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Brucella melitensis and Brucella ovis are the primary etiological agents of brucellosis in

small domestic ruminants. B. melitensis was first isolated in 1887 by David Bruce in

Malta Island from spleens of four soldiers, while B. ovis was originally isolated in Australia

and New Zealand in early 1950’s from ovine abortion and rams epididymitis. Today,

both agents are distributed worldwide: B. melitensis remains endemic and associated

with an extensive negative impact on the productivity of flocks in -some regions, and

B. ovis is still present in most sheep-raising regions in the world. Despite being species

of the same bacterial genus, B. melitensis and B. ovis have extensive differences in

their cultural and biochemical characteristics (smooth vs. rough colonial phases, serum

and CO2 dependence for in vitro growth, carbohydrate metabolism), host preference

(female goat and sheep vs. rams), the outcome of infection (abortion vs. epididymitis),

and their zoonotic potential. Some of these differences can be explained at the bacterial

genomic level, but the role of the host genome in promoting or preventing interaction

with pathogens is largely unknown. Diagnostic techniques and measures to prevent

and control brucellosis in small ruminants vary, with B. melitensis having more available

tools for detection and prevention than B. ovis. This review summarizes and analyzes

current available information on: (1) the similarities and differences between these two

etiological agents of brucellosis in small ruminants, (2) the outcomes after their interaction

with different preferred hosts and current diagnostic methodologies, (3) the prevention

and control measures, and (4) alerting animal producers about the disease and raise

awareness in the research community for future innovative activities.

Keywords: Brucella melitensis, Brucella ovis, genomics, goats, sheep, pathogenesis

INTRODUCTION

Brucellosis is a worldwide, chronic infectious disease caused by small aerobic, non-motile,
Gram-negative coccobacilli of the genus Brucella. There are 12 established species within the genus
that are recognized based on preferential host specificity (1). Goats and ewes are the preferred hosts
for Brucella melitensis whereas rams are for Brucella ovis, although small domestic ruminants may
be infected by other Brucella species.

B. melitensis infection causes abortion, stillbirths and the birth of weak offspring, and
occasionally epididymo-orchitis in goats and sheep (2) and is the most virulent Brucella
species for humans (zoonotic), responsible for a severely debilitating and disabling illness
that results in high morbidity with low mortality (3).B. melitensis has been controlled
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in most industrialized countries; however, it remains endemic
and associated with an extensive negative impact on the
productivity of flocks in low and middle-income nations, where
goats and sheep are the major livestock species and the main
economical livelihood, such as the Mediterranean region, the
Middle East, Central Asia, Sub-Saharan Africa, and parts of
Latin America (4).

On the contrary, B. ovis seems to be non-pathogenic for
humans and the main clinical sign of infection is epididymitis in
rams, with occasional abortions in ewes and increased perinatal
death (5) (Figure 1). In small ruminants, there are reports of
B. ovis-specific antibodies in goats from Brazil (6) and Bulgaria
(7), and evidence of seroprevalence in Rocky Mountain bighorn
sheep (Ovis canadensis canadensis) in the USA (8). However,
the etiological agent has only been isolated in naturally-infected
domestic sheep and farmed red deer (Cervus elaphus) (9).
Experimental infection of male goats with B. ovis via a natural
route of entry showed that bucks may become infected and shed
the pathogen in semen, but the infection is transient and their
role in the epidemiology of the disease is negligible (10, 11). B.
ovis was first isolated and identified from ovine abortion and
epididymitis in rams in Australia andNew Zealand in early 1950’s
(12, 13). Following these first reports, B. ovis has been found
worldwide distributed. Today, the disease probably occurs in
most sheep-raising regions in the world, being currently present
in, e.g., Australia, New Zealand, Russia, France, Spain, Portugal,
South Africa, United States, Mexico, Argentina and Brazil (14).

In addition, small domestic ruminants may also be infected
by other Brucella species. Goats and sheep may be susceptible to
B. abortus infection under particular epidemiological situations
(for instance, when they live in close contact with B. abortus-
infected cattle or camelids) (15–17); however, these flocks will not
sustain the infection in the absence of infected primary host (18).
B. suis isolates from goats and sheep have been seldom reported
(19–22), and to the best of our knowledge, no other Brucella
species have been isolated from small domestic ruminants.
Considering that small ruminants may act as occasional hosts
for other species of the genus Brucella, this review will focus
on brucellosis caused by B. melitensis and B. ovis. Throughout
this review, we will present: (1) the differences and similarities
of the etiological agents at the biochemical and genomic level,
(2) the pathogenesis and clinical consequences in their primary
hosts, (3) the indicative prevention and control measures for the
disease, and (4) summary and analysis of current guidelines and
awareness tools to alert animal producers about the disease and
promote future innovative actions in the research community.

CULTURAL AND BIOCHEMICAL
DIFFERENCES BETWEEN B. MELITENSIS

AND B. OVIS

Bacterial isolation remains the gold standard for diagnosis of
brucellosis. Isolation of Brucella is typically achieved from fresh
milk samples and vaginal discharges of sheep and goats (2), while
samples from lymph nodes (LNs), spleen, reproductive tract and
udder are collected for culture at necropsy (23). On the other

hand, semen is the optimal sample for Brucella isolation in rams
and goat bucks, whereas inguinal LNs, spleen, seminal vesicles
and the epididymis are the preferred necropsy samples (24). The
abomasal content and lungs, followed by the liver and spleen, are
the preferred samples for B. melitensis and B. ovis isolation from
an aborted fetus (2).

