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Abstract. In recent years, machine learning methods have been shown to 

be efficient in identifying a subset of single nucleotide polymorphisms 

(SNP) underlying a trait of interest. The aim of this study was the 

construction of predictive models using machine learning algorithms, for 

the identification of loci that best explain the variance in milk fat 

production of dairy cattle. Further objectives involve determining the 

genes flanking relevant SNPs and retrieving the pathways, biological 

processes, or molecular functions overrepresented by them. Fat 

production values adjusted for fixed effects (FPadj) and estimated 

breeding values for milk fat production (EBVFP) were used as phenotypes 

and SNPs as predictor variables. The models constructed for EBVFP 

performed better and yield considerably less relevant SNPs than models 

for FPadj. Among the genes flanking relevant SNPs, signaling 

transduction pathways and gated channel activities were detected as 

overrepresented. The loci obtained for EBVFP matched better with 

previously reported relevant loci for milk fat content than those obtained 

for FPadj. Based on the better performance showed by the models trained 

for EBVFP and their agreement with previous reported results for the trait 
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studied, we conclude that the relationship among individuals should be 

accounted for in the phenotype used. 

Keywords: machine learning methods, single nucleotide 

polymorphisms, estimated breeding values, dairy cattle 

 

1 Introduction 

The development of different density specie-specific microarrays that evaluate 

genotypes on single nucleotide polymorphisms (SNP) distributed over the entire 

genome, as well as of bioinformatics tools, have enabled numerous studies involving 

the joint analysis of pedigree, genotypic and phenotypic information of livestock. 

Among the most studied species is dairy cattle due to the importance of dairy industry 

in worldwide economy. Accordingly, extensive genetic research on milk production in 

cattle has been performed. Several studies focused on identifying associations between 

SNP markers located all over the genome and a trait of interest were conducted and 

hence associations between many SNP and milk traits have been reported for different 

dairy cattle breeds [1, 2, 3]. Most of such genome-wide association studies (GWAS) 

were performed through the implementation of different software that fit linear, 

multivariate and Bayesian linear mixed models. The single or multiple-trait animal 

models used considered fixed and genetic effects affecting the phenotypic observations. 

In recent years, machine learning methods (ML) have also been used in GWAS, 

showing to be efficient in identifying a subset of SNPs underlying a trait of interest [4, 

5]. 

The aim of this study was the construction of predictive models for indicators 

of milk fat content in a population of dairy cows, using SNPs as predictor variables and 

three machine learning algorithms, for the identification of regions in the genome that 

best explain the variance in those phenotypes. Further objectives involve retrieving the 

genes located near those SNPs and looking for pathways, biological processes, or 

molecular functions overrepresented by them. Besides, the comparison among the 

relevant SNPs obtained through regression models trained using machine learning 

algorithms and previously reported relevant SNP windows obtained for the same 

population that was used in this study. 

2 Materials and methods 

 
2.1 Phenotypes 

A database consisting of 98907 milk fat content records from the first lactation of 16907 

Holstein and Holstein x Jersey (HxJ) cows was used. Two phenotypic datasets were 

built to train regression models using three ML algorithms XGBoost [6], LightGBM 

[7], and Random Forest [8]: 
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1) Residuals for 305-day cumulative milk fat production (adjusted fat 

production, FPadj) values estimated for 812 cows (559 Holstein and 253 HxJ) using the 

Fleischmann method [9], adjusted for the percentage of Holstein background, herd, age 

at first calving, and the combined effect of season and year of first lactation. This 

phenotype did not consider pedigree information. 

2) Breeding values for milk fat production (EBVFP) estimated for 837 cows 

(582 Holstein and 255 HxJ) and 26 bulls (22 Holstein and 4 Jersey) using the 

WOMBAT program [10]. This estimation accounted for the relationship among 

animals and the phenotypes of genotyped and non-genotyped animals. 

 

2.2 Genotyping 

SNP genotyping was performed on 969 cows (703 Holstein and 266 HxJ) and 29 bulls 

(24 Holstein and 5 Jersey) using the BovineSNP50 v2 BeadChip (Illumina Inc., San 

Diego, CA, USA), which evaluates 54609 SNP distributed over the 29 bovine 

autosomes and sex chromosomes, spaced on average 48102 bp apart. The quality 

control of genotype data consisted in the exclusion of SNP with unknown position on 

the genome, located on the Y chromosome, with a call rate lower than 0.95 or a minor 

allele frequency lower than 0.03. Animals with a call rate lower than 0.90 were also 

excluded. After genomic data quality control, 40417 SNP from 978 (952 cows + 26 

bulls) animals were available for subsequent analyses. 

