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Potato (Solanum tuberosum L.) is a crop of world importance that produces tubers
of high nutritional quality. It is considered one of the promising crops to overcome
the challenges of poverty and hunger worldwide. However, it is exposed to different
biotic and abiotic stresses that can cause significant losses in production. Thus, potato
is a candidate of special relevance for improvements through conventional breeding
and biotechnology. Since conventional breeding is time-consuming and challenging,
genetic engineering provides the opportunity to introduce/switch-off genes of interest
without altering the allelic combination that characterize successful commercial cultivars
or to induce targeted sequence modifications by New Breeding Techniques. There
is a variety of methods for potato improvement via genetic transformation. Most
of them incorporate genes of interest into the nuclear genome; nevertheless, the
development of plastid transformation protocols broadened the available approaches
for potato breeding. Although all methods have their advantages and disadvantages,
Agrobacterium-mediated transformation is the most used approach. Alternative
methods such as particle bombardment, protoplast transfection with polyethylene glycol
and microinjection are also effective. Independently of the DNA delivery approach,
critical steps for a successful transformation are a rapid and efficient regeneration
protocol and a selection system. Several critical factors affect the transformation
efficiency: vector type, insert size, Agrobacterium strain, explant type, composition of
the subculture media, selective agent, among others. Moreover, transient or stable
transformation, constitutive or inducible promoters, antibiotic/herbicide resistance or
marker-free strategies can be considered. Although great efforts have been made
to optimize all the parameters, potato transformation protocols are highly genotype-
dependent. Genome editing technologies provide promising tools in genetic engineering
allowing precise modification of targeted sequences. Interestingly, transient expression
of genome editing components in potato protoplasts was reported to generate edited
plants without the integration of any foreign DNA, which is a valuable aspect from
both a scientific and a regulatory perspective. In this review, current challenges and
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opportunities concerning potato genetic engineering strategies developed to date are
discussed. We describe their critical parameters and constrains, and the potential
application of the available tools for functional analyses or biotechnological purposes.
Public concerns and safety issues are also addressed.

Keywords: potato, genetic engineering, biotechnology, Agrobacterium, New Breeding Techniques, genome
editing

IMPORTANCE OF BIOTECHNOLOGY
APPLICATION IN POTATO

Potato (Solanum tuberosum L.) is a worldwide important crop
plant that produces high nutritional quality tubers. It is the
fourth most important staple crop (after wheat, corn, and rice) in
terms of production and demand, with around 378 million tons
produced annually (Campos and Ortiz, 2020). The tuber, which
serves the plant as a storage organ and as a vegetative propagation
system, is an excellent source of complex carbohydrates, proteins,
and vitamins (Banerjee et al., 2006; Barrell et al., 2013). Therefore,
it is considered one of the promising crops to overcome
the challenges of poverty and hunger worldwide (Bakhsh,
2020). In addition, potato is largely used in industry to make
processed food products, alcohol, animal feed, and for bioenergy
production substrates like biofuel (Ahmed et al., 2018). Moreover,
given the physicochemical properties of refined starch it is
used as a thickening and stabilizing agent in food, and as a
raw material in paper, textile, cosmetic, adhesive, and plastics
industries (Craze et al., 2018). Altogether, the importance of
potato cultivation lies not only in its use as a basic food crop
but also as a source of compounds of interest. While wide climate
adaptability has facilitated potato to be extensively distributed in
the world, several factors like climate change, industrialization,
and urbanization have overburdened the existing agriculture
lands and food resources (Badami and Ramankutty, 2015; Tiwari
et al., 2020). Moreover, potato production faces important
challenges such as biotic (viruses, bacteria, fungal, and insect
pests) and abiotic stresses (drought, flooding, salinity, heat,
and cold), and postharvest problems (accumulation of reducing
sugars during cold storage, injury-induced enzymatic browning).
Due to its large negative impacts on yield and tuber quality,
improving resistance to disease and pests and/or abiotic factors,
as well as quality traits is of significant economic importance
(Rooke and Lindsey, 1998; Halterman et al., 2016).

Potato is a relevant candidate for improvement through
conventional breeding and biotechnology. However, given
that most of cultivated potatoes have tetraploid genomes, a
high level of genetic heterozygosity and a narrow genetic
base, conventional breeding is time-consuming and challenging
(Chakravarty et al., 2007).

Abbreviations: ABEs, adenosine base editors; bar, herbicide bialaphos; CBEs,
cytosine base editors; CRISPR, Clustered Regularly Interspaced Short Palindromic
Repeats; DSBs, double stranded breaks; GE, genetically engineered; HDR,
homology-directed repair; HPT, hygromycin phosphotransferase; NHEJ,
non-homologous end joining; nptII, neomycin phosphotransferase II; PAM,
protospacer adjacent motif; PEG, polyethylene glycol; RNP, assembled
ribonucleoprotein; SSNs, site-specific nucleases; ZFNs, Zinc Finger Nucleases.

Therefore, genetic engineering provides the opportunity
to introduce genes of interest without altering the allelic
combinations that characterize successful commercial cultivars.
Moreover, transgene-mediated post-transcriptional gene
silencing using RNA interference (RNAi) is a strategy used to
inactivate one or several genes and it has also proven its potential
to obtain a desirable phenotype for potato improvement
(Bradshaw, 2021). More recently, the so-called New Breeding
Techniques (NBTs), which include genome editing, enabled the
induction of targeted sequence modifications within a genome
reducing off target effects.

Interestingly, several of potato genotypes are amenable to
propagation through tissue culture enabling the application
of available biotechnology techniques (Han et al., 2015;
Halterman et al., 2016; Nadakuduti et al., 2018). Through
genetic engineering approaches, different traits related to stress
tolerance, nutritional quality, and/or compounds of interest
were incorporated. Genetically engineered (GE) potato plants,
obtained by classical genetic transformation strategies or genome
editing tools, with increased resistance to insects, bacteria,
fungi, viruses, herbicides, abiotic factors, and/or improved
nutritional and post-harvest quality were developed. Also,
the production of compounds such as biopharmaceuticals,
biopolymers, polyhydroxyalkanoates, spiderweb, freeze-thaw-
stable potato starch, increased synthesis of lipids and even
vaccines, and human proteins were reported (for reviews see
Pribylova et al., 2006; Halterman et al., 2016; Hameed et al., 2018;
Rakosy-Tican and Molnar, 2021). Otherwise, the elimination
of antinutritional or allergenic molecules such as alkaloids,
glycoproteins, acrylamide, or patatin was also addressed (Zaheer
and Akhtar, 2016; Hameed et al., 2018).

The large number of scientific reports and the diversity of
engineered traits successfully transferred to potato reflect the ease
of this crop to be biotechnologically improved. In this regard,
the availability of potato genome sequence (Xu et al., 20111)
has facilitated the development of comparative genomic analyses
and functional studies of candidate genes to improve several
important traits.

In summary, genetic engineering methods are essential
tools in plant science research, not only for applied but
also for basic purposes, providing invaluable tools for
the characterization and validation of gene function to
better understand plant physiology and development. In
this review, several biotechnological strategies applied to
potato are discussed, from classic genetic transformation
to genome editing.