B. melitensis grows in non-enriched basal media such as
Brucella medium base, tryptose -or tripticase- soy agar (TSA),
blood agar base or Columbia agar, without serum or CO2

enrichment (25). Contrarily, optimal growth of B. ovis occurs
when culture media is enriched with 5–10% blood or serum
(sheep > bovine or horse > fetal calf serum) and incubated at
37◦C in a microaerophilic atmosphere (i.e., 10–20% CO2). This
CO2-dependence of B. ovis is caused by a guanine insertion
in BOV_RS08635 locus that expresses a carbonic anhydrase II
defective enzyme (26). Unlike B. melitensis, B. ovis cannot grow
on glucose or galactose as primary carbon source, and is defective
in metabolisms of ribose and erythritol (27). Selective media
containing antibiotics are effective in suppressing contamination,
and therefore useful for the isolation of field specimens. In
spite of being the most widely used selective media for primary
Brucella isolation, Farrell’s medium contains antibiotics in its
composition that may inhibit the development of B. ovis and
some B. melitensis strains (28). On the contrary, other selective
media such as modified Thayer-Martin (mTM) or Skirrow agar
facilitate B. ovis and B. melitensis isolation, although the control
of overgrow of contaminating microorganisms is less stringent
(29). A more sensitive selective medium (CITA medium) for
primary Brucella isolation from field veterinary samples, was
more recently developed (30). This new culture medium, in
comparison to mTM has a 7-fold higher concentration (mg/L)
of a Gram-positive bactericidal antibiotic vancomycin, and the
addition of antifungal agent amphotericin B. A presumptive
fast bacteriological diagnosis can be made on smears from
placentas, aborted fetuses or vaginal swabs stained with Stamp’s
modification of the Ziehl-Neelsen’s technique, although this
method is not specific and the results must be confirmed by
culture or PCR (25).

On solid media, 3–4-day old B. melitensis colonies are convex,
translucent, smooth, glistening, and circular, 0.5 to 1mm in
diameter, while B. ovis colonies are round, more opaque with
a dry, yellowish-white granular (rough) appearance and up to
2mm in diameter (25). This difference is because B. melitensis
expresses a full lipopolysaccharidemolecule (smooth, S-LPS) that
is anchored in the outer membrane (OM), while B. ovis expresses
LPS that lacks the O-antigen (rough, R-LPS). However, bacterial
culture identification has a low sensitivity, is time consuming,
and requires skilled technical personnel to safely handle samples
and live bacteria. Moreover, B. melitensis is associated with
biosafety concerns due to the high risk of acquired laboratory
infection and must be handled under BSL3 conditions, making
diagnosis by bacterial isolation impractical in many situations. As
opposed to B. oviswhich does not require biosafety measures due
to its lack of zoonotic potential, isolation and handling can be
conducted at BSL2 facilities.

B. melitensis and B. ovis are identical at the microscopic
level: both are small coco-bacillus with a size of 0.5–0.7
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FIGURE 1 | Susceptibility of domestic small ruminants to B. melitensis and B. ovis infection. B. melitensis cause abortion, stillbirths and the birth of weak offspring in

goats and sheep (solid arrow); and less commonly, epididymo-orchitis in bucks and rams (dashed arrow). Moreover, B. ovis affect rams almost exclusively (solid

arrow), causing epididymitis and occasionally abortions in ewes and an increase in perinatal death (dashed arrow). In addition to sheep and goats, B. melitensis has a

wide range of natural susceptible host species, including humans. Other than domestic sheep, B. ovis has only been isolated from naturally-acquired infections of

farmed red deer (Cervus elaphus), but experimental infections have been established in goats, Rocky Mountain bighorn sheep (Ovis canadensis canadensis) and

white-tailed deer (Odocoileus virginianus).

um in width and 0.6–1.5 um in length, non-capsulate, non-
motile, and non-spore-forming, single or rarely forming short
chains (25). For routine identification, only a few biochemical
tests such as oxidase, urease, growth in presence of colorants
and agglutination with monospecific serum are indicated to
differentiate between both species. The main differences between
these two Brucella species are summarized in Table 1.

PATHOGENESIS OF BRUCELLOSIS IN
SMALL RUMINANTS

Susceptibility to B. melitensis infection increases from naïve
sexually immature to sexually mature animals of either sex,
and reaches its maximum in pregnant goat does and ewes.
It is well-known that goats are more susceptible than sheep,
and rams more resistant than ewes to the development of
brucellosis disease caused by B. melitensis. A great variability in
susceptibility to brucellosis was reported between sheep breeds,
but not between breeds of goats. For example, Hampshire down
and Texel breeds aremore resistant to infection and consequently

less likely to abort, than some dairy breeds and Southwest Asia
and Mediterranean fat-tailed breeds (3, 31).

The predominant route for B. melitensis infection under
natural exposure is the alimentary tract (2). Animals, mainly
goat does because of their naturally more curious character,
are primarily infected by direct contact with aborted fetuses,
placental membranes, vaginal discharges, or ingestion of
contaminated water, pastures or colostrum. Once in the oral
cavity, B. melitensis enters through the mucosal-associated
lymphoid tissue (MALT) in the pharyngeal wall and colonizes,
proliferates and persists for long periods of time in the
lymph nodes (LNs) of the head (i.e., mandibular, parotid,
and lateral and medial retropharyngeal LNs) (32). This MALT
forms a ring around the pharyngeal wall called “Waldeyer’s
ring,” that presents a similar histologic structure than the
ileal Peyer’s patches, an anatomic structure easily penetrated
by B. melitensis (33) (Figures 2A–C). Failure to eliminate B.
melitensis at the primary line of defense results in bacterial
escape through the efferent lymphatic vessels to the distal LNs
or via blood to the systemic circulation (Figure 2A). Brucella
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TABLE 1 | Main differences between B. melitensis and B. ovis.

Characteristics B. melitensis B. ovis

Host preference Goats and sheep Sheep (Ram)

Host susceptibility Goats, sheep, cattle, human Sheep, red deer

Zoonotic capacity High None

Biosecurity requirements BSL 3 BSL 2

Biovars 3 (1–3) 1

Colony morphology Smooth Rough

CO2 dependence – +

Serum/blood requirement – +

Oxidase + –

Urease activity + (most strains) –

Growth on Basic fuchsin + Growth inhibited at ≥20 ug/ml (1/20.000)

Methyl violet + –

Agglutination Monospecific serum Biovar 1: M R (anti-rough)

Biovar 2: A

Biovar 3: A–M

Acriflavine (1:1,000) – +

spreads free in plasma, inside erythrocytes or within phagocytic
cells and can reach every organ, but persists in lymphoid
tissues (LNs and spleen) and bone marrow (Figure 2D) and
actively replicates in the pregnant uterus or, less frequently, in
testis and epididymis. As strategy for persistence, B. melitensis
prevents the apoptosis of infected mononuclear phagocytes to
facilitate bacterial persistence in the reticuloendothelial system
until the host becomes susceptible to placental colonization and
replication during pregnancy (34). Considering that Brucella
can reach 1 × 1010 colony-forming units (CFU)/ml in allantoic
fluid and 1 × 1013 CFU/g of tissue in cotyledons (35, 36),
and the infective dose of B. melitensis is 10 to 100 CFU (37),
abortion and excretion of B. melitensis in vaginal discharges
constitute an important new source of infection for other
susceptible hosts.

