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Abstract
The annotation of repetitive sequences within plant genomes can help in the inter-

pretation of observed phenotypes. Moreover, repeat masking is required for tasks

such as whole-genome alignment, promoter analysis, or pangenome exploration.

Although homology-based annotation methods are computationally expensive,

k-mer strategies for masking are orders of magnitude faster. Here, we benchmarked a

two-step approach, where repeats were first called by k-mer counting and then anno-

tated by comparison to curated libraries. This hybrid protocol was tested on 20 plant

genomes from Ensembl, with the k-mer-based Repeat Detector (Red) and two repeat

libraries (REdat, last updated in 2013, and nrTEplants, curated for this work). Custom

libraries produced by RepeatModeler were also tested. We obtained repeated genome

fractions that matched those reported in the literature but with shorter repeated ele-

ments than those produced directly by sequence homology. Inspection of the masked

regions that overlapped genes revealed no preference for specific protein domains.

Most Red-masked sequences could be successfully classified by sequence similarity,

with the complete protocol taking less than 2 h on a desktop Linux box. A guide to

curating your own repeat libraries and the scripts for masking and annotating plant

genomes can be obtained at https://github.com/Ensembl/plant-scripts.

1 INTRODUCTION

Besides genes, plant genomes contain intergenic sequences,
which have increasing repetitive sequences as the genome size
grows. The growth in repeat content is roughly linear up to a
genome size of 10 Gbp, including most known angiosperms,
and then plateaus (Novák et al., 2020). The repetitive fraction

Abbreviations: NLR, nucleotide-binding and leucine-rich repeat immune
receptor; R genes, disease resistance genes; Red, Repeat Detector; RepMod,
RepeatModeler; RM, RepeatMasker; TE, transposable element.
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of the genome is made up of low-copy repeats, simple repeats
(such as satellite DNA), and transposable elements (TEs),
which were discovered by Barbara McClintock in maize (Zea
mays L.) (McClintock, 1950).

Transposable elements can be important for explaining
observed phenotypes or domestication [see, for instance,
Studer et al. (2011)] and are used as a source of genetic
variability in breeding programs (Thieme et al., 2017). The
hypothesis is that the copy-and-paste and cut-and-paste mech-
anisms of TEs might leave footprints in the genome and
can potentially affect the expression, regulation, or coding
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sequences of neighboring genes. Moreover, TEs are increas-
ingly receiving attention in studies tackling plant pangenomes
(e.g., Gordon et al., 2017). According to the Wicker classi-
fication, plant TEs can be classified either as Class I RNA
retrotransposons or Class II DNA transposons (Wicker et al.,
2007). Software resources such as RepeatMasker (RM) (Smit
et al., 2015), RepBase (Bao et al., 2015), or RepetDB (Amse-
lem et al., 2019), which are typically used to annotate TEs and
other repeats in plant genomes, use the Wicker classification
rules and repeat libraries (Lerat, 2010). These libraries can be
generic, such as RepBase, which is available for subscribers
only, or customized for a genome of interest with RepeatMod-
eler (RepMod) (Flynn et al., 2020). These repeat annotation
strategies can take up to several days on a computer cluster,
depending on the genome size, and often mask disease resis-
tance (R) genes, which are of great interest in plant breeding
(Bayer et al., 2018).

In addition to the intrinsic biological value of TEs, the
annotation of repeats can be used to estimate assembly
quality (Wierzbicki et al., 2020) as an alternative to gene
completeness (Van Bel et al., 2019). For other genomic anal-
yses, the bulk of repeated sequences may disrupt common
computational genomic analyses and are thus often masked
out, without any classification attempt. For instance, whole-
genome alignment, promoter analysis, and the construction of
graph genomes require the computation of frequency tables
of k-mers, which are nucleotide words of size k. If repeated
sequences are not masked, the frequency tables are severely
biased and can affect the results obtained (Hickey et al., 2020).
Although annotation approaches based on sequence similarity
are computationally expensive, k-mer masking strategies are
orders of magnitude faster (Beier et al., 2020; da Cruz et al.,
2020; Girgis, 2015; Kurtz et al., 2008) and, in our experience,
are much better for prepare whole-genome alignments of bar-
ley (Hordeum vulgare L.) and wheat (Triticum aestivum L.)
cultivars via LASTZ (Harris, 2007).