1http://spuddb.uga.edu/pgsc_download.shtml
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STRATEGIES FOR POTATO
TRANSFORMATION

Successful plant transformation requires a suitable DNA delivery
system, an efficient plant regeneration protocol and an optimized
selection method to recognize transgenic cells (Bakhsh, 2020).
There is a wide variety of DNA delivery systems for the genetic
transformation of potato. Most of them incorporate the genes of
interest into the nuclear genome. However, in the recent years,
the development of plastid transformation protocols has been
reported, broadening the available approaches. A comprehensive
view of the evidence reviewed, suggests that although all
systems have their advantages and disadvantages, Agrobacterium
tumefaciens-mediated transformation is the most used. Potato
was one of the first crops to be successfully transformed with this
method (Ooms et al., 1986) and since then, numerous genetic
transformation protocols based on A. tumefaciens have been
developed. However, effective alternative direct DNA uptake
methods have been also reported (Halterman et al., 2016).
The A. tumefaciens method is more efficient than others and
results in a higher proportion of plants with a single transgene
copy insertion, minimizing the potential side effects (Gelvin,
2017). Since the modification of traits based on multiple genes
via A. tumefaciens is time-consuming and laborious (Romano
et al., 2001), particle bombardment is the method of choice
for transforming potato with several genes (Zhang et al.,
2020). However, the stacking of transgenes via A. tumefaciens
was successfully achieved through different approaches:
crossing of individual transgenic plants, re-transformation
with independent genetic constructs, use of gene combining
constructs, co-transformation with double constructs, and
the use of polyprotein systems, among others (Romano et al.,
2001; Asurmendi, 2002; Rivero et al., 2012; Fernandez Bidondo
et al., 2019). In addition, another biotechnological approach
successfully applied in potatoes for stacking resistance genes
against viruses is RNAi technology (Missiou et al., 2004; Chung
et al., 2013; Hameed et al., 2017). It is important to note that
RNAi approach has been successfully employed in a great
number of reports for disease and pest resistance (Waterhouse
et al., 1998; Missiou et al., 2004; Chung et al., 2013; Dinh et al.,
2015; Sun et al., 2016; Hameed et al., 2017), improved processing
quality (Rommens et al., 2006; Llorente et al., 2010; Chawla
et al., 2012; Zhu et al., 2016; Hameed et al., 2018), and improved
nutritional value (Van Eck et al., 2007; Itkin et al., 2013; Sawai
et al., 2014). In fact, the effectiveness of this technology is
illustrated in the several commercially approved GE potatoes
based on RNAi (ISAAA, 20212).

Generation of transgenic potato using other bacteria
species, such as Sinorhizobium meliloti, Rhizobium sp.
NGR234, Mesorhizobium loti, Sinorhizobium adhaerens, and
Agrobacterium rhizogenes, has also been reported (Wendt et al.,
2011, 2012; Butler et al., 2020). A. rhizogenes is often applied for
obtaining transgenic roots faster than using A. tumefaciens, since
plant regeneration is not needed, representing an alternative tool

2https://www.isaaa.org/gmapprovaldatabase/default.asp

for potato functional studies and characterization of root genes
(Fernández-Piñán et al., 2019).

Lastly, DNA delivery can be achieved by direct DNA
uptake, like microinjection, particle bombardment, protoplast
transfection with polyethylene glycol (PEG), and protoplasts
electroporation (Fehér et al., 1991; Romano et al., 2001, 2003;
Valkov et al., 2011). These methodologies would facilitate the
coordinated integration and expression of several genes and
the manipulation of metabolic pathways in potato (Craig et al.,
2005). Even though these methods are effective (Weiland, 2003),
disadvantages such as complex integration patterns, high copy
numbers, transgene rearrangements, and gene silencing have
also been reported (Sawahel, 2002). New methodologies for
genetic engineering such as nanoparticle-mediated approaches
for passive delivery of genetic cargo were successfully employed
in potato (Abdel-Razik et al., 2017).

Once DNA was delivered, transient or stable transformation
can occur. Virus induced gene silencing is an attractive approach
to generate transient loss-of-function assays to assess the role of
genes in a short time, as an alternative to stable transformation
(Brigneti et al., 2004; Faivre-Rampant et al., 2004; Dobnik et al.,
2016). In addition, A. tumefaciens-mediated infiltration without
involving a viral based system has been reported to study gene
function or protein localization in potato (Bhaskar et al., 2009).
Although there are some reports using these tools in potato, their
applications are far from routine and currently more limited to
model plant species.

Other strategies involving DNA delivery to organelles have
been employed. Plastid transformation has some potential
advantages in comparison to nuclear transformation for both
plant breeding and molecular farming. In contrast to the random
nature of nuclear transformation, the gene of interest is integrated
into the plastome through homologous recombination, which
avoids negative effects associated with transgene insertion
in transcriptionally silent regions or with the disruption of
host genes or regulatory regions (Gelvin, 2017). Moreover,
mechanisms of gene silencing are not present in plastids, so
expression of the transgene is stable in progeny of transplastomic
plants (Sidorov et al., 1999; Thanh et al., 2005). In addition,
other advantages include high expression levels of transgenes
and protein accumulation, the opportunity of expressing several
genes in operons and the inherent confinement of transgenes
and recombinant products in plastids (Valkov et al., 2011,
2014; Segretin et al., 2012). The availability of the complete
chloroplast genome sequence of S. tuberosum in 2005, allowed the
construction of species-specific vectors by increasing homology
and the improvement of potato plastid transformation efficiency
(Scotti et al., 2011; Valkov et al., 2011). Even though it
has attractive advantages and potential applications in potato
biotechnology, low transformation frequencies and the reduced
levels of transgene expression registered in tubers limit a wider
use of potato plastid transformation (Sidorov et al., 1999; Thanh
et al., 2005; Segretin et al., 2012).

In sum, DNA delivery methods based on biological vectors –
such as bacteria or virus–, physical agents –like electroporation,
microinjection, or particle bombardment–, and chemical agents –
such as PEG– are available for potato transformation. Even direct
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strategies are effective A. tumefaciens-mediated transformation
is the most established and preferred approach for potato. The
choice of the potato transformation strategy is based on the
experimental objective, such as transient or stable integration
and/or nuclear or plastid expression, and will determine the most
suitable DNA delivery method.

MAIN PARAMETERS INFLUENCING
TRANSFORMATION EFFICIENCY

There is not a consensus in the definition of transformation
efficiency in the bibliography, but we consider the most suitable
estimation as follows: Transformation efficiency (%) = (Total
number of PCR positive lines/Total number of inoculated
explants)× 100. It is important to note that to calculate the exact
efficiency only independent lines must be considered. According
to the reviewed reports the most relevant parameters that affect
potato transformation efficiency are detailed below.