Contrary to B. melitensis, B. ovis primarily infects males,
and almost exclusively rams after puberty (5). B. ovis infection
seems to be transient in bucks (10, 11), rarely cause abortions
in ewes (38), and has apparently no clinical consequences in
goat does. Similar to the B. melitensis infection, susceptibility
to B. ovis infection may vary among sheep breed. In South
Africa, the prevalence of clinical lesions was rated as Dorper
> Karakul > Merino, and other authors also support that
Merino breed is more resistant than other breeds of sheep (39–
41), although potential flock confounding variables were not
fully controlled.

Flocks become infected by the introduction of a B. ovis-
infected ram, which disseminates the pathogen intermittently
in semen, genital secretions and urine. Indirect venereal
transmission between rams that have mated with the same
ewes, or direct non-venereal transmission by homosexual
behavior, or by the sniffing or licking of the preputial
area of the infected ram are the most important ways
of spreading the infection (5, 42). The pathogenesis of
infection in rams has been poorly studied, but it appears

that after entering the body by penetrating the mucosae
of the prepuce, rectum, oral or nasal cavity, B. ovis is
phagocytosed by local antigen presenting cells, and transported
to the regional lymph nodes. The possibility of infection
via digestive route should not be considered, as lack of
urease in B. ovis specie reduces its ability to survive in
the acidic abomasal content (43). Progression of the disease
is slow, and after 2–8 weeks of incubation period, the
pathogen disseminates via lymphatic or blood vessels, free
or in leukocytes, but in the long term only colonizes the
genital organs and accessory sexual glands (seminal vesicles,
bulbourethral—Cowper’s—glands, ampullas of the vas deferens)
(44). Colonization starts in the tail of epididymis and seminal
vesicles, yet the molecular basis for targeting these tissues
is unknown.

The pathogenesis of B. ovis infection in ewes has not been
fully elucidated. Even thoughmating by infected rams or artificial
insemination with infected sperm causes a low percentage of
infection in ewes, contaminated semen may be the main source
of infection of female sheep, as environmental contamination
(water, pastures) does not seem to play a relevant role for B.
ovis transmission (38, 45, 46), probably due to its deficient
ability to infect via the oral route. After insemination with
contaminated semen, B. ovis is transported and remain confined
to the local drainage lymph nodes; later in pregnancy, bacteremia
develops and B. ovis reaches the pregnant uterus and colonizes
the fetus through chorion vessels. Opposite to what occurs with
B. melitensis where subsequent reinvasion of the pregnant uterus
and shedding may happen during following parturitions (2), B.
ovis infection rarely extends from one pregnancy to the next
(45, 47, 48). Therefore, the role of infected ewes in shedding and
dissemination of the B. ovis is insignificant, as the ability of the
pathogen to remain in the uterus or being excreted in vaginal
discharges and milk seems to be limited, although exceptions
were reported (49).
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FIGURE 2 | Pathogenesis of B. melitensis infection in small ruminants. (A) B. melitensis infects small ruminants mainly via the alimentary tract. Once in the oral cavity,

B. melitensis enters through the mucosa or the oro- and nasopharyngeal tonsils (Waldeyer’s ring) and colonizes, proliferates and persists in the lymph nodes (LNs) of

the head (i.e., mandibular, parotid, and lateral and medial retropharyngeal LNs). Failure to eliminate B. melitensis on this primary line of defense results in escape of the

bacteria through the efferent lymphatic vessels to the distal LN or via blood to the general circulation. In pregnant females, B. melitensis colonizes placenta and

induces abortion or stillbirth. Brucella melitensis also has affinity for lactating udder. Significant numbers of B. melitensis are excreted in vaginal discharges, aborted

fetus, placenta and milk. (B) Illustration of histological structure of tonsils. B. melitensis is first seen in the lumen of the oral cavity. Subsequently, B. melitensis

colonizes the crypts and invade through reticular epithelium. (C) Reticular epithelium is composed of scattered M cells (M; green), lymphoid cells and the epithelial cell

types (E). M cells endocytose B. melitensis from the lumen, after which transcytosis and basolateral release occurs. Immediately, the agent is up taken by resident

antigen presenting cells, i.e., macrophages (MØ) and dendritic cells (DC), which in turn activate the immune response in the underlying lymphoid follicles. MØs and

DCs traffic B. melitensis to other sites in the body or back through the reticular epithelium to the mucosal surface. (D) Schematic representation of B. melitensis

intracellular trafficking in macrophages and evasion of killing. Following lipid rafts (LR)—and the prion protein (PrPc)—mediated internalization, B. melitensis is

contained in an early vacuole (BCV: Brucella containing vacuole). This early vacuole sequentially interacts with cellular organelles (early and late endosomes, and

lysosomes) and transiently acquires different markers (EEA1, Rab5, LAMP1, Rab7) in a VirB dependent-mechanism regulated by the pathogen effector proteins. To

reach the replicative niche, BCV-LAMP1+ interacts with ER exit sites (ERES), and generates an ER-derived organelle permissive for B. melitensis replication

(ER-Replicative BCV). Vacuoles containing VirB-deficient B. melitensis undergo phagolysosomal degradation. Spontaneous rough mutant generation might help

parental pathogen release from infected MØ through lytic or non-lytic mechanisms, and the process repeats in other professional phagocytic cells. (E) Diagram of

ruminant placentome with enlargement of one caruncular septa. Brucella invades placenta via maternal capillaries (MC). Extravasated (EV) maternal blood at the tip of

the caruncular septa, along with B. melitensis, is phagocytosed by erythrophagocytic trophoblasts (ET). From these cells, B. melitensis spread infection to adjacent

chorioallantoic trophoblasts (CAT). UL: Uterine lumen, EE: Endometrial epithelium, CAM: Chorioallantoic membrane. (F) Schematization of a complete cycle of B.

