida. Three pairs of primers (Ib-CHI1, Ib-
CHI3 and Ib-CHI5) were designed to cover intron 
one, two and three, respectively. The identity 
of the exon region was confirmed for Ib-CHI1 

Table III. List of primers of ILP-GC markers developed for anthocyanins biosynthesis pathway in sweet potato: 
locus name, corresponding gene, Genbank accession number, primer sequences, and annealing temperature.

Locus
name

Gene function
Accession Nº

Ipomoea 
batatas

Primer sequences
Annealing

temperature

Ib_CHI1

Chalcone isomerase gi:19223827

F: CCGAAGTCAAAGTGGAGAGC
R: TTTTCCCGTTCCACTTAACG

56ºC

Ib_CHI3
F: GGATTCCGTCCAATTTTTCA

R: GGTGGGAACATTTGGTCACT
58ºC

Ib_CHI5
F: CGATGCAGAGAGCAAAGCTA
R: CTTTGCTTCAGGGGAAACAC

52 ºC

Ib_F3H1
Flavanone 3-hydroxylase gi:119394508

F: GGGATCTTTCAGGTGGTTGA
R: AATAGTCCCTTGCCCTCACC

56ºC

Ib_F3H3
F: CCTAAAACGCCACACAGACC
R: AGTTCACCACCGCTTGATG

58ºC

Ib_DFR1

Dihydroflavonol 
4-reductase gi:40056989

F: AACGAGGCTACCATGTTCACGC
R: TTCACACCCTGCAATGGCT

56ºC

Ib_DFR2
F: ATGTGGCCACCCCTATGGA

R: ACACAGGCTTTTGTTGTGGTTGGA
56ºC

Ib_DFR3
F: CAACGTCCAACCACAACAAAAGCCTGTG
R: TGTTGGGGTGATGAATGGGCCAACCACT

59ºC

Ib_DFR4
F: CACTAGTGGTTGGCCCATT

R: CCTTCTGCTTTGGGATGCTCAT
56ºC

Ib_DFR5
F: CCATCCATGGTTTAGCGGAGATG
R: CATTTGCCACAAGCGGGTTAGCT

56ºC

Ib_ANS1

Anthocyanidin synthase gi:4512586 
gi:32441920

F: ATGCTAGTGGGCAGCTTGAGT
R: GCTGATTGAGTTGGCTGTTTGGGT

58ºC

Ib_ANS2
F: ACAGCCATCAGCTAACAGCT

R: TGGAAGAGTCACTACAGCCATCT
56ºC

Ib_ANS3
F: AGGTGTCATGAGCACATCCT

R: ACCGTTGTGGTTAATGCCCTCAG
56ºC

Ib_UF3GT UDP-glucose flavonoid 
3-oxy-glucosyltransferase AB038248.1

F: GACGGATTCGTTTCTGTGGT
R: TTTCAGCTTCTGGTCCAACC

56ºC
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and Ib-CHI5 (blast e-value: 5e-91 and 3e-16 with 
AB037396.1, respectively), whereas no sequence 
homology was detected in the intron region with 
the GenBank database. No sequence homology 
was detected for Ib-CHI3 bands since only the 
intronic region was sequenced. Ib-CHI1 primer 
amplified one monomorphic band, Ib-CHI3 
amplified three bands (two monomorphic and 
one polymorphic, present in “30BG” parent), 
whereas Ib-CHI5 amplified one monomorphic 
and one polymorphic band (present in “30BG”).