Potato Genotypes
There are more than 4,000 landraces of native potatoes, mostly
found in the Andean Region and over 180 wild potato species
(source: International Potato Center). Despite the great number
of potato varieties available, few cultivars are commercialized,
chosen for their viability to be marketed and stored (Yang et al.,
2015). Cultivars ‘Desiree’ and ‘Bintje’ were early favorites for
transformation assays but nowadays, most potato cultivars are
amenable to tissue culture and nearly all commercially important
varieties can be successfully transformed with modifications
of the standard protocols (Vinterhalter, 2008; Han et al.,
2015; Halterman et al., 2016; Nadakuduti et al., 2018; Bruce
and Shoup Rupp, 2019; Kaur et al., 2020). In 1988, it was
reported the development of a genotype-independent method
to transform four potato cultivars (‘Bintje’, ‘Berolina’, ‘Desiree’,
and ‘Russet Burbank’) using leaf discs (De Block, 1988).
However, subsequent evidence showed that the transformation
efficiency is dependent on genotypes. There are several reports
comparing the regeneration and transformation efficiencies of
different genotypes using the same protocol and the results
indicate that the effectiveness in obtaining transgenic plants
is variable (Conner et al., 1992; Dale and Hampson, 1995;
Kumar et al., 1995; Heeres et al., 2002; Han et al., 2015;
Bakhsh, 2020). Moreover, Heeres et al. (2002) determined that
regeneration and transformation efficiency are two different
genetically controlled factors. So, for a given genotype, the success
of transformation depends on several critical factors including
vector, Agrobacterium strain, infection time, mode of injury, pre-
culture period, cocultivation time, explant type, composition of
the subculture media, selection markers, among others (Kaur
and Devi, 2019; Bakhsh, 2020). Thus, standard protocols can be
considered to transform a new genotype but then all parameters
should be optimized to achieve adequate efficiency.

Agrobacterium tumefaciens Strains
Once the use of a bacterial delivery method has been defined, the
next parameter to determine is the strain to use since it affects the

efficiency of the genetic transformation. In this sense, LBA4404
A. tumefaciens strain is the most used in potato transformation
protocols (Stiekema et al., 1988; Tavazza et al., 1989; Trujillo et al.,
2001; Heeres et al., 2002; Bakhsh, 2020; Mollika et al., 2020).
However, alternative strains such as EHA105, GV2260, GV3101,
and C58C1 have also been successfully used (Kumar et al., 1995;
Banerjee et al., 2006; Han et al., 2015; Ahmed et al., 2018; Craze
et al., 2018; Bruce and Shoup Rupp, 2019; Décima Oneto et al.,
2020). Despite the existence of numerous reports, there is not
a clear association between the strain and the genotype to be
transformed; this means that for a particular genotype the most
suitable strain must be experimentally tested.

Once the strain was selected there are three principal factors
that affect transformation efficiency: the optical density of the
bacterial suspension, the addition of a centrifugation step of the
bacterial culture before inoculation and the length of the co-
cultivation period. Considering the evidence reviewed, it seems
that the optimal optical density values are between 0.5 and 0.8,
depending on the construct and the growth medium. Some
protocols indicate that centrifugation of the bacterial culture
before inoculation may affect the viability of the bacteria, causing
a drastic reduction of transformation efficiency (Beaujean et al.,
1998; Banerjee et al., 2006; Décima Oneto et al., 2020). Co-
cultivation period should be long enough to enable proper
T-DNA transfer, but prolonged periods should be avoided to
reduce tissue damage and somaclonal variation. Therefore, the
optimal time is between 24 and 96 h, being 48 h the most
reported co-cultivation period (Millam, 2006). Nonetheless, for
each genotype is necessary to determine empirically not only the
optimal strain but also the co-cultivation conditions to obtain the
best transformation efficiency.

Vectors
Another important choice is the vector to employ based on the
transformation strategy selected. The type, the size, the regulatory
elements, the selectable marker gene, the cloning efficiency, the
cost and the availability, among other factors, must be considered.

The type and the size of the vector are directly related
to the transformation strategy selected, mainly whether a
shuttle (see Hellens et al., 2000) or a not binary vector is
necessary. Regarding the regulatory elements, the constitutive
and ubiquitous CaMV35S promoter is commonly used to
express transgenes in potato; however, there are many reports
of promoters successfully employed for specific objectives
(Yevtushenko et al., 2004; Pino et al., 2007; Li et al., 2015;
Nahirñak et al., 2019). Moreover, regarding a cisgenic approach,
well characterized tissue-specific or inducible promoters have
been reported from potato (Martini et al., 1993; Naumkina et al.,
2007; Almasia et al., 2010). Another point to consider in the
vector design is to avoid repeated regulatory sequences to prevent
possible silencing effects.

The selectable markers generally used to identify transformed
plant cells are genes encoding resistance to antibiotics or
herbicides (Bruce and Shoup Rupp, 2019). The neomycin
phosphotransferase II (nptII) gene, which confers resistance
to the antibiotic kanamycin, is the most used in potato
transformation protocols (Barrell et al., 2013). Barrell et al. (2002)

Frontiers in Plant Science | www.frontiersin.org 4 January 2022 | Volume 12 | Article 768233

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-768233 January 4, 2022 Time: 13:35 # 5

Nahirñak et al. Potato Genetic Engineering

evaluated the efficiency of different selectable markers using
identical vectors for potato transformation. The effectiveness of
recovery of transgenic lines was ranked as follows: kanamycin
resistance > hygromycin resistance > phosphinothricin
resistance > phleomycin resistance > methotrexate resistance
(Barrell et al., 2002).

Other markers have been reported for potato transformation
that do not involve the use of herbicides or antibiotics and
use xylose or galactose as selective agents instead (Haldrup
et al., 1998; Joersbo et al., 2003). These systems offer alternatives
to the conventional ones, although their use requires further
optimization. Visual markers genes such as glucuronidase,
luciferase and green fluorescent protein have also been adopted,
although to a lesser extent (Sidorov et al., 1999; Verhees
et al., 2002; Rakosy-Tican et al., 2007). Alternatively, marker-
free transformation of potato has also been reported. This
approach is based on the recovery of transformed plants by
PCR screening of plants regenerated without the use of a
selection system (De Vetten et al., 2003; Ahmad et al., 2008).
However, this approach resulted in the recovery of transgenic
potato lines at low frequencies, with most of lines displaying
insertions of undesirable vector backbone sequences and only a
few lines containing the desirable single T-DNA insertion, which
is another important criterion for commercialization of GE crops
(Kondrák et al., 2006).

Concerning A. tumefaciens binary vectors, the arrangement of
expression cassettes in the plasmid should also be contemplated.
The selectable/screenable markers should be near the left border
to facilitate the selection of events containing the entire cassette
since the transference of the T-DNA is directed from right border
to left border. Also, the inwards opposite orientation of the
cassettes should be avoided preventing possible silencing effects.

Finally, it is important to check the vector through DNA
sequencing before starting the transformation protocol.

Explants
For a genetic transformation system to be effective, it is essential
to develop a rapid and efficient regeneration protocol. Leaves,
stems, tubers, petiole, protoplasts, and micro-tubers have been
used as explants to develop transgenic potato lines.

The source of explant tissue for potato transformation is
frequently derived from in vitro plants (Barrell et al., 2013). The
main advantage of using them is the supply of uniform and
pathogen-free material for transformation (Newell et al., 1991).
In vitro micropropagation of shoot cultures makes possible the
accessibility of healthy and vigorously growing plant material
throughout the year (Visser, 1991). Since it is sterile and
already acclimatized to grow under in vitro conditions, surface
sterilization of the plant tissue is not required, reducing both
handling time and the possibility of contamination, and avoiding
plant stress due to chemical treatments (Conner et al., 1992;
Kumar, 1995).

Leaves and stem internodes from in vitro plants are the
most widely used explants since they are readily available and
easy to use. It has been reported that stem pieces are relatively
robust and can be handled easily in larger numbers comparing
to leaf explants, which are delicate and can be injured during

the manipulation reducing the frequency of transformation and
regeneration (De Block, 1988; Newell et al., 1991).