melitensis-infected chorioallantoic trophoblast (CAT). 1: B. melitensis (B, red circles) adheres to the plasmatic membrane of CAT; 2: the bacteria are internalized and

initial intracellular replication occurs; 3–4: Massive intracellular multiplication of the agent; 5: Apoptosis of CAT and release of huge number of B. melitensis. The cycle

of endocytosis, intracellular replication and programmed cell death continues. CAM, Chorioallantoic membrane; AE, Allantoic ephitelium. (G) Schematic representation

of B. melitensis intracellular trafficking in chorioallantioic trophoblasts. Trophoblasts invasion of B. melitensis is mediated by heat shock cognate protein 70 (Hsc70)

and Ezrin. From this point until reaching of the replicative niche, intracellular trafficking is similar than that reported in macrophages (i.e., BCV goes from early BCV

-red- to intermediate BCV -green- and to replicative BCV). Intracellular presence of Brucella induces ER stress that triggers production of the pro-inflammatory

cytokines in a nucleotide-binding oligomerization domain (NOD) 1/2—dependent manner via activation of NF-kb pathway, and activates caspase pathway leading to

chorioallantoic trophoblast apoptosis. These molecular responses of B. melitensis-infected trophoblasts may contribute to better understanding the pathogenesis of

placentitis and abortion in small ruminant brucellosis.
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CLINICAL CONSEQUENCES OF
BRUCELLA-INFECTION IN DOMESTIC
GOATS AND SHEEP

Abortion and Weak Offspring
Middle to late-term gestation abortion, stillbirths and the delivery
of weak offspring sometimes followed by the retention of
fetal membranes are the characteristic—and perhaps the only
noticeable—clinical signs of the disease. However, these signs are
not pathognomonic of brucellosis, and a differential diagnosis
with other etiological agents is critical, although sometimes
difficult to achieve in the clinical field. Therefore, it would be
judicious to assume that all abortions are caused by a zoonotic
agents and minimize exposure until a definitive diagnosis
is made.

During bacteremia, Brucella enters the placenta through
specialized trophoblastic cells located toward the fetal side,
between the bases of cotyledonary villi of the placentomes that
are involved in phagocytosis of macromolecules, especially
extravasated maternal blood (Figure 2E). Thus, Brucella takes
advantage of an important physiological mechanism for the
trans-placental transport of iron needed by the developing
fetus for erythropoiesis (50) to colonize naive targets. From
these phagocytic trophoblasts, Brucella spreads and replicate
into adjacent chorioallantoic trophoblasts (51). Massive
intracellular multiplication induces apoptosis of trophoblasts
due to endoplasmic reticulum stress (52) and release of
huge numbers of microorganisms into the uterine lumen.
Though, the cycles of endocytosis (or active penetration),
intracellular replication and cell death continue (Figure 2F);
consequently, placenta cotyledons heavily fill with brucellae
and fetal invasion via bacteremia occur. Recent molecular
studies demonstrated that Brucella-infected trophoblasts secrete
proinflammatory chemokines such as IL6, IL8, GCP-2 and
MCP-1, and hormones prolactin and estrogen, while the
secretion of progesterone is inhibited (52–55) (Figure 2G).
Altogether, these elements provide a local environment
that contributes to abortion. Foci of apoptotic trophoblasts
result in ulceration of the chorioallantoic membrane, which
favors the hematogenous dissemination of B. melitensis to
chorionic villi and fetal tissues (56, 57). Large numbers of
brucellae in chorionic connective tissue gradually produce
vasculitis and separation of fetal trophoblasts from maternal
syncytial epithelium. Other histologic changes are associated
with neutrophilic and histiocytic inflammatory infiltrate, and
fibrin deposition, ranging from subacute to massive chronic
purulent necrotizing cotyledonary placentitis. Eventually,
when the number of viable placentomes is inadequate to
sustain maternal-fetal interaction, fetal death and consequent
abortion occurs. Fewer affected placentomes often results in
underweight—weak newborns followed by a high neonatal
mortality rate.

The mechanism that makes the pregnant uterus attractive to
brucellae, especially to B. melitensis, is still undefined. High levels
of erythritol in the ruminant placenta were originally postulated
to explain the tropism and the subsequent accumulation of
Brucella in this organ. In favor of this, the promoting role of

erythritol on B. melitensis expression on virulence genes, such as
the Type IV secretion system VirB and flagellar proteins was also
more recently demonstrated (58). However, there is increasing
evidence that B. melitensis infect placenta and produce abortion
in hosts such as humans (59, 60), mice and guinea pigs (61, 62),
where erythritol is not a major component of the placenta. A
clue to this mystery might have been recently deciphered by
Barbier et al., who assigned a crucial role to the host polyol
pathway enzyme aldose reductase, which catalyzes the synthesis
of several alternative carbon (C) sources (including erythritol)
for Brucella availability (63). Contrarily, B. ovis is unable to
catabolize erythritol and many other gluconeogenic substrates
and use them as C sources (27, 43), which may explain why
the pregnant uterus is not as attractive to this Brucella specie
as it is for others, resulting in lower incidence of abortion in
infected ewes.

Epididymitis
B. ovis affect the epididymis, tunica vaginalis and testes
producing infertility in rams. Earlier events include quantitative
and qualitative alterations of semen characteristics (sperm
motility, concentration, morphology, reduced fertility) which
progress to palpable lesions in the scrotum with no changes
in libido. Palpable lesions of the epididymis are occasionally
bilateral and may vary from a slight enlargement to large
indurations, with the tail affected more often than the head
or the body (5). The testes may suffer atrophy and the
tunica vaginalis is often thickened and fibrous, with extensive
adhesions. Yet, B. ovis-infected rams may not always develop
clinical manifestations; indeed, subclinical disease where seminal
vesicles is the most common affected organ, appears to be
the rule (42, 64). According to previous studies, B. ovis
reach the genital tract by haematogenous spread, extravasate
and colonize the interstitium. Earliest histologic changes are
seen in the tail of epididymis, consisting in perivascular
edema and diffuse interstitial accumulation of lymphocytes
and plasmatic cells (65). Further degeneration and lysis of
the epithelium allow extravasation and interstitial accumulation
of spermatozoa, which increases the inflammatory response
with tubular occlusion, formation of sperm granulomas and
chronic pyogranulomatous epididymitis (64). From the time
that B. ovis reaches the genital organs, the microorganism is
chronically shed in semen and genital secretions, free or in
infected phagocytes.