Flavanone 3-hydroxylase (F3H) (EC 1.14.11.9)
The alignment of the genomic sequences of 
the F3H gene from P. hybrida (AF022142.1) (2320 
bp) with the cDNA from I. batatas (EF108572.1) 
showed high homology (blast e-value: 3e-115) 
with the three exons of P. hybrida. Two pairs of 
primers were designed for amplified two intron 
sequences (Ib-F3H1 and Ib-F3H3). Both primers 
amplified reproducible bands. Ib-F3H1 amplified 
one polymorphic (312 pb) band in “45BG” and 
one biparental band. The polymorphic band was 
sequenced and corresponding with the target 
sequence, covering the first exon (partially) and 
first intron. Ib-F3H3 amplified four bands [two 

Figure 1. Scheme of the 
five structural anthocyanin 
biosynthesis genes. The 
grey line indicates the 
gene structure, exons as 
a black box, and intron as 
a thin line. Black arrows 
in opposite directions 
represent a pair of primers.

http://www.genome.jp/dbget-bin/www_bget?ec:1.14.11.9
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polymorphic in “45BG” (650 pb) and “30BG” and 
two biparental], covering completely the intron 
two and partially exon two and three.

Dihydrofl avonol 4-reductase (DFR) (EC 1.1.1.219)
The complete DFR gene sequence of I. batatas is 
available at the GenBank database (AB112545.1). 
The DFR gene presented six exons. Five pairs of 
primers were designed to assess polymorphism 
in the introns. They amplified the expected 
sequences and showed homology only with one 
member of the DFR gene family: DFR-B. Ib-DFR1 
amplifi ed two monomorphic bands (700 bp and 
380 bp). The 700 bp band showed homology only 
with 50 bp of 5` intron one region of DFR-B gene; 
whereas the rest of alleles sequences displayed 
homology with different intergenic or intron gene 
relationship with anthocyanin biosynthesis [I. 
trifi da UF3GT gene (AY257207.1) blast e-value: 8e-

31, I. nil InNhx pseudogene for Na+/H+ exchanger 
protein (AB055063.1) blast e-value: 8e-31, I. nil EFP 
gene for chalcone-fl avanone isomerase family 
protein (AB545802.1) blast e-value:3e-24]. Also 
presented homology with transposable element 
type En/Spm, Tpn101 (AB072271). The 380 bp band 
presented high homology in all sequences with 
the DFR-B gene (blast e-value: 6e-121). Four bands 
were amplifi ed with Ib-DFR2 (two polymorphic, 
one biparental and one monomorphic), from 
which the two-polymorphic (IbDFR2 30BG b
and c) were sequenced. Both bands correspond 

with intron two and 3’ exon three of the DFR-B 
gene. The band (c) contained the dMELS1, a 
deleted mobile element-like sequence (53 bp) 
also detected in DFR-B I. batatas by Tanaka et 
al. (2004) (AB112545.1: 3238 to 3276bp). However, 
the complete mobile element MELS1 (56 bp) was 
described fi rst in I. nil (AB006793) (Inagaki et 
al. 1999) and I. purpurea (Hisatomi et al. 1997) 
(Figure 2).

Ib-DFR3 amplified two monomorphic 
bands (600 bp and 700 bp), and Ib-DFR4 only 
one monomorphic band (260 bp). All bands 
presented homology with the target region of 
I. batatas DFR-B gen (blast e-value: 2e-99 and 
1e-102). Finally, three monomorphic bands were 
amplifi ed with Ib-DFR5 (450 bp, 400 bp y 370 
bp), whose identities were confi rmed. All bands 
present the deleted mobile elements-like 
sequence dMELS5 (MITEs family). MELS5 (215 
bp) was described for the fi rst time in I. nil by 
Inagaki et al. (1999), while dMELDS5 (91 bp) was 
described in I. batatas by Tanaka et al. (2004). 
Several nucleotide changes were observed 
within the different bands. The one of 370 bp 
shows 5 pb insertion and 27 bp deletion along 
the sequence.

