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a b s t r a c t 

Machine learning methods were considered efficient in identifying single nucleotide polymorphisms (SNP) 

underlying a trait of interest. This study aimed to construct predictive models using machine learning algorithms, 

to identify loci that best explain the variance in milk traits of dairy cattle. Further objectives involved validating 

the results by comparison with reported relevant regions and retrieving the pathways overrepresented by the 

genes flanking relevant SNPs. Regression models using XGBoost (XGB), LightGBM (LGB), and Random Forest (RF) 

algorithms were trained using estimated breeding values for milk production (EBV M 

), milk fat content (EBV F ) 

and milk protein content (EBV P ) as phenotypes and genotypes on 40417 SNPs as predictor variables. To evaluate 

their efficiency, metrics for actual vs. predicted values were determined in validation folds (XGB and LGB) and 

out-of-bag data (RF). Less than 4500 relevant SNPs were retrieved for each trait. Among the genes flanking them, 

signaling and transmembrane transporter activities were overrepresented. 

The models trained: 

• Predicted breeding values for animals not included in the dataset. 
• Were efficient in identifying a subset of SNPs explaining phenotypic variation. 

Abbreviations: EBV F , estimated breeding values for milk fat content; EBV M , estimated breeding values for milk production; 

EBV P , estimated breeding values for milk protein content; FDR, false discovery rate; GWAS, genome-wide association study; 

HxJ, Holstein x Jersey; LGB, LightGBM; MAE, mean absolute error; ML, machine learning; MSE, mean squared error; RF, Random 

Forest; RMSE, root mean square error; SNP, single nucleotide polymorphism; XGB, XGBoost. 
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The results obtained using XGB and LGB algorithms agreed with previous results. Therefore, the method proposed 

could be applied for future association studies on milk traits. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Specifications table 

Subject Area: Bioinformatics 

More specific subject area: Machine learning applications in biology 

Method name: Construction of predictive models using machine learning algorithms for 

the identification of loci that best explain the variance in milk traits of 

dairy cattle. 

Name and reference of original 

method: 

B. Li, N. Zhang, Y.-G. Wang, A.W. George, A. Reverter, Y. Li, Genomic 

Prediction of Breeding Values Using a Subset of SNPs Identified by Three 

Machine Learning Methods, Front. Genet. 9 (2018) 237, 

doi:10.3389/fgene.2018.00237. 

Resource availability: N.A. 

Method details 

In recent years, machine learning (ML) methods have been used in genome-wide association 

studies (GWAS), showing to be efficient in identifying a subset of SNPs underlying a trait of interest

[1 , 2] . Therefore, we present herein a workflow consisting, firstly, in the construction of predictive

models using machine learning algorithms, for the identification of genomic regions that best explain 

the variance in milk traits of dairy cattle. Once relevant loci are identified, bioinformatics tools and

online available software are used to retrieve the genes flanking those loci and explore the metabolic

pathways, biological processes and/or molecular functions overrepresented by them. The method 

workflow is schematically represented in Fig. 1 . This method could be suitable to use as an alternative

to GWAS performed through the implementation of different software fitting linear, multivariate and 

Bayesian linear mixed models. 

Phenotypes 

A database consisting of 117957 milk production records, 98907 milk fat content records, and

97684 milk protein content records from the first lactation of 18876, 16907, and 16735 Holstein and

Holstein x Jersey (HxJ) cows, respectively, was used. Cows had a minimum of four test-day records up

to 305 days of lactation, and at least one of these records was taken before 60 days of lactation. Using

these productive data, 305-day cumulative milk, fat and protein were estimated by the Fleischmann

method [3] . Finally, breeding values for each trait were estimated using the WOMBAT program [4] ,

fitting linear mixed models with fixed effects including the percentage of Holstein background, herd, 

year of birth, and the combined effect of season and year of first lactation, and the animal genetic

random effect distributed proportionally to the relationship matrix as stated by the pedigree. 