In this study, we benchmarked a two-step approach for
annotating repeated sequences in plants. First, repeats were
called by k-mer counting with the Repeat Detector (Red).
Second, the discovered repeated sequences were annotated
by sequence alignment to a newly curated metacollection of
repeats called nrTEplants. We compared this approach with
the conventional RM pipeline on a set of 20 angiosperms
from Ensembl with nrTEplants, REdat (Nussbaumer et al.,
2013) and custom RepMod libraries. We then compared
their performance and discuss the results. The nrTEplants
library is bundled with documentation on how to update it
and scripts to mask and annotate plant genomes, enabling
interoperability, reuse, and reproducible analyses (Wilkinson
et al., 2016).

Core Ideas
∙ Control Pfam domains minimize unrelated coding

sequences in repeat libraries.
∙ Repeat calling by k-mer counting with Red does

not preferentially mask NLR genes.
∙ Repeats called by Red can be efficiently classified

by sequence similarity with minimap2.

2 MATERIALS AND METHODS

2.1 Plant repeat libraries

We searched the literature for plant-specific libraries of
repeated sequences and selected those in Table 1. Although
some are specific for a species or repeat family, others
comprise repeats from mixed species, such as REdat from
PlantsDB (Nussbaumer et al., 2013) or RepetDB (Amse-
lem et al., 2019). FASTA files with nucleotide sequences
of repeats were downloaded from the indicated URLs or
obtained from the authors.

2.2 Plant transcript sequences

Plant species in Ensembl Plants release 46 (November 2020)
(Howe et al., 2020) were ranked in terms of the number
of proteins reviewed in Uniprot on 22 Feb. 2020 (UniProt
Consortium, 2019). This was considered as an indicator of
annotation quality, as UniProt protein sequences are com-
monly used during prediction and validation of gene models.
A list of the best-annotated dicot and monocot species was
produced, including Arabidopsis thaliana (L.) Heynh., Bras-
sica napus L., Glycine max (L.) Merr., sunflower (Helianthus
annuus L.), Medicago truncatula Gaertn., Phaseolus vul-
garis L., Populus trichocarpa Torr. & A.Gray ex Hook.,
Solanum lycopersicum L., Vitis vinifera L., Brachypodium
distachyon (L.) P.Beauv., Hordeum vulgare, Oryza sativa
subsp. japonica L., Sorghum bicolor (L.) Moench., and Zea
mays. Transcripts (cDNA) from these species were down-
loaded with the script ens_sequences.pl from https://github.
com/Ensembl/plant-scripts.

2.3 Sequence clustering

Transcripts and TE sequences were clustered with GET_
HOMOLOGUES-EST version 10042020 (Contreras-Moreira

https://github.com/Ensembl/plant-scripts
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T A B L E 1 Collections of plant repeated sequences used as components of nrTEplants

Dataset Description and source
Last
updated

Total
sequences

Median
length

bp

TREP TEsa from Triticeae and various other species.
https://botserv2.uzh.ch/kelldata/trep-db/index.html

2019 4,162 4,234

SINEbase Consensus sequences of Short interspersed nuclear element
families (Vassetzky & Kramerov, 2013).
http://sines.eimb.ru

2020 60 183

REdat Repeats from several sources and species in PlantsDB
(Nussbaumer et al., 2013).
https://pgsb.helmholtz-muenchen.de

2013 61,730 7,504

RepetDB Repeats detected and classified by TEdenovo and used by
TEannot (Amselem et al., 2019).
http://urgi.versailles.inra.fr/repetdb

2019 33,416 3,567

EDTArice Extensive de novo TE Annotator (Ou et al., 2019).
https://github.com/oushujun/EDTA

2019 2,431 984

EDTAmaize Extensive de novo TE Annotator (Ou et al., 2019)
https://github.com/oushujun/EDTA

2019 1,362 3,308

SoyBaseTE Comprehensive database of soybean TEs (Du et al., 2010).
https://www.soybase.org/soytedb

2010 38,664 1,716

TAIR10TE Arabidopsis thaliana TEs https://www.arabidopsis.org 2019 31,189 305

SunflowerTE Staton et al. (2012) https://www.sunflowergenome.org 2016 73,627 4,709