Antocyanidin synthase (ANS) (EC:1.14.11.19)
The sequence of the I. trifi da gene for Antocyanidin 
synthase presents high similarity with I. batatas 
mRNA (AB023787.1). Three pairs of primers 

Figure 2. Sequence alignment of two bands corresponding to intron two and 3´ exon three of the DFR-B genes 
amplifi ed in I. batatas (Ib DFR2) to the region of the transposable elements described in I. nil (AB006793.1: 9709-
9764) and I. purpurea. The sequence of dMELS1 shows some base substitutions. Band (b) presented the same 
dMELS1 and an additional deletion (33 pb). Band (c) also presented dMELS1 with some base substitutions.
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(Ib-ANS1, Ib-ANS2 and Ib-ANS3) were designed 
to cover the intron region, overlapping each 
other. All of them amplified reproducible and 
scorable bands. Ib-ANS1 and Ib-ANS2 amplified 
one, and two monomorphic bands, respectively, 
meanwhile Ib-ANS3 amplified one polymorphic 
and two biparental bands. The bands’ identity 
was confirmed by high homology with mRNA 
sequence from NCBI, except for the second 
monomorphic band of Ib-ANS2, corresponding 
to the intron region. The overlapped sequence 
presents complete homology each other as 
expected. It was possible to define a complete 
intron (870 bp) and the flanking exons partially. 
Different numbers of repeats in the SSR detected 
were observed in the sequences amplified with 
Ib-ANS3. The polymorphic bands amplified with 
Ib-ANS3 have 34 bp insertions without sequence 
homology and one SSR repeat less (AAAAAT) 
than the other sequences amplified.

UDP glucose: flavonoid 
3-O-glucosyltransferase (UF3TG)
UF3GT gene presents one intron, with differences 
in length among Ipomoea species (746 bp in I. 
trifida, 408 bp in I. nil and 77 bp in I. purpurea). 
The mRNA sequence of UF3GT from I. batatas 
(AB038248.1) has a high similarity with the exon 
region of several Ipomoea species. We designed 
only one pair of primers to cover the intron 
region. Ib-UF3GT amplified one monomorphic 
band (930 bp) and one biparental band (900 
bp). The biparental band was sequenced and 
presented high homology only with the exon 
and 5’ intron region.

Homology validation of ILP-CG markers
To validate PCR products’ sequence, we picked 
up five primer pairs, Ib-CHI1, Ib-DFR1, Ib-DFR2, 
Ib-DFR3 and Ib-DFR4. The five candidate gene 
markers were amplified in five wild Ipomoea 
species (Ipomoea aristolochiifolia, I. alba, I. 

parasitica, I. amnicola, I. grandifolia) and also 
in different accessions of I. batatas. The results 
showed that the sequences were consistent with 
the selected anthocyanin genes. As expected, the 
sequences of genes revealed InDels and several 
point mutations, such as single-base insertions, 
deletions or translocations, and polymorphism 
in introns length was observed. Overall, multiple 
sequence alignment showed that they were 
homologous and comprised conserved exon 
regions and non-conserved or variable intron 
regions. Exon multiple sequence alignment 
(1940 bp) analysis for amplified CHI gene (Figure 
3) from six Ipomoea species identifies the 
presence of 27 substitution mutations resulting 
in single nucleotide polymorphisms (SNPs). 
Also, one InDel was detected (3 nucleotides) in I. 
aristolochiaefolia. 

The sequence amplified with Ib-DFR1 in 
I. parasitica presents complete homology 
(blast e-value:2e-110) with I. tricolor DFR-B gene 
(Sequence ID: AB267077.1) and partial homology 
with I. batatas DFR gene (3’ of intron 1 and 5’ of 
exon 2). I. grandifolia presents partial homology 
with the expected gene; meanwhile, I. alba and 
I. aristolochiaefolia do not present homology 
at all. For Ib-DFR2 (Figure 4), 11 sequences 
(3746 bp) were analyzed. Wild Ipomoea species 
present better homology with I. tricolor (blast 
e-value:2e-100) in the DFR exon region than I. 
batatas, except I. alba, which presented homology 
with I. nil. The Ib-DFR2 amplified region presents 
eighteen SNPs and high polymorphism in intron 
two with a variable-length (201 bp to 269 bp) 
and many gaps and SNPs. Also, one SSR motif 
(TG)8 was detected in I. alba.