The main disadvantage of employing leaf and stem explants
in transformation assays is the somaclonal variation which can
occur in the callus phase (Visser, 1991). The use of tubers is
advantageous because the possibility of somaclonal variation is
reduced (Ishida et al., 1989). In vitro grown microtubers have
several advantages over soil-grown tubers since they are derived
from virus-free, aseptically grown potato shoots, they can be
produced conveniently at any time in large quantities, and they
take up less storage (Kumar, 1995).

It is important to note that a critical factor influencing the
frequency of callus and regeneration is the physiological state of
the starting material (Chakravarty and Wang-Pruski, 2010). To
ensure a successful transformation, the selection of young and
healthy explants from stock plant is preferred while damaged
tissue will negatively affect regeneration potential (Ahmed et al.,
2018; Craze et al., 2018). Moreover, the size of the explant should
be large enough to resist Agrobacterium co-cultivation or biolistic
bombardment without losing moisture during transformation
procedures. Frequently the explant chosen for transformation
depends on the cultivar or is determined by the experience of each
laboratory (Barrell et al., 2013).

In conclusion, there are many options regarding tissue
amenable for potato transformation, in any case it must be a
healthy material, sterile, appropriate for manipulation and with
regenerative capacity to obtain good and reproducible results.

Tissue Culture Media
Most protocols employ a two-step regeneration procedure, with
a callus induction step followed by a shoot growth step. In
particular, the de-differentiation and redifferentiation of explants
is one of the main points of an effective plant transformation
(Zhang et al., 2020). There are many types of plant tissue
culture media, most based on Murashige and Skoog’s MS Media
(Murashige and Skoog, 1962). MS media contains the major
salts, a variety of minor salts, sucrose, vitamins, and plant
growth regulators, which include cytokinins, auxins, gibberellins,
abscisic acid, and ethylene (for details about regulators used
in potato tissue culture see Bruce and Shoup Rupp, 2019).
The callus induction stage is often facilitated by treatment
of explants with zeatin or zeatin riboside with low levels of
auxin, while the shoot induction stage often has a reduction of
zeatin and auxin, plus the addition of gibberellin to stimulate
shoot outgrowth. Regeneration rates per explant are usually
high and the first shoots appear after 4–6 weeks (Millam,
2006), depending on the genotype used. For each potato
genotype, it is necessary to adjust and determine the ratio of
growth regulators most suitable for dedifferentiation and form
callus, which also depends on the explant used (Zhang et al.,
2020). Furthermore, another factor that influences the different
transformation steps is light types, intensity and photoperiod
(Gelaye, 2014).

On the other hand, the success of genetic transformation relies
not only on the DNA delivery approach and a rapid and effective
regeneration protocol, but also on the selection system to identify
the transgenic cells. An efficient selection system results from
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a delicate balance between the inhibition of growth of wild-
type cells and the preservation of the regeneration capacity of
transformed cells. It is important to determine empirically the
lowest level of the selective agent that prevent the development
of non-transformed cells under selective conditions to reduce the
recovery of false positives (also named “escapes” since they have
escaped the selection process). Moreover, if the selection pressure
is too high it may result in false negatives because of the loss
of transformed plants (Barrell et al., 2002). Even though several
selection strategies have been reported for potato transformation,
kanamycin resistance is the most used selectable system and was
shown to be more effective in the rapid recovery of large numbers
of independently derived transgenic lines (Barrell et al., 2002). It
has also a history of safe use in 122 transgenic crops approved for
cultivation, food, or feed (ISAAA, 2021).

The freshness of the media and growth regulators is relevant so
they must be replaced regularly. Moreover, experiments controls
are very important since they allow to identify problems, for
example, non-inoculated pieces of leaves placed with a selection
agent to demonstrate their functionality, and without selection to
ensure that the shoots can regenerate. The experience acquired to
identify the putative transgenics trough visual selection is another
main point in potato transformation protocols, for example,
the formation of roots in the selective medium is an excellent
indicator of the existence of transformed tissues.

As it was already mentioned, one of the main constrain
in potato genetic engineering, is the somaclonal variation,
which consists of phenotypic changes observed when plants
are regenerated from cultured somatic cells. The observed
phenotypic variations among somaclonal potato lines involve
physiological, epigenetic, and/or genetic changes (Barrell et al.,
2013). Maintaining potato lines in culture for prolonged periods
can result in these variations (Craze et al., 2018). Genotype,
explant origin and the culture conditions are others critical
variables contributing to somaclonal variation (Meiyalaghan
et al., 2011). The success of gene transfer techniques also depends
on minimizing these variations (Stiekema et al., 1988), especially
by decreasing the callus induction stage (Millam, 2006) or the
period of in vitro culture in general (Han et al., 2015).

As it is shown in Table 1 even though there are many potato
transformation protocols reported for different genotypes most
of them are based on A. tumefaciens, employ nptII as selective
marker, and use leaves and stems as tissue explant.

GENOME EDITING IN POTATO

In recent years, genome editing technologies have emerged
as novel biotechnological approaches for crop breeding and
have received considerable attention due to their simplicity and
accuracy in introducing targeted modifications that result in
desired traits (Arora and Narula, 2017; Baltes et al., 2017; Scheben
et al., 2017; Gao, 2018; Chen et al., 2019; Zhu et al., 2020).
Genome editing is based on the employment of site-specific
nucleases (SSNs) to induce modifications at specific genomic
sites (Gao, 2021). SSNs such as Zinc Finger Nucleases (ZFNs),
Transcription Activator-Like Effector Nucleases (TALENs), and

the more recently developed Clustered Regularly Interspaced
Short Palindromic Repeats (CRISPR) and CRISPR associated
proteins (CRISPR/Cas) introduce double stranded breaks (DSBs)
at a specific target site in the host genome, which led to
targeted modifications via endogenous DNA repair mechanisms
(Schmidt et al., 2019). In somatic plant cells, DSBs are mainly
repaired by the error-prone non-homologous end joining
(NHEJ) pathway, which occasionally results in the introduction
of small insertions or deletions at the repaired site, producing
the disruption of specific genes and/or regulatory regions of
the plant genome (Puchta, 2005). Although less frequent than
NHEJ, the homology-directed repair (HDR) pathway can be
triggered in plant cells to repair the induced DSBs (Schmidt
et al., 2019). A requirement for the HDR pathway to take place
is the availability of a homologous DNA fragment, which can be
exploited for targeted integration of sequences of interest into the
plant genome (Huang and Puchta, 2019).

The availability of potato genome sequence and the
development of highly efficient transformation systems make
potato a perfect candidate for the application of genome
editing technologies to improve important traits leading to
a more sustainable potato production (Hameed et al., 2018;
Nadakuduti et al., 2018). Initial genome editing platforms,
i.e., ZFN and TALEN, were developed through the fusion
of a programmable DNA-binding domain (Zinc Fingers and
Transcription Activator-Like Effectors for ZFN and TALEN,
respectively) and the catalytic domain of the type II restriction
enzyme FokI (Voytas, 2013). Both platforms are based on
protein-DNA interactions to recognize the target sequences,
which represented a drawback in the widespread adoption
of these technologies, due to the complexity in the design
of the DNA-binding domains to recognize new sequences,
their synthesis and activity validation (Isalan, 2012; Doudna
and Charpentier, 2014). Nevertheless, TALEN technology has
been successfully used for potato genome editing in several
applications, including both basic potato research and the
improvement of important traits (Table 2).