SUNREP The repetitive component of the sunflower genome (Natali
et al., 2013) pgagl.agr.unipi.it/sequence-repository

2013 47,441 616

MelonTE Castanera et al. (2019) 2020 1,560 3981

RosaTE Hibrand Saint-Oyant et al. (2018)
https://iris.angers.inra.fr/obh/downloads

2017 355,304 226

aTE, transposable element.

et al., 2017). This software runs BLASTN and the MCL algo-
rithm, and computes coverage by combining local alignments.
The sequence identity cut-off was 95% and the alignment cov-
erage 75%. Global variables in the script get_homologues-
est.pl, lines L36-7, were set to $MAXSEQLENGTH = 55000
and $MINSEQLENGTH = 90. Sequences were clustered
with the command get_homologues-est.pl -d repeats -m clus-
ter -M -t 0 -i 100. The longest sequence in each cluster was
taken as a representative.

2.4 Positive control Pfam domains

A list of 22 Pfam domains found in TEs was curated (Mistry
et al., 2021), available at https://github.com/Ensembl/plant_
tools/blob/master/bench/repeat_libs/control_pos.list.

2.5 Negative control: Pfam domains of
disease resistance genes

For the identification and curation of Pfam domains encoded
by disease resistance (R) genes, the following steps were per-

formed. First, a set of 153 protein sequences encoded by
reference R genes (i.e., cloned and/or with robust evidence)
was retrieved from http://www.prgdb.org/prgdb (Osuna-Cruz
et al., 2018). Second, the program hmmscan from HMMER
Version 3.2.1 (Eddy, 1998) was used for initial Pfam domain
identification (Version 32, default settings), yielding a total
of 60 Pfam hidden Markov models. The observed order and
combinations of Pfam domains were retrieved. Third, the
proteins of six plant species (A. thaliana, B. distachyon, G.
max, H. annuus, H. vulgare, and T. aestivum) containing at
least one of the 60 Pfam domains previously identified were
retrieved from https://plants.ensembl.org/biomart/martview
(Kinsella et al., 2011). These proteins were subsequently fil-
tered, retaining only those with the ordered combinations of
Pfam domains observed in the reference R proteins, and were
considered as potential R proteins (428 in A. thaliana, 577 in
B. distachyon, 1,008 in G. max, 849 in H. annuus, 838 in H.
vulgare, and 3,607 in T. aestivum). From the initial set of Pfam
domains, only 43 were consistently identified in our final
panel of potential encoded proteins of R genes and used as
a negative control. Note that one of them (PF02892, zf-BED)
is often found in transposases (Mistry et al., 2021). The list

https://botserv2.uzh.ch/kelldata/trep-db/index.html
http://sines.eimb.ru
https://pgsb.helmholtz-muenchen.de
http://urgi.versailles.inra.fr/repetdb
https://github.com/oushujun/EDTA
https://github.com/oushujun/EDTA
https://www.soybase.org/soytedb
https://www.arabidopsis.org
https://www.sunflowergenome.org
http://pgagl.agr.unipi.it/sequence-repository
https://iris.angers.inra.fr/obh/downloads
https://github.com/Ensembl/plant_tools/blob/master/bench/repeat_libs/control_pos.list
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is available at https://github.com/Ensembl/plant_tools/blob/
master/bench/repeat_libs/control_neg_NLR.list.

2.6 De novo annotation of
nucleotide-binding and leucine-rich repeat
immune receptor genes

The NLR-annotator software package (Steuernagel et al.,
2020) was used for de novo annotation of nucleotide-binding
and leucine-rich repeat immune receptor (NLR) genes, which
are the most abundant R genes characterized to date, in whole
genome sequences. Briefly, the 20 plant genomes were dis-
sected into fragments 20 kb in length, with 5 kb overlaps,
via the ChopSequence.jar routine. The cut sequences were
then scanned to find NLR-associated sequence motifs with the
NLR-Parser.jar command. Finally, NLR-Annotator.jar was
used to integrate the annotated motifs and retrieve the actual
NLR loci in BED format. In order to compute intersections
with repeats, only NLR loci with an overlap of >50 bp were
considered. Moreover, to account for the fact that the tested
masking strategies covered different fractions of the genome,
odd ratios of NLR masking were computed via Equation 1:

OR =
NLRmasked ÷ Genmasked

NLR ÷ Gen
, (1)

where OR is the odds ratio, NLRmasked is the masked NLR
space, Genmasked is the masked genome space, NLR is the
NLR space, and Gen is the genome space.