For Ib-DFR3, ten sequences (5216 bp) were 
analyzed, five sequences of I. batatas (2678 bp) 
and five of wild Ipomoea species (2538 bp). All 
sequences presented homology in the exon 
region with I. batatas except I. aristolochiaefolia, 
which presented better homology with I. 
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purpurea. The intron three presented 418 bp in 
I. batatas; meanwhile, its length in other wild 
Ipomoea species was within 468 bp and 484 bp. 
The variable-length is due to the presence of 
many gaps, InDels and SNPs.

Allelic diversity of anthocyanin genes in 
sweet potato germplasm and cross-species 
transferability
Thirteen pairs of primers were used to 
evaluate the genetic variability of 41 sweet 
potato accessions from INTA in vitro collection, 
and their transferability were tested in 15 
wild Ipomoea accessions. Ninety-four bands 
were detected across ILP-CG loci of Ipomoea 

accessions with an average of 7.23 ± 3.06 alleles 
per polymorphic locus, ranging from 2 (Ib-CHI1) 
to 13 (Ib-F3H3). Thirty-two alleles were exclusive 
of I. batatas, and forty-four were exclusive of 
wild Ipomoea species, while eighteen bands 
were shared between both Ipomoea groups 
(Table IV). Two pairs of primers (Ib-DFR1 and 
Ib-CHI1) were monomorphic, whereas eleven 
pairs were polymorphic among sweet potato 
accessions (Ib-ANS1, Ib-ANS2, Ib-ANS3, Ib-F3H1, 
Ib-F3H3 Ib-CHI3, Ib-UF3GT, Ib-DFR2, Ib-DFR3, Ib-
DFR4 and Ib-DFR5). Primers pair Ib-ANS3 and 
Ib-F3H3 were the most polymorphic markers 
with 6 and 7 bands, respectively. Fifty bands 
(92.6%) were polymorphic among the 41 sweet 

Figure 3. Sequence alignment of different genomic sequences amplifi ed with Ib-CHI-1 (I. batatas and fi ve wild 
Ipomoea species) and mRNA of I. batatas (AB037396.1). The sequence corresponds to exon region. 
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potato accessions, while only four bands were 
monomorphic. Transferability of sweet potato 
ILP-CG markers were evaluated in terms of 
successful amplifi cation on seven wild Ipomoea
species: eleven accessions belong to subgenus
Eriospermum (I. grandifolia, I. amnicola, I. 
cordatotriloba and I. leucantha) and four to 
subgenus Quamoclit (I. alba, I. parasitica and 

I. aristolochiaefolia). A range of transferability 
was observed between wild species. I. alba was 
the species with less transferability (5 n. a.) 
meanwhile I. cordatotriloba amplifi ed all loci 
like I. batatas. Only one locus does not amplify 
in I. grandifolia and I. aristolochiaefolia, two loci 
do not amplify in I. leucantha, three loci for I. 
amnicola and four loci for I. parasitica.

Figure 4. Sequence alignment 
of different genomic 
sequences amplifi ed with Ib-
DFR-2 (I. batatas and fi ve wild 
Ipomoea species) and mRNA 
of I. batatas (AB112545.1). The 
sequence corresponds to 
intron 2 and exon 3 regions 
(288 pb).
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Average genetic similarity based on ILP-
CG data across sweet potato accessions and 
wild Ipomoea species was 0.378 ± 0.222. The 
average similarity among I. batatas was 0.562 
± 0.097; meanwhile, among wild Ipomoea 
species was 0.236 ± 0.073. Fifty-two out of 56 
accessions (92.8%) were differentiated with 94 
polymorphic bands. Cluster analysis shows a 
clear separation among cultivated species from 
the wild ones (Figure 5). One cluster grouped 
41 accessions of I. batatas without any pattern 
concerning skin and flesh colour. Only two 

accessions were indistinguishable using these 
markers. Wild Ipomoea species grouped in 
different clusters. I. parasitica belonging to the 
subgenus Quamoclit branched out individually 
from I. aristolochiaefolia and I. alba meanwhile 
I. grandifolia, I. Leucantha, I. cordatotriloba, 
I. amnicola belonging to the subgenus 
Eriospermum joined together in two groups. 
Dendrogram resulted in a good representation 
of genetic relationships between accessions. 
Correlation among similarity matrix and it’s 

Table IV. Amplified alleles of ILP-GC markers in I. batatas and wild relatives. Sizes are indicated in base pairs (bp). 