2.3 Models trained using machine learning algorithms 

 

The input dataset to the models comprised the phenotypes mentioned in section 2.1 and 

genotypes of 812 cows (when using FPadj) or 863 animals (when using EBVFP) on 

40417 SNPs as predictor variables. Table 1 shows a summary of the variables used as 

input to train regression models. The final objective of the models is not the prediction 

of phenotypic values for each animal but the selection or identification of the most 

important SNPs, i.e. those that best explain the observed variance in the studied 

phenotypes. 

 

Table 1. Summary of the variables used to train regression models. 

 

Inputs 

for 

trained 

models 

Target 

variables 

FPadj 
Adjusted residuals for 305-day cumulative 

milk fat production estimated for 812 cows. 

EBVFP 
Breeding values for milk fat production 

estimated for 863 animals. 

Predictor variables 
Genotypes on 40417 biallelic SNP that 

passed quality control checks. 

 

Regression models were trained using three ML algorithms: XGBoost (XGB) and 

LightGBM (LGB) in Python, and Random Forest (RF) in R. To evaluate their 

efficiency in identifying the SNPs that best explain the differences in the phenotypes, 
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Pearson correlation, R2, mean absolute error (MAE) and root mean square error 

(RMSE) metrics for actual vs. predicted values were determined in validation folds 

using 5-folds cross-validation (XGB and LGB) and out-of-bag data (RF). A 5-fold 

cross-validation scheme was used based on the study performed by Li et al [11], which 

uses a dataset of comparable size as this study. The population was randomly split into 

five groups of equal size and each group was in turn assigned with missing phenotypic 

values and used as the validation set. 

Relevant SNPs retrieved from each trained model were those with importance 

or gain >0. For Random Forest algorithm, the importance value of a SNP is the 

percentage of increase in the mean squared error (MSE) in the “out-of-bag” datasets 

across all the trees in the forest in which the SNP participates, using random 

permutation. The MSE of each tree in the forest is compared after randomly permuting 

the values of the variable in a new sample, and the percentage of increase in the error 

is computed; the larger this error, the more important the variable is. For XGBoost and 

LightGBM, the importance or gain value of a SNP denotes the reduction in the 

prediction error of the objective function (MSE) when partitioning a node in a tree using 

the SNP. The higher the gain value, the more important the SNP. 

2.4 Models implementation 

The model hiperparameters adjusted for the three algorithms were the learning rate, 

max. tree depth, min. number of individuals in leaf nodes, number of features used to 

create each tree, number of individuals used to create each tree, and regularization 

values (L1 and L2). These hiperparameters were optimized manually because the 

relatively small size of the dataset allowed so. 

The dataset had a very low amount of missing SNPs, 0.43%, but since Random 

Forest algorithm discards rows with missing values, it was required to impute them. A 

multivariate version of missForest imputation was used, which is based on an iterative 

process using prediction as described by Ishwaran and Kogalur [8]. 

The implementation of the algorithms used are XGBoost version 1.3.3 for 

Python, LightGBM version 3.1.1 for Python, and R package randomForestSRC version 

2.10.1. Python release is 3.8.5 and R release is 4.0.4. Source code is available upon 

request (contact Daniel Demitrio, demitrio.daniel@inta.gob.ar, for it). 

2.5 Overrepresentation tests 

To assess whether the relevant SNPs identified by each ML algorithm have any 

biological relevance, overrepresentation tests were performed on the gene sets close to 

those SNPs in +/- 30 kb, using the program PANTHER (protein annotation through 

evolutionary relationship) [12]. The parameters used were Bos taurus (for organism); 

statistical overrepresentation test (for analysis method); PANTHER Pathways, 

PANTHER GO-Slim Biological Process, and PANTHER GO-Slim Molecular 

Function (for annotation data set); all genes in Bos taurus database (for reference list); 
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and Fisher’s Exact with FDR multiple test correction (for test type). Results with FDR 

p-value < 0.05 were considered statistically significant. 