2.7 Masking and annotation of repeats in
plant genomes

RepeatMasker Version 4.0.5 and a fork of Repeat Detec-
tor (Red) Version 2.0 adapted for Ensembl, available at
https://github.com/EnsemblGenomes/Red, were used to call
repeats in plant genomes in the libraries REdat Version 9.3
and nrTEplanst Version 0.3. In addition, RepeatMasker Ver-
sion 4.1.2-p1 was also run to call repeats with custom repeat
libraries produced by 20 parallel jobs in RepeatModeler-
2.0.2a (Flynn et al., 2020). Note that custom libraries were
obtained for only 10 species, as the remaining RepMod jobs
were killed after 7 d in a computer farm. RepMod repeat
coordinates were converted to BED format and overlapping
intervals were merged. Low complexity sequences were
called with dustmasker Version 1.0.0 (Morgulis et al., 2006).
Tandem repeats were discovered with trf Version 4.0 with
the parameters 2 5 7 80 10 40 500 -d -h (Benson, 1999). Red
was called from the script https://github.com/Ensembl/plant-
scripts/blob/master/repeats/Red2Ensembl.py, which can
run several sequences in parallel and feed the results

into a Ensembl core database (Stabenau et al., 2004). In
addition, minimap2 version 2.17-r974-dirty (Li, 2018)
was used to annotate the repeats called by Red with
sequences from nrTEplants as follows: minimap2 -
K100M –score-N 0 -x map-ont nrTEplants. Minimap2
is called from the script https://github.com/Ensembl/plant-
scripts/blob/master/repeats/AnnotRedRepeats.py, which
parses its output to annotate the repeats. By default, only
repeats with a length of >90 bp are processed. Trans-
posable element classification terms are parsed from
the FASTA header of the library after a hash (#; e.g.,
RLG_43695:mipsREdat_9.3p_ALL#LTR/Gypsy). Elapsed
runtime and RAM consumption was measured with the
command time -v tool.

Genomic intersections among repeated sequences called
by Red and RM, and genomic features (i.e., protein-coding
genes, exons, proximal downstream and upstream 500-bp
windows, and NLR loci) were computed with Bedtools (Ver-
sion 2.26.0) (Quinlan & Hall, 2010) using bedtools intersect
-a bed/genes.bed -b repeat.bed -sorted -wo. To avoid redun-
dancy, exons were extracted from Ensembl canonical tran-
scripts (see http://plants.ensembl.org/info/website/glossary.
html). When we retrieved downstream and upstream genomic
intervals, intersecting neighbor genes were first subtracted to
eliminate any potential coding sequences.

2.8 K-mer analysis of repeats in
downstream and upstream windows

Repeats overlapping proximal downstream or upstream 500-
bp windows were extracted via bedtools intersect analysis and
the sequences were cut with bedtools getfasta. Canonical k-
mers with k = [16,21,31] were counted with Jellyfish Version
2.3.0 (Marçais & Kingsford, 2011) by the commands jellyfish-
linux count -C -m K -s 2G -t 4 and jellyfish-linux dump -L 20.

2.9 Enrichment of Pfam domains

Enrichment was computed by the R function fisher.test (R
Core Team, 2020) and Pfam domains (Mistry et al., 2021)
were retrieved by Recipe B4 of https://github.com/Ensembl/
plant-scripts (Contreras-Moreira et al., 2021). Pfam domain
counts for the complete proteome were used as the expected
frequencies. Only genes with an overlap of >50 bp and
domains with adjusted false discovery rates (p < .05) were
considered.