In contrast to ZFN and TALEN, the CRISPR/Cas systems
utilize a short and programmable guide RNA molecule to
recognize the target site, which represent a more simple, versatile
and efficient platform to mediate genome editing (Chen et al.,
2019). In particular, the components of the CRISPR/Cas9 system
from Streptococcus pyogenes were the first to be adapted as
a programmable genome-editing tool, consisting of a Cas9
nuclease directed by an easily re-programmable single guide RNA
(sgRNA) (Jinek et al., 2012). Cas9 can induce DSBs at specific sites
determined by both base complementary between the sgRNA
and the target sequence and the presence of a 5′-NGG-3′ motif
adjacent to the complementary region in the target sequence
(PAM, protospacer adjacent motif) (Jiang and Doudna, 2017).
The simplicity of CRISPR/Cas9 system made it the most widely
applied technology for potato genome editing, as well as for
the rest of plant species (Gao, 2021). Since the first report on a
CRISPR/Cas9-mediated genome editing in potato in 2015 (Wang
et al., 2015), this system has been applied in number of basic
research studies and in improving important traits in potato,
including its nutritional quality, modification of tuber starch
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TABLE 1 | Examples of potato transformation protocols.

Method Genotype Explant Selection marker References

Agrobacterium tumefaciens Two S. tuberosum cultivars; tetraploid line, cv. Russet Burbank, and diploid
line

Leaf and stem NPTII An et al., 1986

cv. Pentland Dell, cv. Desiree, cv. Maris Piper, cv. Maris Bard, and cv.
Golden Wonder

Tuber disks NPTII Sheerman and Bevan, 1988

cv. Bintje and cv. Desiree Tuber disks NPTII Stiekema et al., 1988

cv. Bintje, cv. Berolina, cv. Desiree, and cv. Russet Burbank Leaf NPTII De Block, 1988

cv. Desiree Leaf NPTII Tavazza et al., 1989

Diploid (6) and tetraploid (3) potato genotypes Leaf and stem NPTII Visser et al., 1989

cv. Russet Burbank and cv. Lemhi Russet Microtuber discs NPTII Ishida et al., 1989

cv. Russet Burbank Stem NPTII Newell et al., 1991

cv. Dam Hardy, cv. Iwa, and cv. Rua Leaf NPTII Conner et al., 1992

Solanum verrucosum, Solanum hjertingii, Solanum papita, Solanum
stoloniferum, and Solanum demissum

Microtubers NPTII and HPTII Kumar et al., 1995

cv. Desiree and cv. Pentland Squire Leaf and stem NPTII Kumar, 1995

cv. Desiree, cv. Bintje, and cv. Kaptah Vandel Internodes NPTII Beaujean et al., 1998

cv. Diacol, cv. Capiro, and cv. Parda Pastusa Leaf NPTII Trujillo et al., 2001

E-potato 3 and Guannongshu-2 Tuber disc NPTII Si et al., 2003

S. tuberosum L. ssp. andigena line 7540 Leaf NPTII Banerjee et al., 2006

cv. Shepody Leaf and stem NPTII Gustafson et al., 2006

cv. Desiree Internodes NPTII Millam, 2006

Dihaploid s 178/10, 224/1, and 227/5; cv. Desiree, cv. Agave, and cv.
Delikat

Leaf and stem NPTII/gfp Rakosy-Tican et al., 2007

cv. Bintje Stem NPTII Chakravarty and Wang-Pruski, 2010

cv. Cardinal and cv. Heera Leaf and internodes NPTII Khatun et al., 2012

cv. Jowon and cv. Atlantic Leaf and stem bar Han et al., 2015

cv. Innovator, cv. Marabel, var. Tokat-10/1 and var. Tokat-6/24 Leaf discs NPTII Ahmed et al., 2018

cv. Desiree Leaf pieces NPTII Craze et al., 2018

cv. Desiree, cv. Ranger Russet, cv. Umatilla Russet, cv. Alturas, and cv.
Yukon Gold

Stem NPTII and HPTII Bruce and Shoup Rupp, 2019

cv. Kufri Chipsona Leaf and internodes NPTII Kaur et al., 2020

cv. Asterix Internodes and microtuber
discs

NPTII Mollika et al., 2020

cv. Lady Olympia, cv. Granola, cv. Agria, cv. Désirée, and cv. Innovator Leaf discs and internodes NPTII Bakhsh, 2020

(Continued)
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composition, post-harvest quality enhancement, biotic stress
tolerance, and elimination of reproductive self-incompatibility.
Such applications have been extensively reviewed in recently
published articles (Hameed et al., 2018; Nadakuduti et al., 2018;
Dev et al., 2021) and are summarized in Table 2, together with
more recently published reports.

Genome Editing Reagents Delivery in
Potato
Like in all plant species, delivery of the genome editing reagents
in potato is based on previously established transformation
methods (Ran et al., 2017). Therefore, A. tumefaciens-mediated
transformation has been the most widely used approach to
deliver either TALEN or CRISPR/Cas systems in potato (Table 2).
Genomic integration of transgenes encoding the genome-editing
reagents is effective in producing a sustained expression of
the components that led to the intended modification of
the target site(s).

Transient expression of the genome editing reagents is a
promising alternative delivery method to obtain transgene-free
edited plants (Chen et al., 2019). This is of a special importance
in a vegetatively propagated and highly heterozygous crop like
potato since the elimination of the transgenes by crossing or self-
crossing is not suitable. Transient expression of genome editing
reagents has been achieved in potato using different strategies.
Bánfalvi et al. (2020) have obtained edited potato plants of
the tetraploid cultivar Desiree trough transient expression of
a CRISPR/Cas9-coding vector upon A. tumefaciens-mediated
infection by using a selection protocol consisting in 3 days-
kanamycin treatments. Edited lines (2–10%) were screened to
check the binary vector incorporation in their genomes by
PCR amplification of specific vector fragments, with negative
results in all analyzed cases (Bánfalvi et al., 2020). Nicolia
et al. (2015) had developed a pipeline based on the transient
expression of TALEN in potato by protoplast transfection with
DNA vector followed by whole plant regeneration without
selective agents, obtaining 10% of the regenerated lines with
mutations in the expected region (Nicolia et al., 2015). In
addition to the transient expression of DNA vectors, protoplasts
allow the delivery of CRISPR/Cas9 components as pre-assembled
ribonucleoprotein (RNP) complexes (Woo et al., 2015). This
represents a promising alternative, with the potential of both
reducing to a minimum (or even eliminating) the possibility of
foreign DNA insertions in the plant genome and minimizing the
probabilities of unwanted off-target effects. Such an alternative
may result of great interest in the application of this technology
to obtain potato commercial cultivars, since the obtained edited
plants could be indistinguishable from those containing naturally
or conventionally induced mutations (Kumlehn et al., 2018). The
first application of RNP complexes to obtain potato edited lines
was reported by Andersson et al. (2018). Authors transfected
protoplasts isolated from the cultivar Kuras, with two different
types of RNP complexes targeting the GBSSI gene and obtained
a frequency of 1–25% of regenerated edited lines, varying with
the transfection conditions and the origin of RNP complexes
(Andersson et al., 2018). Furthermore, for one transfection up
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TABLE 2 | Applications of TALEN or CRISPR/Cas systems for both basic research and agronomic/agroindustrial traits improvement in potato.