More rarely, B. melitensis-infected bucks and rams might
present unilateral or bilateral epididymo-orchitis and can shed
Brucella in semen for a year (66–68). Even though the
epidemiological importance under natural conditions of the
venereal route is usually disregarded, B. melitensis-contaminated
semen used in artificial insemination could be a potential source
of infection (69).

Other Clinical Consequences
B. melitensis, as well as B. ovis, have marked affinity for
the lactating udder and supramammary LNs, although clinical
findings are limited to decreased milk yield and slight
enlargement of the LNs (47, 70). Brucella- infected phagocytic
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leukocytes migrate from the systemic circulation to the
mammary alveoli. In the ductal and alveolar lumen, Brucella
replicates within phagocytes and upon host cells degeneration,
brucellae are subsequently released and ingested by a new
round of phagocytes. Part of the infected phagocytes is
excreted in milk, and part migrates to the interstitium and
reaches the supramammary LNs via the lymphatic stream
(71). Milk components, like fat and casein, may reduce
the effectiveness of intraphagocytic brucellacidal mechanisms,
possibly contributing to the chronic infection of the udder and
its regional LNs. Excretion of Brucella into the milk can occur
intermittently throughout lactation and may continue during
the following pregnancies, reaching considerable numbers (i.e.,
colony forming units / ml of milk) immediately after delivery
and in late lactation (47, 72). Thus, ingestion of contaminated
colostrum and milk could be a more frequent route of vertical
transmission in small ruminants than in utero infection, although
lambs born to infected dams may also passively acquire
neutralizing antibodies (38, 73, 74). Lambs and kids born
from infected females may become latent carriers until sexual
maturity; some may develop clinical disease while others remain
silently infected (69).

The natural B. melitensis infection in non-pregnant
small ruminant females is usually asymptomatic (23).
Similarly, systemic signs are rare in adult ewes and rams
infected by B. ovis. Rams with subclinical disease become
carriers or shedders of B. ovis, and must be diagnosed by
culture or serological routine tests and eliminated from
the flock.

GENOMIC BASES EXPLAIN DIFFERENCES
IN PATHOGENICITY AND HOST
SPECIFICITY BETWEEN B. MELITENSIS

AND B. OVIS

B. melitensis comprises 3 biovars (bvs 1–3), that have similar
virulence for goats and sheep. Historically, B. melitensis bv 1 is
predominant in Latin America, bv 2 in Middle East together
with bv 3, which is also more common in European and Africa
Mediterranean countries, Eurasia and China, while bvs 1 and
3 seem to be equally present in India (4). Currently, there
is only one bv for B. ovis. Few comparative genetic studies
including both species have been done (Table 2). The genomes
of these two Brucella species are composed of two circular
chromosomes of ∼2.1 (ChrI) and 1.2Mb (ChrII) in size with
3,200–3,300 ORFs. Blasting the genome of B. melitensis against
that of B. ovis reveals a high level of identity at the nucleotide
level and almost an 80% of the annotated proteome is shared
between them (43). This suggests that the differences in host
preference and pathogenesis may be due to a relatively small
number of genetic changes and differential mechanisms of gene
regulation. Among the differences and probably related with
the loss of virulence for most mammalian hosts, it is worth
mentioning that B. ovis ATCC25840 genome has 264 unique—
and 539 missing—annotated protein coding genes as compared
to B. melitensis 16M genome (43). A comparative whole-genome

hybridization study reported that B. ovis REO198 genome lacks
80 ORFs distributed in five genomic islands (GI-1, −2, −5, −7,
and −9) relative to B. melitensis 16M genome (1, 75). Among
them, the loss of GI-2 and −5 were proposed as critical for
its non-zoonotic nature. GI-2 contains two ORFs that encode
for glycosyltransferase enzymes involved in LPS biosynthesis
(BME_RS04960 –wboB- and BME_RS04965 -wboA-) and other
ORF encoding for a porin family protein implicated in host
cell interaction (BME_RS05010 -Omp25b-). In addition, GI-5
carries homologs of the ABC-type transporters such as Dpp,
Opp, and Pot systems, important for attachment to host cell and
intracellular survival in other bacteria (1, 75, 76). Contrarily,
a highly conserved 26.5 kb GI is present in chromosome II of
B. ovis strains (B. ovis pathogenicity island 1; BOPI-1), but
not in B. melitensis. This GI contains genes that encoded for
an ABC transporter (abcEDCBA), an antitoxin of the toxin-
antitoxin system Phd/YefM family (BOV_RS12860), and several
pseudogenes and hypothetical proteins (43).

Similar to other host-specific pathogens whose genomes
often show signs of genomic decay related to their divergence
from a generalist ancestor along with a change in their
route of transmission (78), the more restricted tissue tropism
(male genital tract) and narrow host range (rams) of B. ovis
appears to be associated with its genome degradation (1).
The higher number of pseudogenes (244 vs. 163) in B. ovis
ATCC25840 genome with respect to B. melitensis 16M is
directly related to the higher number of transposable elements
(38 vs. 7) (43). This difference in the number of active
insertion sequences favors genomic reduction and consequent
loss of virulence (76). Some of the functional B. melitensis
genes that are pseudogenes in B. ovis genome are involved
in oral infection ability (ureC1), transport and metabolisms
of carbohydrates as erythritol (eryA) and glucose (gluP), cell
envelope structure (BME_RS14295, omp31) and cytochrome
oxidase activity (ccoO). Moreover, contrary to B. melitensis 16M,
B. ovis ATCC25840 genome also has four inactivated genes
(prlS, tceS, moaR, and stcA) encoding for protein members of
two components systems (TCS), signal transduction mechanisms
with important virulence regulatory functions in Brucella spp.
(77). Indeed, the inactivation of tceS and prlS may also play
a role in the virulence restrictions exhibited by B. ovis, since
these genes are necessary for the persistence of B. melitensis
in mice (79, 80).