2.10 Control sets of annotated repeated
sequences

Repeated sequences annotated by the sequencing consor-
tia of olive tree (Olea europaea L.)(Jiménez-Ruiz et al.,

https://github.com/Ensembl/plant_tools/blob/master/bench/repeat_libs/control_neg_NLR.list
https://github.com/Ensembl/plant_tools/blob/master/bench/repeat_libs/control_neg_NLR.list
https://github.com/EnsemblGenomes/Red
https://github.com/Ensembl/plant-scripts/blob/master/repeats/Red2Ensembl.py
https://github.com/Ensembl/plant-scripts/blob/master/repeats/Red2Ensembl.py
https://github.com/Ensembl/plant-scripts/blob/master/repeats/AnnotRedRepeats.py
https://github.com/Ensembl/plant-scripts/blob/master/repeats/AnnotRedRepeats.py
http://plants.ensembl.org/info/website/glossary.html
http://plants.ensembl.org/info/website/glossary.html
https://github.com/Ensembl/plant-scripts
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2020), Rosa chinensis Jacq. (Hibrand Saint-Oyant et al.,
2018), and sunflower (Badouin et al., 2017) were down-
loaded from https://genomaolivar.dipujaen.es/db/downloads.
php, https://iris.angers.inra.fr/obh/downloads, and https://
sunflowergenome.org/annotations-data, respectively.

3 RESULTS AND DISCUSSION

3.1 Construction and benchmarking of a
nonredundant library of repeats: nrTEplants

A set of plant TE libraries and annotated repeats from selected
species, listed in Table 1 plus transcript sets from the best
functionally annotated plant species in Ensembl were curated
and their TE classification terms uniformized. Next, they were
merged and clustered (95% identity, 75% coverage of shortest
sequence). From the resulting 994,349 clusters, the 174,426
clusters contained TE sequences and were six-frame trans-
lated and assigned Pfam domains. Of these, a subset of 8,910
mixed clusters comprising both TE and transcript sequences,
and required further processing (see the example in Supple-
mental Figure S1). After empirical assessment, we decided
to take only clusters (a) containing sequences from at least six
different TE libraries (six replicates), which eventually left out
Rosa TE repeats; and (b) those with a fraction of sequences
marked as a ‘potential host gene’ in RepetDB below 0.00. The
resulting nrTElibrary contained 171,104 sequences (see Sup-
plemental Table S1 and Supplemental Table S2). Note that
different cut-off values might have been selected with differ-
ent input sequences or control sets. For example, increasing
the number of replicates equates to computing an intersec-
tion set. Instead, to get a union set, the cut-off will need to be
lowered.

In order to benchmark the newly constructed library, we
compiled a positive control comprising 22 Pfam domains
found in TEs, and a negative control: a list of 43 Pfam domains
found in disease resistance NLR genes. Among these con-
trols, we observed 20 true positives, 2 false negatives, 36
true negatives, and 2 false positives, yielding a sensitivity
of 0.91 and a specificity of 0.95. The nrTEplants library
can be obtained at https://github.com/Ensembl/plant-scripts/
releases/tag/v0.3. A step-by-step guide on how to produce
a nonredundant repeat library, including sample files with
the control Pfam domains, is available at https://github.com/
Ensembl/plant_tools/tree/master/bench/repeat_libs.

3.2 Masking repeats within plant genomes

Twenty plant genomes were selected from Ensembl (Howe
et al., 2020) to benchmark the repeat calling strategies. These
are listed in Table 2 next to the genomic fraction of repeats

reported in the literature and their guanine–cytosine content.
All these genome sequences were annotated with RM (Smit
et al., 2015) with several repeat libraries (nrTEplants and
REdat) (Nussbaumer et al., 2013) and species-specific cus-
tom libraries (RepMod). In addition, the fraction of repeats
called by Red, based on k-mer enrichment, is also shown. Note
that Red automatically selected k values from 13 to 16 as the
genomes increased in length.

In Figure 1, the resulting percentages of repeated sequences
are plotted next to the values reported in the literature. The
median difference between the REdat repeated fraction and
the literature reports is 26.5%. This number is 9.8% for
nrTEplants, 4.3% for Red, and 6.3% for RepMod (over 10
genomes). These results suggest that Red can successfully
mask any genomes without previous knowledge of the repet-
itive sequence repertoire of a species. As shown in Supple-
mental Table S3, Red-masked fractions were also consistent
among cultivars of the wheat pangenome. Moreover, repeats
called by Red generally overlapped sequences masked with
REdat (66.6%), nrTEplants (73.8%), and RepMod (94.1%)
(see Supplemental Table S4). In contrast, the overlap with low
complexity regions (in dustmasker) and tandem repeats (in trf)
is small (2.8% and 4.9%, respectively).