Genome editing
technology

DNA repair
pathway

Delivery approach Genotype Target gene Objective References

TALEN NHEJ Agrobacterium tumefaciens cv. Sassy Sterol side chain reductase 2
(SSR2)

Functional genomics Sawai et al., 2014

NHEJ Protoplast transfection with
DNA vector

cv. Desiree Acetolactate synthase (ALS) Proof of concept Nicolia et al., 2015

NHEJ Protoplast transfection with
DNA vector

cv. Ranger Russet Vacuolar invertase (VInv) Nutritional quality. Reduction of
cold-induced sweetening (CIS)

Clasen et al., 2016

HDR/NHEJ Agrobacterium tumefaciens
transformation plus donor
vector (mStALS)

cv. Ranger Russet Acetolactate synthase (StALS) Herbicide resistance. Targeted
T-DNA integration.

Forsyth et al., 2016

NHEJ Agrobacterium tumefaciens cv. Sayaka Granule-bound starch synthase
(GBSS)

Construction of a Gateway-assisted
TALEN system

Kusano et al., 2016

NHEJ Agrobacterium
tumefaciens-mediated
agroinfiltration

cv. Shepody and cv.
Russet Burbank

Granule-bound starch synthase
(GBSS) and vacuolar invertase
(VInv)

Proof of concept Ma et al., 2017

TALEN and
CRISPR/Cas9

NHEJ Agrobacterium tumefaciens
with either a conventional
T-DNA or a modified
geminivirus T-DNA

cv. Desiree and diploid
self-incompatible
breeding line,
MSX914-10 (X914-10)

Acetolactate synthase (ALS) Herbicide resistance Butler et al., 2016

CRISPR/Cas9 NHEJ Agrobacterium tumefaciens DM Phytoene desaturase (PDS) and
StAA2 gene (encoding an Aux/IAA
protein)

Proof of concept Wang et al., 2015

NHEJ Agrobacterium tumefaciens
with either a conventional
T-DNA or a modified
geminivirus T-DNA

cv. Desiree and diploid
self-incompatible
breeding line,
MSX914-10 (X914-10)

Acetolactate synthase (ALS) Proof of concept Butler et al., 2015

NHEJ Agrobacterium tumefaciens cv. Desiree Transcription factor gene MYB44 Functional genomics Zhou et al., 2017

CRISPR/Cas9 NHEJ Protoplast transfection with
DNA vector

cv. Kuras Granule-bound starch synthase
(GBSS)

Modification of starch composition.
High amylopectin.

Andersson et al., 2017

NHEJ Agrobacterium tumefaciens S. tuberosum group
Phureja S15-65 clone

S-locus RNase (S-RNase) Elimination of reproductive
self-incompatibility

Ye et al., 2018

NHEJ Agrobacterium tumefaciens DRH-195 and
DRH-310

S-locus RNase (S-RNase) Elimination of reproductive
self-incompatibility

Enciso-Rodriguez et al.,
2019

NHEJ Agrobacterium rhizogenes cv. Mayqueen Steroid 16α-hydroxylase (St16DOX ) Nutritional quality. Reduction of
toxic steroidal glycoalkaloids (SGAs)

Nakayasu et al., 2018

NHEJ Protoplast transfection with
RNP

cv. Kuras Granule-bound starch synthase
(GBSS)

Modification of starch composition.
High amylopectin.

Andersson et al., 2018

NHEJ Agrobacterium tumefaciens cv. Sayaka Granule-bound starch synthase
(GBSS)

Optimization of Cas9 expression
with d-Mac3 translational enhancer

Kusano et al., 2018

(Continued)
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TABLE 2 | (Continued)

Genome editing
technology

DNA repair
pathway

Delivery approach Genotype Target gene Objective References

NHEJ Protoplast transfection with
vector using PEG and
Agrobacterium tumefaciens

cv. Desiree Starch branching enzymes (SBE1
and SBE2)

Modification of starch
composition/nutritional quality. High
amylose and longer amylopectin
chains.

Tuncel et al., 2019

NHEJ Protoplast transfection with
DNA vector

cv. Desiree and cv.
Wotan

Granule-bound starch synthase
(GBSS)

Modification of starch composition.
High amylopectin.

Johansen et al., 2019

NHEJ Agrobacterium
tumefaciens-mediated transient
expression

cv. Desiree Phytoene desaturase (PDS) Proof of concept Bánfalvi et al., 2020

NHEJ Protoplast transfection with
RNP

cv. Desiree Polyphenol oxidase 2 (StPPO2) Post-harvest quality. Reduction of
enzymatic browning.

González et al., 2020

NHEJ Agrobacterium tumefaciens
and protoplast transfection with
DNA vector and RNP

cv. Desiree Polyphenol oxidase 2 (StPPO2) Comparison of CRISPR/Cas9
delivery approaches

González et al., 2021

CRISPR/Cas9 NHEJ Agrobacterium tumefaciens cv. Desiree and cv. King
Edward

S-genes (StMLO1, StHDS,
StTTM2, StDND1, StCHL1,
StDMR6-1 and StDMR6-2)

Biotic stress tolerance. Resistance
to Phytophthora infestans

Kieu et al., 2021

NHEJ Protoplast transfection with
RNP

cv. Desiree Starch branching enzymes (SBE1
and SBE2)

Modification of starch
composition/nutritional quality. High
amylose and longer amylopectin
chains.

Zhao et al., 2021

Cytosine base editor
A3A-PBE: nCas9 fused
to the APOBEC3A
cytidine deaminase

Base editing Protoplast transfection with
DNA vector

cv. Desiree Granule-bound starch synthase
(GBSS) and acetolactate synthase
(ALS)

Construction of A3A-PBE cytosine
base editor

Zong et al., 2018

CRISPR/Cas9 and
cytosine base editor
Target-AID: nCas9
fused to the PmCDA1
cytidine deaminase

NHEJ and base
editing

Protoplast transfection with
DNA vector and Agrobacterium
tumefaciens

cv. Desiree and cv.
Furia

Granule-bound starch synthase
(GBSS)

Modification of starch composition.
High amylopectin.

Veillet et al., 2019a

Cytosine base editor
Target-AID: nCas9
fused to the PmCDA1
cytidine deaminase

Base editing Agrobacterium
tumefaciens-mediated transient
expression

cv. Desiree Acetolactate synthase (ALS) Herbicide resistance Veillet et al., 2019b

Staphylococcus aureus
CRISPR/Cas9 and
cytosine base editor
SanCas9:
Staphylococcus aureus
nCas9 fused to the
PmCDA1 cytidine
deaminase

NHEJ and base
editing

Agrobacterium tumefaciens cv. Desiree Granule-bound starch synthase
(GBSS) and Downy Mildew
Resistant 6 (StDMR6-1)

Proof of concept Veillet et al., 2020

Unless otherwise indicated, CRISPR/Cas9 refers to the system derived from Streptococcus pyogenes.
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to 3% of the total analyzed lines displayed mutations in all
four alleles of the target gene and no DNA insertions. Since
this first report, RNPs have been successfully used to mediate
potato genome editing using the protoplasts transfection and
regeneration system, with editing efficiencies ranging from 27
to 68% (González et al., 2020) and 52 to 72% (Zhao et al.,
2021), varying with the targeted genes and the design of RNP
components. Protoplasts provide a suitable platform for genome-
editing reagents delivery and may in some cases represent even
a more efficient strategy when compared to Agrobacterium-
mediated transformation (González et al., 2021). Even though
it represents a promising strategy to mediate transgene-free
genome editing in potato, the use of RNP in protoplasts present
some important aspects to consider. For instance, DNA traces
remaining in the assembled RNPs may led to unintended
foreign DNA insertions in the regenerated plants, with different
frequencies (Andersson et al., 2018; González et al., 2021; Zhao
et al., 2021). A possible origin of such traces is the DNA molecules
employed for the in vitro transcription of sgRNAs, before RNP
assembly. To solve this issue, the use of synthetically produced
sgRNAs to obtain the RNP complexes completely eliminates the
foreign DNA insertions (Andersson et al., 2018). On the other
hand, regeneration of complete potato plants from protoplasts
has been associated with somaclonal variation and chromosome
instability (Barrell et al., 2013; Fossi et al., 2019). Therefore,
the selection of strategies that enhance the number of edited
lines after protoplasts regeneration, ensures a vast number of
individuals to select the best candidates for further phenotypic
analysis (Andersson et al., 2017).