Despite differences in virulence among B. melitensis
bvs. have not been reported to date, the absence of a
GI-15 in ChrII in B. melitensis bv1, compared to bvs.
2 and 3 (76) is notable to mention. GI-15 contains 7
ORFs, which encode homologs to the BRUAB_RS13255
(ex BruAb2_0591; Twin-arginine translocation pathway
signal sequence domain-containing protein); BR_RS13010
(Lrp/AsnC family of DNA binding transcriptional
regulator), BRUAB_RS13270 and BRUAB_RS13275 (ex
BruAb2_0594 and 0595, respectively; ABC transporter
substrate-binding proteins) and BRUAB_RS13280 (ex
BruAb2_0596; FAD binding oxidoreductase). More
research is needed to identify the role of the GI-15 in B.
melitensis virulence.
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TABLE 2 | Comparative genetic studies including B. melitensis and B. ovis.

Strains Methods B. ovis genome with respect to B.

melitensis.

References

B. ovis REO198; B. melitensis 16M Whole-genome hybridization It lacks 80 ORFs distributed in GIs 1, 2, 5,

7, and 9.

(75)

B. ovis ATCC25840; B. melitensis

16M

Sequencing of B. ovis genome and

comparison with reference genomes

Evidences of genome degradation. It

contains 264 unique and 539 missing

genes.

(43)

B. melitensis 16M and ATCC 23457;

B. ovis ATCC25840

Identification of TCS coding genes in

available genomes

There are four inactivated TCS genes

(prlS, tceS, moaR and stcA)

(77)

B. melitensis 16M, 63/9 and Ether; B.

ovis 63/290

DNA microarray B. ovis lacks GIs 1, 2, 6, 11, 13 (B.

melitensis lacks GI 14; and BME_bv1 also

lacks GI15)

(76)

KNOWN AND UNDEFINED MECHANISMS
OF B. MELITENSIS AND B. OVIS

VIRULENCE FACTORS MAY EXPLAIN
DIFFERENT PATHOPHYSIOLOGICAL
CONSEQUENCES

Both B. melitensis and B. ovis show similar ability to invade,
survive and replicate inside professional and non-professional
phagocytic cells from their natural hosts as well as other hosts
(81–83), but their pathophysiological consequences are quite
different. Contrary to many bacteria, but similar to other species
of the genus Brucella, they don’t produce or carry any classical
virulence factors, such as toxins, pili and or fimbriae, capsule,
drug-resistant forms or antigenic variations. Instead, they use
several atypical virulence factors to stealthily enter cells, evade
intracellular killing and hamper host immune responses (84).

To date, fewer than 200 gene products have been identified
as Brucella virulence factors (85), although only some of them
have been extensively studied, with much more detail in B.
melitensis than in B. ovis. Among them, LPS is the most
broadly studied, since its composition modulates a distinctive
phenotype between these two Brucella species, but it does
not seem to affect its virulence. The overall structure of the
lipid A and the core oligosaccharide of both LPS species is
presumed to be similar, while the lack or the presence of
the terminal O-polysaccharide (O-PS) is associated with the
rough or smooth phenotypes of the B. ovis or B. melitensis,
respectively. Independently of this major difference, both LPSs
are involved in reduced endotoxic activity, low proinflammatory
cytokine production, immune system evasion, cell invasion
and resistance to complement and antimicrobial peptides
destruction, although some of these properties in B. ovis are
in association with outer membrane protein (OMP) expression
pattern (86–90).

OMPs are other well-known virulence factors involved not
only in the Brucella outer membrane stability but also in
the host: pathogen initial interaction and host cell function
modulation (91, 92). Among them, a family of highly conserved
25kDa OMPs is one of the most studied in the Brucella genus.
B. ovis Omp25 presents a 36 bp deletion with respect to B

melitensis that affects a surface-exposed loop of the protein
and might influence the B. ovis: host interaction (93). Despite
this difference, B. melitensis and B. ovis Omp25 deletion
mutants have shown to be attenuated in mice and pregnant
goats, and were considered good vaccine candidates (94, 95).
Another 25 kDa OMP family difference between these two
species of Brucella is the absence of the Omp25b encoded
gene in the genome of B. ovis, although this protein does
not seem to be essential for the establishment of Brucella
spp. (93). Contrarily, Omp25d and Omp22 play critical roles
in the entry of B. ovis into mammalian cells, but there is
no evidence that they perform this function in B. melitensis
(82, 96). Many other differences exist between B. melitensis
and B. ovis OMPs and their participation in differential
pathogenicity and host preference has been predicted in silico
or tested in vitro, but not by in vivo challenge of the preferred
host (43, 82, 86, 97, 98).

The two-component system (TCS) BvrR/BvrS is an
experimentally demonstrated virulence factor in B. abortus
that not only modulates the homeostasis of the outer membrane
but also influence metabolic pathways and Brucella adaptation
to the intracellular environment (99). The bvrR/S genes of
B. melitensis have a high degree of identity with those from
B. abortus with only four different amino acids in each
sequence, and putative bvrR and bvrS genes exist in B. ovis
genome (100). While B. melitensis BvrR mutants are defective
in the invasion of Hela cells (101), B. ovis BvrR/S mutants
couldn’t be generated suggesting that besides the multiple
functions attribute to this TCS in smooth Brucella strains,
would also be necessary for the in vitro free survival of
B. ovis (102).

Similar, VjbR is a global transcriptional activator of virulence
factors. Both B. melitensis and B. ovis vjbR mutants have been
reported to have the same level of internalization but may
be severely impaired to survive in macrophages and human
trophoblastic cell line compared to WT strains (101–104).
Consistently, both vjbR mutants are cleared from the spleens
of infected mice few weeks p.i. (102, 103) and B. melitensis
1vjbR is safe in its natural host (36, 105). In B. melitensis,
VjbR regulates the positive transcription of two of the main
virulence factors, the type four secretion system (T4SS) encoded
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by the virB operon, and flagellar genes, during vegetative
growth and intracellular survival (101). Apparently, VjbR also
regulates the virB expression in B. ovis, but not flagellar genes
(102). Moreover, the flagellar loci seem to be dispensable for
B. ovis virulence in mice and their expression have not been
confirmed to date (106), though some flagellar proteins are
expressed in and required for B. melitensis virulence in mice
and goats (90, 107).