2.6 Comparison with previous results 

The location of relevant SNPs obtained in this study was compared to previously 

reported 57 relevant 10-adjacent SNP windows that explained more than 10 times 

genetic variance than expected for milk fat production, obtained using BLUPf90 

package of programs for the same population [13]. Then, the number of relevant 

windows and top windows (explaining more than 0.7% of the genetic variance for the 

trait) containing SNPs with gain>0 was determined. 

3 Results and discussion 
 

Histograms for the phenotypes used to train regression models (adjusted fat production 

values and breeding values for milk fat production) are shown in Figure 1. 

 

Fig. 1. Histogram of FPadj values (left) and EBVFP values (right). 

The metrics for the assessment of the models’ performance are shown in Table 1. The 

models for EBVFP in validation performed considerably better than the models for FPadj, 

for the three ML algorithms used, with R2 correlations for actual vs. predicted values 

greater than 0.55 in all cases, while when using FPadj as phenotype, those R2 were lower 

than 0.1. The Pearson correlation, also in validation, increased from 0.18-0.23 for the 

models for FPadj, to 0.75 for those for EBVFP. Thus, the models trained for EBVFP are 

learning and are capable to predict breeding values for animals not included in the 

dataset. 

Table 1. Metrics for the models used, based on actual vs. predicted values for FPadj and EBVFP. 

Validation / Out-of-bag FPadj 

metrics XGBoost LightGBM Random Forest 

P corr. 0.177 [0.109, 0.243] 0.228 [0.162, 0.293] 0.198 [0.131, 0.263] 

R2 < 0.1 < 0.1 < 0.1 

MAE 25.36 [24.18, 26.65] 25.22 [24.05, 26.51] 25.33 [24.15, 26.62] 
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RMSE 32.05 [30.56, 33.69] 31.86 [30.38, 33.49] 31.92 [30.44, 33.55] 

Validation / Out-of-bag EBVFP 

metrics XGBoost LightGBM Random Forest 

P corr. 0.749 [0.718, 0.777] 0.751 [0.720, 0.779] 0.752 [0.722, 0.780] 

R2 0.553 0.551 0.552 

MAE 2.97 [2.83, 3.11] 2.94 [2.81, 3.09] 2.97 [2.84, 3.12] 

RMSE 3.90 [3.72, 4.09] 3.91 [3.73, 4.10] 3.90 [3.73, 4.10] 

P corr.: Pearson correlation; MAE: mean absolute error; RMSE: root mean square error. 95% 

confidence intervals between brackets. 

The number of relevant SNPs for FPadj was 9548, 10424, and 8454 for XGB, LGB, and 

RF, respectively. While the number of relevant SNPs for EBVFP was considerably 

lower: 1774, 2355, and 196 for XGB, LGB, and RF, respectively. Thus, the models 

used for EBVFP not only have a better performance but also use less SNPs to explain 

the phenotype. The Venn diagrams (Figure 2) generated with the SNPs with positive 

importance values revealed a total of 1206 common SNPs across three methods for 

FPadj and 133 for EBVFP. 67.9% of the SNPs with positive importance values selected 

by RF for the EBVFP model were also selected by XGB and LGB, while a much smaller 

percentage of the SNPs identified by RF, 14.3%, are common across the three 

algorithms for the FPadj model. This could be an area of future exploration. 

 

Fig. 2. Venn diagrams showing the number of SNPs with non-zero variable importance values 

for RF, LGB, and XGB for FPadj model (left) and EBVFP model (right). Each area of the circle 

represents the number of SNPs identified by the methods. The areas of intersection of circles 

represent the number of overlapping SNPs of two or three methods. 

Figure 3 shows the distribution profiles of the gain values for relevant SNPs (ranked 

from the most important to the least important ones) obtained through XGB, LGB, 

and RF algorithms. The larger the SNP gain value, the more important a SNP is. 
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Fig. 3. Distribution profiles of the gain values for relevant SNPs obtained through XGB, LGB, 

and RF algorithms for FPadj (a), b) and c), respectively) and EBVFP (d), e) and f), respectively). 

Protein coding genes containing or flanking in +/- 30 kb relevant SNPs obtained by 

XGB, LGB, and RF algorithms were 6586, 6884 and 6122 for FPadj, and 1426, 1889, 

and 137 for EBVFP. Pathways, biological processes, and molecular functions 

overrepresented by them are indicated in Tables 2 and 3. Signal transduction pathways, 

cation channel activities, and nervous system developmental processes are 

overrepresented by the genes flanking relevant SNPs for FPadj. When using EBVFP as 

phenotype, fewer genes flanked relevant SNPs and hence in some cases 

overrepresented pathways (LGB, RF), biological processes (XGB, RF), and molecular 

functions (XGB, RF) could not be identified. Even though, for the cases in which 

significant results were obtained, signaling pathways and channel activities were 

detected as overrepresented, similarly to results obtained for FPadj. 