Three phenotypic datasets were built to train regression models using three ML algorithms 

XGBoost [5] , LightGBM [6] , and Random Forest [7] on a population of 863 genotyped animals

including 837 cows (582 Holstein and 255 HxJ) and 26 bulls (22 Holstein and 4 Jersey): 

(1) estimated breeding values for milk production (EBV M 

); 

http://creativecommons.org/licenses/by/4.0/
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Fig. 1. Method workflow. EBV M : estimated breeding values for milk production; EBV F : estimated breeding values for milk fat 

content; EBV P : estimated breeding values for milk protein content; XGB: XGBoost; LGB: LightGBM; RF: Random Forest; MAE: 

mean absolute error; RMSE: root mean square error. 
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(2) estimated breeding values for milk fat content (EBV F ); 

(3) estimated breeding values for milk protein content (EBV P ). 

These estimations accounted for the relationship among animals and the phenotypes of genotyped

nd non-genotyped animals. 

enotypes 

SNP genotyping was performed on 969 cows (703 Holstein and 266 HxJ) and 29 bulls (24 Holstein

nd 5 Jersey) using the BovineSNP50 v2 BeadChip (Illumina Inc., San Diego, CA, USA), which evaluates

4609 SNP distributed over the 29 bovine autosomes and sex chromosomes, spaced on average

8102 bp apart. The quality control of genotype data was performed using PLINK program v1.07

8] and consisted in the exclusion of SNP with unknown position on the genome, located on the Y

hromosome, with a call rate lower than 0.95 or a minor allele frequency lower than 0.03. Animals

ith a call rate lower than 0.90 were also excluded. After genomic data quality control, genotypes

n 40417 SNP from 978 (952 cows + 26 bulls) animals were retained. However, only 863 out of

hese animals had reliable phenotypic records. Recoding from A/B to 0/1/2 genotypic notation, in the

onstruction of the input datasets for the models, was also performed with PLINK program v1.07. 

odels trained using machine learning algorithms 

Regression models using XGBoost (XGB), LightGBM (LGB), and Random Forest (RF) algorithms were

rained using EBV M 

, EBV F , and EBV P of 863 animals as phenotypes (target variables) and genotypes on

0417 SNPs as predictor variables. We used Python-based XGB and LGB, and R-based RF algorithms.

he final objective of the models was not the prediction of phenotypic values for each animal but

he selection or identification of the most important SNPs, i.e. those that best explained the observed

ariance in the studied phenotypes. 

The model hiperparameters adjusted for the three algorithms were the learning rate, max. tree

epth, min. number of individuals in leaf nodes, number of features used to create each tree,



4 M.A. Raschia, P.J. Ríos and D.O. Maizon et al. / MethodsX 9 (2022) 101733 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

number of individuals used to create each tree, and regularization values (L1 and L2). These

hiperparameters were optimized manually because the relatively small size of the datasets allowed so. 

The implementation of the algorithms used were XGBoost version 1.3.3 for Python, LightGBM version 

3.1.1 for Python, and R package randomForestSRC version 2.10.1. Python release was 3.8.5 and R release

was 4.0.4. Source code is available upon request. 

The genotypic dataset had a very low amount of missing SNPs, 0.43%, but since Random Forest

algorithm discards rows with missing values, it was required to impute them. A multivariate version of

missForest imputation was used, which is based on an iterative process using prediction as described

by Ishwaran and Kogalur [7] . 

To evaluate the efficiency of the models in identifying relevant SNPs, Pearson correlation, R 

2 , mean

absolute error (MAE) and root mean square error (RMSE) metrics for actual vs. predicted values were

determined in validation folds using 5-folds cross-validation (XGB and LGB) and out-of-bag data (RF). 

A 5-fold cross-validation scheme was used based on the study performed by Li et al [9] , which used

a dataset of comparable size as this study. The models showed, for the three ML algorithms used, R 

2 

correlations for actual vs. predicted values greater than 0.34 for EBV M 

, 0.55 for EBV F , and 0.57 for

EBV P , and Pearson correlations, also in validation, greater than 0.61 for EBV M 

, 0.74 for EBV F , and 0.76

for EBV P . Thus, the models trained learned and were capable to predict breeding values for animals

not included in the dataset. 