New Clustered Regularly Interspaced
Short Palindromic Repeats-Related
Tools for Potato Genome Editing
Clustered Regularly Interspaced Short Palindromic Repeats/Cas
systems have been rapidly expanding and new CRISPR-related
tools have been created that greatly broaden the scopes of genome
editing and/or made it more precise.

Base editing technology is based on the fusion of a catalytically
inactive (or partially inactive) Cas nuclease, fused to a cytosine
or adenosine deaminase domain capable to convert one base
to another (Mishra et al., 2020). Cytosine base editors (CBEs)
convert a C to a G, while adenosine base editors (ABEs) mediate
the conversion of A to G. CBEs have been successfully used to
mediate potato base-editing (Table 2). Moreover, CBE consisting
in a Cas9 nickase (nCas9) fused to either a human (Zong et al.,
2018) or a Petromyzon marinus cytidine deaminase (Veillet et al.,
2019a,b) were reported to obtain loss-of-functions or gain-of-
function mutations related to important traits in potato.

The use of CRISPR/Cas systems originated from other bacteria
species than S. pyogenes provide new benefits, including but not
limited to, the expansion of the putative target sites within a
given genome via different PAM requirements and the generation
of different cutting patterns to introduce the DSB (Huang
and Puchta, 2021). In a proof-of-concept publication, Veillet
et al. (2020) demonstrated that Cas9 nuclease derived from
Staphylococcus aureus (SaCas9) is efficient in inducing both

genome editing via the NHEJ repair pathway and precise base
editing in potato. Since SaCas9 recognize a more complex PAM
(5′-NNGRRT-3′) it could additionally represent a highly specific
nuclease by limiting the off-target activity, particularly for highly
conserved genomic sequences in polyploidy species, such as
potato (Veillet et al., 2020). This and other CRISPR/Cas orthologs
systems are available for potato genome editing and can expand
the toolbox for trait improvement (Huang and Puchta, 2021).

The recently developed prime editing technology allows
the creation of different types of genomic changes with high
precision, which represents potentially a new technological
breakthrough (Gao, 2021). Prime editors are composed of an
nCas9 fused to a reverse transcriptase, guided to the target site
via a modified prime-editing guide RNA. In addition to define
the target site, the prime-editing guide RNA serves as a template
for reverse transcription, carrying a primer binding site and a
sequence to be copied in the genome at its 3′end. Once nCas9
nicks the DNA, the released ssDNA can hybridize with the primer
binding site and be used as a primer for the reverse transcriptase,
which transfers the sequence encoded in the prime-editing guide
RNA to the DNA strand (Huang and Puchta, 2021). The new
sequence is incorporated later into the target site, through the
DNA repair. Although prime editing is still inefficient in plant
cells and no reports with this technology has been published
in potato so far, its applications in a few crop species and its
continuous optimization rise high hopes to incorporate it to the
potato genome editing toolbox (Lin et al., 2021).

Public Concerns About Genetically
Engineered Potato
As we already stated in this review, genetic engineering
includes genetic transformation and genome editing. Genetic
transformation comprises the traditional tools for introduction
of a gene of interest randomly integrated into plant genomes.
Genome editing techniques have been developed as an alternative
to introduce precise and predictable genome modifications into
plants without adding foreign DNA. For a GE potato to become
a market success it must be accepted by government regulatory
system, producers, and consumers (Halterman et al., 2016).

Nowadays, most countries practicing commercial agriculture
have established regulations, with different degrees of stringency,
for field experimentation and later larger scale cultivation of
GE crops. These regulations take into consideration food, feed,
and environmental safety risks. Some countries have a process-
oriented regulation and have established that the regulations that
apply to genetically modified organism should be also applied to
genome editing developments (European Union, New Zealand)
(Nadakuduti et al., 2018). Other countries have pronounced in
favor of regulating the varieties obtained by genome editing
as conventional ones, if the developed varieties lack from any
foreign genetic material (Argentina, United States, Brazil, etc.)
(Feingold et al., 2018; Lema, 2019).

After more than 20 years of biosafety analysis of different
GE potatoes, the main concern still regards the potential genetic
flow between cultivated and wild relatives plants, particularly in
the centers of origin. In most of the major potato producing
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countries, the chance of gene flow to interfertile species is
virtually non-existent due to the lack of wild relatives. In South
America, the Andean region is the center of origin of potato
and represents a valuable source of diversity, being an important
genetic resource. Even though intercrossings between cultivated
potato and wild relatives have been reported, it is commonly
restricted by reproductive barriers (Hawkes and Hjerting, 1969;
Rabinowitz et al., 1990). Thus, the risk associated with a
commercial released of GE potato in regions where interfertile
species coexist should be evaluated case by case. In Argentina, an
interspecific out-crossing trial between a S. tuberosum cv. Spunta
transgenic line and the only wild relative species in the Pampean
region that could possibly cross with it (Solanum chacoense),
failed to detect any event of transgene transfer under natural field
conditions (Bravo-Almonacid et al., 2012). In addition to safety,
public concern also focuses on patents, plant breeders’ rights and
the concentration of intellectual property in a small number of
corporations (Haverkort et al., 2016). These are some points,
together with the economic cost of risk assessment and regulatory
framework process, that the political leadership should include in
their schedule to facilitate the social access of these technologies
to their farmers.

Regarding the producers, they are who probably see, more
directly, the great benefits of the use of GE potatoes in their
production. Recently, Bangladesh started a field trial of two
late blight resistant transgenic potato lines, the success of
which will allow 20% less yield loss and farmers will save
around $ 12 million spent on fungicides (source PotatoPro3).
In addition, the avoidance of agrochemical uses and its impact
on carbon balance that may affect climate change will lead
to important environmental benefits. Also, in Uganda, another
transgenic variety that resists late blight infection without the
use of fungicides is being evaluated. This would improve the
safety of farmers and their families, and in particular the small
farmers, who have limited access to fungicides, could reduce
their production losses by up to 60% (Potato News Today,
2021). According to Ghislain et al. (2021) delaying adoption of
this potato will lead to continued pesticide use and significant
losses that will affect the most vulnerable farmers. On the
other hand, the improvement of GE plant resistance to abiotic
stresses such as salinity, drought, or temperature allows potato
cultivation in less fertile agricultural lands (Hameed et al., 2018).
Nevertheless, looking closely at the history of approved GE
potato it can be noticed that producers may be reluctant to
incorporate improved GE varieties because the industry fears
mixing them with conventional ones and thus losing markets
(Grafius and Douches, 2008; Haverkort et al., 2016; Tagliabue,
2018). This industry decision responds to a pre-judgment of
consumers reactions, or to avoid negative publicity of their
products. However, a science based potential risks and benefits
communication campaign should be undertaken to comply with
consumers’ right to be informed.