Table 2. Pathways, Biological Processes, and Molecular Functions overrepresented by genes 

flanking relevant SNPs for adjusted fat production. 

Algorithm PANTHER Pathways FDR p-value 

XGB ---  

LGB ---  
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RF Heterotrimeric G-protein signaling pathway-Gq 

alpha and Go alpha mediated pathway 

4.98E-02 

 PANTHER GO-Slim Biological Process  

XGB synaptic transmission, glutamatergic 2.84E-02 

 metal ion transport 3.24E-02 

 regulation of molecular function 3.25E-02 

 modulation of chemical synaptic transmission 3.46E-02 

 nervous system development 3.61E-02 

 intracellular signal transduction 3.67E-02 

 cell development 4.53E-02 

LGB establishment of localization 3.29E-02 

RF regulation of membrane potential 1.15E-02 

 cell junction organization 1.59E-02 

 nervous system development 1.85E-02 

 cell adhesion 2.35E-02 

 cell morphogenesis 2.49E-02 

 chemical synaptic transmission 3.22E-02 

 actin filament-based process 3.94E-02 

 PANTHER GO-Slim Molecular Function  

XGB catalytic activity 2.83E-03 

 voltage-gated cation channel activity 3.15E-03 

 GTPase activator activity 6.28E-03 

 potassium channel activity 2.31E-02 

 glutamate binding 2.33E-02 

 glutamate receptor activity 2.43E-02 

 calcium channel activity 2.73E-02 

 ligand-gated ion channel activity 4.63E-02 

 Ras GTPase binding 4.84E-02 

 transferase activity 4.84E-02 

 phosphoric ester hydrolase activity 5.11E-02 

LGB gated channel activity 3.39E-02 

 cation channel activity 3.76E-02 

 Ras GTPase binding 5.37E-02 

 metal ion transmembrane transporter activity 6.76E-02 

RF potassium channel activity 2.26E-03 

 voltage-gated cation channel activity 2.98E-03 

 GTPase activator activity 2.13E-02 

 actin filament binding 2.16E-02 

 glutamate binding 3.33E-02 

 glutamate receptor activity 3.43E-02 

 

Table 3. Pathways, Biological Processes, and Molecular Functions overrepresented by genes 

flanking relevant SNPs for estimated breeding values for fat production. 

Algorithm PANTHER Pathways FDR p-value 

XGB EGF receptor signaling pathway 1.88E-04 
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 FGF signaling pathway 2.51E-03 

 Metabotropic glutamate receptor group III pathway 7.01E-03 

LGB ---  

RF ---  

 PANTHER GO-Slim Biological Process  

XGB ---  

LGB multicellular organism development 4.93E-02 

RF ---  

 PANTHER GO-Slim Molecular Function  

XGB ---  

LGB gated channel activity 3.40E-02 

 potassium channel activity 3.54E-02 

RF ---  

 

Regarding the matching between relevant loci identified in this study and in a previous 

one [13] using a different approach, the percentages of 10-SNP windows for milk fat 

content containing relevant SNPs obtained in this study were 24.6, 38.6, and 15.8% for 

FPadj, and 57.9, 57.9, and 5.3% for EBVFP when using XGB, LGB, and RF, 

respectively. If considering only the 10 windows explaining more than 0.7% of the 

genetic variance for the trait studied, those percentages become 40, 50, and 20% for 

FPadj, and 80, 60, and 10% for EBVFP when using XGB, LGB, and RF, respectively. 

The better matching reached with models for EBVFP is evident. 

4 Conclusion 

The models trained for EBVFP were capable to predict breeding values for animals not 

included in the dataset. Based on the better performance showed by these models in 

comparison with those for FPadj and their agreement with previous reported results for 

the trait studied, we conclude that the relationship among individuals should be 

accounted for in the phenotype used. Hence, estimated breeding values should be used 

instead of adjusted production phenotypes as target variable for the models. Moreover, 

training models with more individuals should be assessed in future studies, as well as 

using other machine learning algorithms for feature selection such as Bayesian 

regression methods. 
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