Primer Ib-
CHI1

Ib-
CHI3

Ib-
DFR1

Ib-
DFR2

Ib-
DFR3

Ib-
DFR4

Ib-
DFR5

Ib-
F3H1

Ib-
F3H3

Ib-
ANS1

Ib-
ANS2

Ib-
ANS3

Ib-
UF3GT

I. batatas 192

1231
1000
935
871

391

341
338
308
303
278

722
714
652
622
585

270
268
265
263

441
431
414

459
435
430
377
367

1300
1160
1058
1000
970
861
700

456
396
331

349
346
338
333
167

517
508
489
482
475
468

930
900

I. parasitica 192 886 264 423 652 257

441
614
500
477

n. a. 768
456
396

n. a. n. a. n. a.

I. alba 192 n. a. 331 406
746
585

290
630
575

n. a. 262 456 n. a. n. a. n. a.

I. grandifolia 192 n. a.
700
676

338
622
672

265
281
257

441
373
377
367

427
700

456 346 557 900

I. leucantha 192
910
886

676 338 672 281 n. a. 367

1058
700
544
580

456 n. a. 557
1300
920

I. amnicola 192
935
952

403
398

432
700
622
686

251
441
471

n. a. 427 n. a. 346 482 n. a.

I. 
aristolochiaefolia 195 886 576 376

590
585

290
298

441 304 280 456 346 482 n. a.

I. cordatotriloba 192 886 676 338 672 281
441
431

367 700 456 167 534
1300
920

n. a.: no amplification.
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cophenetic was high (r = 0.952) and significant 
(Mantel’s test, P < 0.0001).

Segregation analysis of ILP-CG alleles 
Considering the segregation model described for 
an F1-pseudo-test-cross population (Kriegner et 
al. 2003, Kumagai et al. 1990), we estimated the 
allele dosage using polymorphic and biparental 
alleles between parental genotypes (“30BG” and 
“45BG”) and 113 F1 individuals. Seven out of 14 
ILP-CG markers corresponding to Ib-DFR2, Ib-
F3H1, Ib-F3H3, Ib-CHI3 Ib-CHI5, Ib-UF3GT and 
Ib-ANS3 showed polymorphic alleles between 
parents. The allelic dose of eight polymorphic 
and eight biparental bands and segregation 
ratio were analyzed (Table V). We identified 
seven polymorphic simplex bands (1:1) and 
one polymorphic double band (4:1) meanwhile 
three polymorphic bands showed distortion in 
segregation ratio. Four out of eight biparental 
bands fitted into the 3:1 segregation ratio for 
double-simplex markers; one fitted into the 9:1 
for double-simplex biparental alleles; and three 
biparental alleles fitted into the 14:1 for double-
double biparental alleles. A total of five alleles 

were monomorphic in 4 loci (Ib-DFR2, Ib-F3H1, 
Ib-CHI5, Ib-UF3GT), which means no segregation 
was observed and also their dose is probably 
high for both parents (AAAaaa /AAAAaa/AAAAAa 
/AAAAAA).

DISCUSSION
We reported new gene markers in sweet potato 
related to anthocyanin biosynthesis. The CG 
strategy, combined with the EPIC-PCR technique, 
revealed polymorphism in all functionally 
important genes selected as candidate loci. 
The structure and sequence of five anthocyanin 
genes were partially defined. We developed, 
amplified and characterized gene-specific 
molecular markers CHI, DFR, F3H, ANS and UF3GT 
genes from Ipomoea species. The markers 
were validated in their use to evaluate genetic 
diversity in germplasm collections and genetic 
mapping. The successful marker transferability 
in wild Ipomoea species extends gene markers 
usefulness.