The T4SS is a translocator of effector molecules that allow
Brucella to survive intracellularly and establishes its replicative
niche. Its essential role has been experimentally demonstrated
in both B. ovis and B. melitensis (90, 108–110), although a
different regulatory mechanism was observed. The VirB operon
is highly expressed under pH neutral culture conditions in B
ovis and B. melitensis 16M, and is further induced under acidic
culture conditions in B. melitensis but not in B. ovis (111, 112).
In addition, the number and identity of the T4SS translocated
effectors, the regulation of their expression and the way they
modulate the outcome of the infection in both Brucella species
remains to be elucidated. One example worthmentioning is TcpB
(also called BtpA or Btp1), a TIR-domain containing protein,
which targets TIRAP and represses pro-inflammatory cytokine
production by TLR2- and TLR4-signaling pathways (113). The
tcpB gene is well-conserved in the B. ovis genome (43), but
little is known about its expression and function during B.
ovis infection.

Another potential difference in virulence factors is the
function of the cyclic B-1,2-D- glucans (CβGs) in smooth and
rough natural Brucella species. CβG are polysaccharides present
in the periplasmic space of Brucella that play an important role
in environmental sensing, osmo-adaptation and interaction with
the host cell membrane (114). While CβGs-defective B. ovis
shows less internalization by macrophages, the microorganism’s
intracellular survival and replication are not affected (102).
B. abortus mutants of the CβG synthase (cgs) are impaired
in intracellular replication, but they do not show defects in
internalization (115). The different phenotypes could be in part
due to CβG contribution to the architecture and stabilization
of the bacterial envelope in rough strains, while in smooth
strains it may be required in order to avoid the fusion of the
lysosomes with the Brucella-containing vacuole. At the same
time, both cgs mutants show an attenuated phenotype in the
mouse model of infection (102, 116). Although the participation
of CβG in B. melitensis molecular pathogenesis has not been
studied, it is very likely that its function is homologous to that
of B. abortus.

Another difference is that B. ovis express an ABC transporter
system (abcEDCBA) which is absent in B. melitensis and
that appears to compensate for a lack of alternative nutrient
import pathways. This ABC transporter plays a key role
in the intra- and extracellular survival of B. ovis in cell
culture and during the early stages of infection in mice and
rams (110, 112, 117).

As we emphasize throughout this section, several
structural and functional differences between B.
melitensis’ and B. ovis’ major virulence factors have
been identified, yet few of them have been effectively

related to differences in host preference or pathogenesis
(Table 3). Undoubtedly, future studies, which consider
both the pathogen and the host (cell receptors, molecular
mechanisms or environment), will help address these voids
of knowledge.

LABORATORY PROCEDURES FOR
DIFFERENTIAL DIAGNOSIS OF
BRUCELLOSIS IN GOATS AND SHEEP

Laboratory tests are necessary to differentiate brucellosis in
small ruminants from other infectious agents commonly causing
abortion (Campylobacter fetus subsp. fetus, Chlamydophila
abortus, Toxoplasma gondii, Coxielia burnetti) and orchio-
epididymitis (Histophilus somni, Actinobacillus seminis).
Laboratory tests include either the detection of immune response
or identification of the agent. Bacterial isolation remains the
gold standard for diagnosis of brucellosis, but due to several
drawbacks previously mentioned, other safer, cheaper, and
faster methodologies have been developed. Thus, PCR-based
methodologies have successfully replaced culture and allowed
further characterization of the agent (Table 4). Because of it
practicability and its wide use, conventional PCR has become the
primary diagnostic option for specific detection of B. melitensis
and B. ovis DNA in biological samples (118, 119). More recently,
a more simple and inexpensive technique called loop-mediated
isothermal amplification (LAMP) assay has been optimized
for B. melitensis DNA detection in samples from goats with
clinical disease (120). Molecular techniques also allow: (1)
semi-quantification of Brucella DNA in biological samples
(121), (2) genotyping of B. melitensis strains (122), and (3)
differentiation between B. melitensis field strains and vaccine
strain Rev.1 (91, 123).

Antibody detection tests remain the most cost-effective
approach for the screening and detection of B. melitensis-infected
herds, especially under resource-limited settings. Since no single
serological test is adequate in all epidemiological situations,
the simultaneous use of at least two different serological
techniques that vary according to epidemiological situation is
strongly recommended to evaluate brucellosis status in small
ruminant herds (14). Macro-agglutination tests using buffered
smooth Brucella antigen, such as buffered plate agglutination
test (BPAT) or rose Bengal test (RBT), or indirect enzyme-
linked immunosorbent assays (iELISAs) are generally employed
for screening, with fluorescence-polarized antigen (FPA) or
complement fixation (CF) as complementary or confirmatory
tests, respectively. To confirm false-positive serological results
caused by infection with cross-reacting bacteria (i.e., Y.
enterocolitica O:9, E. coli O157 or S. urbana) in B. melitensis-free
areas, the brucellin skin test (BST) is the preferred diagnostic
test (14, 132–134), and the agar gel immunodiffusion (AGID)
test is used to serologically differentiate infected from vaccinated
goats and sheep in the field (135). For B. ovis serological
antibody detection, AGID, ELISA and CF are the recommended
techniques; however, they commonly show highly variable results
with considerable number of false-positive and false-negative
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TABLE 3 | Comparison of virulence factors in B. melitensis and B. ovis.

Virulence factor Descripción B. melitensis B. ovis

LPS Structural integrity

Cell invasion and evasion of host

immune response

Similar core and lipid A

Similar role in virulence

Presence of O-PS wboA/B genes absent

OMPs Outer membrane stability Interaction

with host cells

Many differences in OMP genes

Omp25 is involved in virulence in mice

Omp25 is involved in virulence in

goats

Omp25d and Omp22 are involved in

cell internalization

BvrR/BvrS TCS. Environmental sensing and

regulation of gene expression (OMPs,

virulence factors)

Essential for cellular invasion Mutants couldn’t be obtained

Essential for in vitro cell-free survival?