Relevant SNPs retrieved from each trained model were those with importance or gain > 0. For

Random Forest algorithm, the importance value of a SNP is the percentage of increase in the mean

squared error (MSE) in the “out-of-bag” datasets across all the trees in the forest in which the

SNP participates, using random permutation. The MSE of each tree in the forest is compared after

randomly permuting the values of the variable in a new sample, and the percentage of increase in

the error is computed; the larger this error, the more important the variable is. For XGBoost and

LightGBM, the importance or gain value of a SNP denotes the reduction in the prediction error of the

objective function (MSE) when partitioning a node in a tree using the SNP. The higher the gain value,

the more important the SNP. 

For EBV M 

, a similar number of relevant SNPs were retrieved out of the 40417 initial evaluated

SNPs, with the three ML algorithms used (3633, 4470, and 3718 for XGB, LGB, and RF, respectively).

While, both for EBV F and EBV P , considerable more SNPs were retrieved when using XGB and LGB

than RF algorithms (1774 and 2355 vs. 196 for EBV F , and 3040 and 3622 vs. 2493 for EBV P ,

respectively). Common SNPs across the three methods were 514, 133, and 443 for EBV M 

, EBV F , and

EBV P , respectively, representing 14.1, 67.9, and 17.8% of the relevant SNPs detected by the algorithm

that retrieved the least number of SNPs with positive importance values for each trait. 

Analysis post relevant SNP identification 

Protein-coding genes flanking relevant SNPs in + /- 30 Kb were retrieved by the Ensembl BioMart

tool using the bovine genome assembly ARS-UCD1.2 (Ensembl release 104). Then, to assess the 

biological relevance of the loci identified by each ML algorithm, overrepresentation tests were 

performed on the gene sets retrieved for each of the nine combinations trait/algorithm, using the

program PANTHER (protein annotation through evolutionary relationship) [10] . The parameters used 

were Bos taurus (for organism); statistical overrepresentation test (for analysis method); PANTHER 

Pathways, PANTHER GO-Slim Biological Process, and PANTHER GO-Slim Molecular Function (for 

annotation data set); all genes in Bos taurus database (for reference list); and Fisher’s Exact with FDR

multiple test correction (for test type). Results with FDR p -value < 0.05 were considered statistically

significant. 

Protein coding genes containing or flanking relevant SNPs obtained by XGB, LGB, and RF algorithms

were 2770, 3334, and 3002 for EBV M 

; 1426, 1889, and 137 for EBV F ; and 2224, 2804, and 1972 for

EBV P , respectively. Among those genes and common to the three traits and ML algorithms assayed,

signaling pathways and channel activities were detected as overrepresented. 



M.A. Raschia, P.J. Ríos and D.O. Maizon et al. / MethodsX 9 (2022) 101733 5 

Table 1 

Matching with previous results. The number and percentage of previously 

reported relevant and top windows for each trait containing SNPs with 

positive gain obtained in this study is indicated. 

Trait Comparison XGB LGB RF 

EBV M relevant windows 40 (76.9%) 46 (88.5%) 40 (76.9%) 

top windows 10 (100%) 10 (100%) 8 (80%) 

EBV F relevant windows 33 (57.9%) 33 (57.9%) 3 (5.3%) 

top windows 8 (80%) 6 (60%) 1 (10%) 

EBV P relevant windows 44 (78.6%) 47 (83.9%) 27 (48.2%) 

top windows 6 (60%) 9 (90%) 4 (40%) 
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ethod validation 

Validation was performed through comparison with previous results. The location of relevant SNPs

or EBV M 

, EBV F , and EBV P obtained in this study was compared to previously reported relevant 10-

djacent SNP windows that explained more than 10 times genetic variance than expected for milk

roduction, milk fat content, and milk protein content, respectively, obtained using BLUPf90 package

f programs for the same population [11] . Then, the number and percentage of relevant windows and

op windows (explaining more than 1.0, 0.7, and 0.8% of the genetic variance for milk production, milk

at content, and milk protein content, respectively) containing SNPs with positive gain was determined

 Table 1 ). 

In general, higher percentages of matching between previous and actual results were obtained with

odels using XGB and LGB algorithms, than with models using RF. The lower matching reached with

F, mainly evidenced with models trained for EBV F and EBV P traits, can be ascribed to the need to

mpute missing genotypes when using this algorithm. 
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