Consumer apprehension toward GE technology exists even
though the cultivation area of these crops in 2020 was around 190
million hectares all over the world. According to Mullins et al.

3https://www.potatopro.com/es

(2006), consumer concerns toward these technologies focuses on
the public’s desire for unbiased information about potential risks.
This leads us to think about the need to communicate clear,
precise, and comprehensible information about GE technologies
to the public, particularly showing the great advantages on its
use. Public debate on the release of GE crops has led to questions
regarding their environmental safety; however, it is important to
clearly transmit that the deregulation of GE crops involves risk
assessments and a complex regulatory framework. Concerning
ecological compatibility of GE potato, many studies focused
to address biosafety aspects and risk assessment did not find
undesired ecological side-effects (Griffiths et al., 2000; Heuer
et al., 2002; Rasche et al., 2006; Bravo-Almonacid et al., 2012;
Fernandez Bidondo et al., 2019; van der Voet et al., 2019).
In addition, as we mentioned before, GE potatoes resistant to
biotic factors allow a radical reduction of pesticide applications,
which are harmful to the environment and human health.
Other advantage of GE potato directly relevant for consumers
is the elimination of anti-nutritional or allergens to improve the
nutrition quality. Recently, the potato variety Z6, engineered for
low reducing sugars, low acrylamide potential, reduced black
spot bruising and late blight protection, was deregulated in
United States (source: USDA, 2021). It is interesting to discover
if this GE potato with direct nutritional benefits will be well
received by consumers. According to the international database,
there are currently 51 events recorded on the potato list (ISAAA,
2021) and hundreds in the regulatory or pre-commercialization
pipeline. The public concerns of consumers must be allayed
with the information necessary to understand that GE potato
are important for the sustainability of potato production, food
security, income generation, and environmental protection.
Therefore, it is worth taking a proactive approach to consumer
apprehension in which all actors involved in the generation and
adoption of these technologies provide that accurate information.

The Figure 1 summarizes the different strategies available
for potato genetic engineering, including both genetic
transformation and genome editing focusing on the common
steps and the differences between them.

FUTURE PERSPECTIVES AND
CONCLUDING REMARKS

Potato is relatively easy to improve by genetic modification and
genome editing because it benefits from a good amenability to
regenerate shoots from in vitro tissue and protoplast culture.
However, difficulties due to recalcitrance to transformation for
some genotypes remain given that the limited regeneration
capability in vitro restricts the recovery of transformed lines.
The regeneration step is often the biggest bottleneck in the
transformation process and is one of the most important
factors explaining the low success in obtaining GE plants
from recalcitrant genotypes. The entire plant regeneration
from transformed explants involves tissue-culture procedures
that can be time-consuming and can result in undesirable
somaclonal variation.
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FIGURE 1 | Simplified diagram of the strategies for genetic engineering improvements: genetic transformation or genome editing and common steps of vegetal
culture to achieve it. Genetic transformation includes the traditional tools for introduction of a gene of interest randomly integrated into plant genomes. Genome
editing techniques have been developed as an alternative to introduce precise and predictable genome modifications into plants to obtain desired traits. Those
technologies were refinements of transformation whose final purpose is the obtaining a modified plant without foreign DNA. It is important to note that the regulations
governing these developments vary from country to country. Some countries have a process-oriented regulation and apply the same regulation for all the GE
products. Others consider the presence of foreign DNA as a mandatory requirement to be regulated and only in that case the product should be subjected to
government regulations. Despite the differences between the classical genetic transformation strategies and the genome editing tools, both relies on tissue culture to
regenerate and select GE plants. The symbol (*) represent the main constrains: the regeneration protocol for recalcitrant genotypes and the public perception
regarding the release of GE varieties.

The development and application of new technologies
to overcome these drawbacks, especially bypassing tissue
culture methods, are invaluable. In the recent years, some
strategies to improve the regeneration efficiency in several
plant species have been reported. These approaches involve
the overexpression of genes encoding developmental regulators
that can potentially be applied to improve plant transformation
technologies (Debernardi et al., 2020; Maher et al., 2020;
Kong et al., 2020). Interestingly, Maher et al. (2020) showed
that the ectopic expression of specific transcription factors in
somatic cells has the potential to induce meristems avoiding
the use of traditional tissue culture. They demonstrated
the induction of de novo meristems and the consequently
shoot regeneration in various plant species including potato.
Debernardi et al. (2020) reported that the expression of
one Growth-Regulating Factor (GRF4) and its cofactor
(GIF1) substantially increases regeneration efficiency in
both monocotyledonous and dicotyledonous species; they even
developed a protocol inducing embryogenesis in the absence
of cytokinins. Finally, Kong et al. (2020) showed that the

overexpression of GRF5 enhances regeneration and genetic
transformation in various crop species. These advances represent
a promising tool to overcome the problems associated with
low regeneration capacities of certain genotypes improving the
transformation process. However, the constitutive expression
of developmental regulators not only enhances transformation
efficiency but can also result in abnormal growth, so it is
necessary to restrict/eliminate their expression in the plant
after transformation. Even though these strategies would
facilitate plant transformation in a broad range of recalcitrant
genotypes new tools are needed such as the use of suitable
promoters to control tissue- and timing-specific expression
of these developmental regulators. In vegetatively propagated
and highly heterozygous crops like potato, the procedure for
developmental transgenes removal in subsequent generations
through segregation is a challenge. We speculate that this last
could be an option for some recalcitrant wild potatoes since
most of them are diploid, so apart from asexual reproduction
(by stolons and tubers), they have the alternative modes of sexual
reproduction (by seeds) hence diploid progenies segregate for
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genes. In sum, the use of new technologies, would overcome the
problems and limitations related to the classical methodology of
potato transformation for some recalcitrant genotype.

There are many reports concerning successfully gene transfer
of economically important genes in potato and GE varieties
have been developed for a wide range of traits (Pribylova
et al., 2006; Halterman et al., 2016; Zaheer and Akhtar, 2016;
Hameed et al., 2018; Nadakuduti et al., 2018; Dev et al.,
2021; Rakosy-Tican and Molnar, 2021). However, the use of
biotechnology for potato improvement has been ultimately
constrained by the regulation process and the public perception
(Ghislain and Douches, 2020). Unfortunately, the consumer
apprehension affects the field cultivation of the GE varieties
and their adoption in the food chain. Looking closely at
the history of approved potato GE, there are examples of
deregulated potatoes whose field cultivation was discontinued
due to lack of acceptance (Rakosy-Tican and Molnar, 2021;
Bradshaw, 2021).

Along all the process from the development to the
release of GE varieties, plant transformation and regeneration
are the limiting factors for several crops, nonetheless for
potato this does not seem to be the main constrain.
The public perception is possibly the most difficult issue
regarding the production and marketing a GE potato.
The use of GE potato would allow reducing the use of
pesticides, increasing yields, reducing production costs,
lowering undesirable characters and/or providing a better
nutrition quality, which would guarantee an adequate
intake of vitally important foods. Taking everything into
consideration and pondering the demographic expansion that
is coming, it would be desirable that technical, ethical, and
social/public constraints should be overcome in a relatively
short time.
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