VjbR Quorum-sensing transcriptional

regulator (VirB, flagellar genes)

Involved in intracellular replication and virulence

T4SS (VirB operon) Translocator of effector proteins to

host cells

Key role in the establishment of Brucella replicative niche

Essential for intracellular replication and virulence

Enhanced expression in acidic

conditions in vitro

Highest expression at neutral pH

CβG Environmental sensing

Osmo-adaptation

Interaction with host-cells

Unknown

Cgs gene conserved with B. abortus.

Essential for intracellular replication?

Involved in cell internalization and

virulence in mice

ABC Transporter abcEDCBA Unknown

Involved in post-transcriptional

regulation of VirB expression

abcEDCBA genes absent Involved in intracellular replication and

virulence in mice and rams

Flagellar proteins Unknown Essential for virulence in mice and

goats

Non-functional

TcpB T4SS secreted effector Involved in TLR2/4 inhibition by

TIRAP degradation

Unknown

Gene conserved

PrlS Member of TCS PrlS/R (proline

sensor–regulator)

Necessary for Brucella persistence in

mice

Gene absent

TceS Member of TCS TceS/R Involved in Brucella intracellular

survival and virulence in mice.

Gene absent

TABLE 4 | PCR-based methods for B. melitensis and B. ovis specific identification.

Level of identification Methodology References

B. ovis Conventional PCR

Multiplex PCR

(119, 124, 125)

B. melitensis Conventional PCR (126, 127)

LAMP (120)

Real Time (RT)-PCR (128)

Immuno-magnetic separation-PCR

(IMS-PCR)

(129)

B. melitensis biovars Multiple-locus variable number

tandem repeat analysis (MLVA)

(122)

B. melitensis field strain and B. melitensis Rev.1 PCR-restriction fragment length

polymorphism (PCR-RFLP)

(91, 123)

Duplex PCR (130)

Multiplex PCR (127)

Single nucleotide polymorphism

(SNP)-based test

(131)

Frontiers in Veterinary Science | www.frontiersin.org 10 May 2022 | Volume 9 | Article 887671

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Rossetti et al. Brucellosis in Small Ruminants

serologic reactions (136). The development of a reliable and
easy-to-perform test for serological detection of B. ovis will be
a necessary step for controlling the disease.

PREVENTION AND CONTROL MEASURES

Simple measures to prevent the introduction of the agent in a
herd are: (1) to maintain a closed herd, (2) to avoid contact with
infected animals and unnecessary visitors, (3) to use separate
pens for lambing, and (4) to keep facilities clean and disinfected.
If external animals must be incorporated, they should come from
an accredited brucellosis-free herd or a herd without history of
brucellosis, and the individual serological and clinical negative
status must be confirmed before being introduced into the herd.
All these measures are easier to implement in intensive farming,
but are almost impossible to achieve in extensive, transhumant or
nomadic pastoralism situations, which is the way the majority of
caprine and ovine production are managed. Thus, surveillance
and vaccination, together with imposing livestock movement
control, are the main measures aimed at maintaining brucellosis-
free flocks in these conditions.

After B. melitensis infection, three different options are
recommended for control and eradication: (1) test and slaughter
of positive animals, (2) massive vaccination, or (3) pre-pubertal
female vaccination with test and slaughter of infected animals
(18, 137). Although it is not the purpose of this article to describe
these options in detail as has been done extensively in previous
publications, it is worth noting that much of the success of
control and eradication programs is based on reliable laboratory
diagnostic results and the use of suitable qualified vaccine lots or
seed stock sources used to make the immunogen. The selection
of the criteria to be employed depends on, but is not restricted to:
(1) the prevalence of brucellosis, (2) the capacities of the National
Veterinary Services, (3) the type of animal husbandry, (4) the
geography of the area, (5) financial, (6) technical and personnel
resources available, and (7) the compliance of the livestock
owners, among other issues. On the other hand, the prevalence
of B. ovis infection can be reduced by the clinical examination
and laboratory testing of rams before the breeding season
followed by the culling of those with palpable abnormalities or
positive laboratory results. Despite some successful experimental
attempts, a commercial vaccine to prevent B. ovis infection is not
yet available (117, 138, 139). The use of antibiotic treatment is
not economically or clinically recommended for the control of
brucellosis in infected small ruminants, due to the high failure
rate, cost and potential problems related to maintaining the
coexistence of infected and healthy animals in a flock.

Even though animal vaccination and other measures
presented here have contributed significantly to eradicating
or reducing the incidence of brucellosis in many geographical
areas, the disease has not been controlled in many other regions
and is considered, in many cases, a re-emerging disease. A
relatively new complementary approach is the identification

and subsequent selection of animals with natural resistance to
Brucella infection. Original studies found naturally resistant
pigs and cows (140). Later on, this phenotypic characteristic
was linked to genetic markers. The alleles of the goat genes
SLC11A1 (formerly NRAMP1), PTPRT, IRF3, and TNF were
recently reported by us associated with the absence of Brucella
sero-response in Creole crossbreed goats (141–144), and
variants in the MHC-DRB1 loci were associated with brucellosis
susceptibility in Chinese Merino sheep (145). Though, it is clear
that resistance to natural infection would rarely be controlled by
a single gene, more research is still required to include marker-
assisted selection for natural resistance to brucellosis in breeding
programs as a significant contribution to the prevention of the
disease in small ruminant herds.

CONCLUSIONS AND FUTURE
APPROACHES

Brucellosis in small ruminants is an ancient disease that has
been eradicated in many countries, but still remains endemic
in most regions. There is a vast amount of literature explaining
successful eradication campaigns in several areas using available
tools (i.e., diagnostic tests, vaccines, culling) adjusted to the
particular context. Thus, why is small ruminant brucellosis still
endemic in some geographic regions? The answer may be that
these tools are simply not available, or they are wrongfully
used. Undoubtedly, future development of the combination of
less complex diagnostic tests, effective immunogens, enhanced
response to vaccination, identification of innate resistant animals
to Brucella infection, and/or other unknown factors will help to
control and eradicate brucellosis in domestic sheep and goats. In
the meantime, history informs us that control and eradication
programs may be successfully implemented employing available
tools and appropriate strategies.
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24. Petrović M, Špičić S, Potkonjak A, Lako B, Kostov M, Cvetnić Ž. First
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