The ILP-CG molecular markers are 
codominant,  locus-specific ,  and more 

Figure 5. Dendrogram of 41 accessions of sweet potato and 15 wild Ipomoea species. Species are followed by 
abbreviations referring to the classification of Austin and coworkers. Subgenera: ERI=Eriospermum, QU=Quamoclit; 
Sections: Tri=Tricolores, Cal=Calonyction, Eri=Eriospermum; Series: Jal=Jalapae, Bat=Batatas.
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reproducible. The strategy for molecular primer 
design ILP-CG markers was successful. Ninety-
three per cent (93%) of the markers effectively 
amplified the target region, only one pair of 
primer amplified alleles without sequence 
homology. The same strategy was also successful 
for carotenoid genes (79%) (Arizio et al. 2014). 
Similar results were obtained with the EST-
SSR strategy (84.6%) (Wang et al. 2011). Among 
the successful primer pairs, all amplified PCR 
products were of the expected sizes in I. batatas, 
although some of them resulted in larger or 
smaller PCR products than expected, particularly 
in wild Ipomoea species. These length variations 
are attributed mainly to polymorphism in introns 

(insertions/deletions, repeat number variations 
or transposons). We determined the existences 
of SNPs, InDels, SSR and transposable elements 
within DNA sequences of CG. Introns have less 
evolutionary constraint than exons and should, 
be more likely to present polymorphism (Feltus 
et al. 2006). Moreover, nuclear introns represent 
a largely untapped source of genetic variation 
for population genetics and phylogeography. By 
examining the fourteen ILP-CG marker intron 
sequences, we found that only one of the ILP 
were due to SSR motif variation. Since there 
was no overlapping between ILPs and SSRs, new 
Sequence-Tagged Sites (STS) markers could be 
developed from ILP as a complement for SSR 

Table V. Segregation ratio and putative allelic dosage in Ipomoea batatas with ILP-GC markers. 

Locus Number 
of alleles

Observed 
frequencya Allele type Segregation 

ratio χ2b
 Potential allelic dosage

Ib-DFR2

1 51/61 Polymorphic 1:1 0.8928 NS Aaaaaa x aaaaaa

2 50/63 Polymorphic 1:1 1.4956 NS Aaaaaa x aaaaaa

3 83/30 Biparental 3:1 0.1450 NS Aaaaaa x Aaaaaa

Ib-F3H1 1 99/14 Polymorphic 4:1 4.0907 NS AAaaaa x aaaaaa

Ib-F3H3 1      52/54 Polymorphic 1:1 0.0377 NS Aaaaaa x aaaaaa

2      56/50 Polymorphic 1:1 0.3396 NS Aaaaaa x aaaaaa

3      99/7 Biparental 14:1 0.000 NS AAaaaa x AAaaaa

4       98/6 Biparental 14:1 0.13 NS AAaaaa x AAaaaa

Ib-CHI3 1 51/51 Polymorphic 1:1 0.000 NS Aaaaaa x aaaaaa

2 91/10 Biparental 9:1 0.004 NS AAaaaa x Aaaaaa/AAaaaa x 
AAaaaa

3 51/51 Biparental 3:1 -   * ------ x aaaaaa 
(distortioned)

Ib-CHI5 1 46/55 Polymorphic 1:1 0.8019 NS Aaaaaa x aaaaaa

Ib-UF3GT 1 78/31 Biparental 3:1 0.688 NS Aaaaaa x Aaaaaa

Ib-ANS3 1 62/59 Polymorphic 1:1 1.522 NS Aaaaaa x aaaaaa

2 108/3 Biparental 14:1 2.80 NS AAaaaa x AAaaaa

3 84/27 Biparental 3:1 0.027 NS Aaaaaa x Aaaaaa
aPresence/absence of bands. bp-value (NS: not significant; *: significant).
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markers. According to Hu et al. (2004a, b) some 
polyploids species showed low efficiency of 
PCR amplification due to the complexity of the 
genome and the high percentage of repetitive 
DNA sequences. The successful results obtained 
with the ILP-CG approach reflected in the high 
efficiency of PCR amplification and homology 
validation prove that it is appropriate to develop 
molecular markers in polyploid.

ILP-CG markers can serve as anchor loci for 
linking sweet potato genetic maps and localizing 
QTL for different segregating characteristics 
like differential anthocyanin accumulation. An 
essential step for the analysis in polyploidy 
genetics studies is to estimate a dominant 
band copy number (also referred as a marker 
dosage) based on the assumptions of known 
ploidy and random pairing of chromosomes 
(George 2009). Constructing genetic maps in 
an autopolyploid demand organised loci along 
individual chromosomes, which also must be 
assigned to homologous groups (HGs). For 
linkage analysis, simplex markers were used to 
construct framework linkage maps, but double-
simplex markers (Aaaaaa x Aaaaaa) together 
with duplex and triplex markers (AAAAAA × 
AAAaaa) were employed to identify HGs. The 
best approach to develop a mapping population 
for species with self-incompatibility and a high 
level of heterozygosity is through a pseudo-test-
cross population (Grattapaglia & Sederoff 1994). 
We detected “simplex” and “double-simplex” 
(biparental) (3:1) alleles together with other 
biparental alleles with different segregation 
ratio. Two linkage maps are developed when 
a pseudo test cross approach is used. The 
biparental alleles or bridging markers (Isobe et 
al. 2009) allows merging one integrated linkage 
map. Multiplex markers (higher dose markers) 
provide connections between linkage groups 
(Ripol et al. 1999) identifying and merging 
homologous co-segregation groups. We detected 

allele high-dose within the ILP-CG developed. 
Over the last two decades, seven molecular 
marker linkage maps have been developed 
for sweet potato using different molecular 
markers and, in general, using pseudo-test-
cross population (Kim et al. 2017, Shirasawa et al. 
2017, Monden et al. 2015, Zhao et al. 2013, Li et al. 
2010, Cervantes-Flores et al. 2008, Kriegner et al. 
2003, Mwanga et al. 2002, Ukoskit & Thompson 
1997). Meanwhile, Shirasawa et al. (2017) report 
the first high-density SNP linkage map using a 
population derived from a single parent’s self-
pollination. They successfully constructed a 
genetic linkage map with many double-simplex 
SNPs (biparental) and simplex alleles. However, 
they cannot identify HGs through the classical 
approach because no anchoring markers 
were available. Monden et al. (2015) analyze 
segregation ratios of molecular markers in sweet 
potato obtained from different studies. The 
simplex markers were between 43% (Zhao et al. 
2013) and 88% using retrotransposons markers. 
The simplex alleles detected by ILP-CG markers 
is less (34%) than the report in published 
linkages maps, but we also amplified biparental 
and potential multiplex segregations alleles, 
all of them, corresponding to CG. In polyploid 
organisms, the study of allelic transmission and 
genetic linkage is considerably complicated due 
to the range of meiotic configurations (Gallais 
2003, Sybenga 1975). In I. batatas, the nature 
of the inheritance is discussed, although an 
autopolyploid hypothesis is supported (Ukoskit 
& Thompson 1997, Shiotani 1987, Nishiyama et 
al. 1975). The sweet potato genome constitution 
postulated by Shiotani & Kawase (1989) is 
“B1B1B1B1B2B2” suggesting certain homeology 
between the B1 and the B2 genomes, based on 
the frequency of tetravalent and hexavalent 
formations observed in cytogenetic studies. 
More recently, Mollinari et al. (2019) showed 
polysomic inheritance and demonstrated the 
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autopolyploid origin of sweet potato. Our data 
support the polysomic inheritance proposed for 
sweet potato as an autopolyploid species.

We evaluate the usefulness of gene-specific 
ILP-CG markers for genetic diversity analysis in 
Ipomoea species. Thirteen ILP-CG loci out of 
fourteen primers designed amplified scorable 
alleles, from which eleven loci were polymorphic 
and useful for differentiating sweet potato 
genotypes belonging to a germplasm collection. 
Although ILP-CG markers are expected to be 
less polymorphic than neutral markers -like 
SSR- because they are designed on conserved 
genes, the allelic diversity detected was enough 
to discriminate thirty-nine sweet potato 
genotypes. The results can be explained by the 
polyploid nature and the reproductive system 
(sporophytic self-incompatible) of the species, 
which increases the chances of allelic diversity. 
Arizio et al. (2009b) and Monteros-Altamirano et 
al. (2020) detected a similar number of bands 
(57 and 89, respectively) with only a few SSR 
markers (7 and 8, respectively). The results 
confirmed the usefulness of ILP-CG markers 
to assess the genetic diversity of I. batatas for 
genetic conservation, increasing the availability 
of molecular markers for genes involved in 
pigment biosynthesis (Arizio et al. 2014). The 
polymorphism in conserved nuclear genes was 
also used in plant phylogenetic analysis (Koch 
et al. 2001, Galloway et al. 1998, Gout & Clegg 
1991) as nuclear gene encoding β-amylase 
in the series Batatas (Rajapakse et al. 2004). 
Carotenoid biosynthesis genes have been used 
to analyze evidence of geographical subdivision 
and linkage disequilibrium in carrot (Clotault et 
al. 2010). Undoubtedly, ILP-CG markers have a 
wide range of uses.

ILP-CG markers amplified in fifteen wild 
Ipomoea species belonging to seven species 
showed successful transferability. A high degree 
of ILP locus conservation with transferability 

ranging from 61.54 to 100% was observed and 
greater than reported by Almeida et al. (2014) 
(55%) and by Jayaswall et al. (2019) (58.7%). All 
markers amplified at least eight Ipomoea species, 
indicating different levels of transferability. I. 
cordatotriloba are the most closed to I. batatas 
based on phylogenetics analysis with ITS and 
waxy sequences (Miller et al. 1999) and amplified 
all loci presenting similar and equal alleles 
through different loci. The other Ipomoeas 
have different degrees of positive amplification. 
The success in transferability indicates high 
conservation of primer binding sites in genomic 
DNA over a long evolutionary history. Although 
we detected several polymorphisms in intron 
regions, sequence analysis showed a high 
degree of similarity between exons of wild 
Ipomoea species. Considering that exon-intron 
structures are highly conservative (Xi et al. 
2011, Yang et al. 2007), the ILP-CG markers can 
be developed using predicted intron positions 
in other plant species. In this study, 15 introns 
predicted from the genome of model species 
(Arabidopsis, Lycopersicum, and Citrus sp.) 
appear in sweet potato as expected. These 
characteristics make ILP-CG markers more 
transferable among species than others, 
which was verified in Magnoliophyta. EPIC-PCR 
approach to develop primers in rice amplified 
successfully orthologous sequences in other 
monocot species showing high transferability as 
well as in some dicot species (Wang et al. 2005).

Cluster analysis among Ipomoea species 
shows groups according to the Ipomoea genome 
constitution (“A” or “B”) based on selfing 
abilities, interspecific crossing capabilities, as 
well as morphological and cytological analysis 
(Oracion et al. 1990, Nishiyama et al. 1975, Martin 
& Jones 1973, Jones 1965). I. batatas accessions 
that possess B-genome and self-incompatibility 
behaviour joined in one group whereas wild 
Ipomoea species which have A-genome and 
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self-compatibility behaviour joined in three 
different groups clustering Eriospermum and 
Quamoclit, two from the three subgenera 
recognised for Ipomoea genus (Austin & 
Bianchini 1998, Austin 1997, Austin & Huáman 
1996).

ILP-CG markers enrich the current genomic 
resources for sweet potato and related wild 
species. The functional markers developed 
for anthocyanins genes in Ipomoea species 
provide a new molecular tool for linkage and 
comparative genetic mapping, genetic diversity 
and germplasm conservation. They also may be 
useful for marker-assisted selection in breeding 
programs. 
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