Table 3 summarizes the number and length of repeats called
by all the strategies tested. We observed that Red called more
repeats than nrTEplants and REdat but less than custom Rep-
Mod libraries (a median of 845 per Mbp, compared with
391 for nrTEplants, 221 for REdat, and 961 for RepMod). In
terms of the sequence length of the shortest contig at 50% of
the total sequence length, the performance depended on the
species, but it seems that repeats called by RepMod are gen-
erally shorter.

Figure 2 summarizes how the called repeats overlapped
with genes, exons, and 500-bp windows upstream and down-
stream. It can be seen that Red repeats overlapped a larger
fraction of the gene space (23.2%) than REdat (12.4%) and
nrTEplants (18.8%), as did RepMod repeats (24.4%). When
only exons were considered, REdat repeats overlapped 4.1%
of these, with nrTEplants, Red, and RepMod behaving sim-
ilarly (11.6, 11.9, and 11.7%, respectively). The figure also
shows that Red and RepMod mask more of the proximal
upstream and downstream space, which will probably have
a positive impact on k-mer counting strategies for promoter
analysis (Ksouri et al., 2021). The analysis in Supplemen-
tal Table S5 shows that Red identified four times more k-
mers with 20+ copies in this regulatory space, which agrees
with recent work showing that unidentified TEs are over-
represented in specific regulatory networks (Baud et al.,
2019).

In order to check whether the compared approaches masked
preferentially genes from certain families, a Pfam enrichment
analysis was carried out; this is summarized in Figure 3. It
can be seen that RepMod and Red repeats show the least

https://genomaolivar.dipujaen.es/db/downloads.php
https://genomaolivar.dipujaen.es/db/downloads.php
https://iris.angers.inra.fr/obh/downloads
https://sunflowergenome.org/annotations-data
https://sunflowergenome.org/annotations-data
https://github.com/Ensembl/plant-scripts/releases/tag/v0.3
https://github.com/Ensembl/plant-scripts/releases/tag/v0.3
https://github.com/Ensembl/plant_tools/tree/master/bench/repeat_libs
https://github.com/Ensembl/plant_tools/tree/master/bench/repeat_libs
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T A B L E 2 Plant genomes from release 49 (September 2020) of Ensembl Plants (Howe et al., 2020) used in this work and their reported
repeated fractions in the literature

Species GCa
Assembled
genome size

Reported repeated
fraction Literature source

% Mbp %

Arabidopsis thaliana 36.1 119.7 19.0 Legrand et al. (2019)

Arabidopsis helleri (L.)
O’Kane & Al-Shehbaz

36.0 196.2 32.7 Legrand et al. (2019)

Prunus dulcis (Mill.)
D.A.Webb

37.6 227.5 37.6 Alioto et al. (2020)

Brachypodium distachyon 46.4 271.2 21.4 International Brachypodium
Initiative (2010)

Brassica rapa L. 35.3 283.8 32.3 Zhang et al. (2018)

Trifolium pratense 32.4 304.8 41.8 De Vega et al. (2015)

Arabis alpina L. 36.8 308.0 47.9 Willing et al. (2015)

Cucumis melo L. 33.5 357.9 44.0 Ruggieri et al. (2018)

Citrullus lanatus (Thunb.)
Matsum. & Nakai

33.6 365.5 45.2 Guo et al. (2013)

Oryza sativa 43.6 375.0 35 International Rice Genome
Sequencing Project (2005)

Setaria viridis (L.) P.Beauv. 46.2 395.7 46 Thielen et al. (2020)

Vitis vinifera 34.5 486.3 41.4 French–Italian Public Consortium
for Grapevine Genome
Characterization (2007)

Rosa chinensis 38.8 515.6 67.9 Raymond et al. (2018)

Camelina sativa (L.) Crantz 36.6 641.4 28 Kagale et al. (2014)

Malus domestica Borkh. 38.0 702.9 59.5 Daccord et al. (2017)

Olea europaea 35.4 1,140.9 43 Unver et al. (2017)

Zea mays 46.9 2,135.1 85 Schnable et al. (2009)

Helianthus annuus 38.5 3,027.8 74.7 Badouin et al. (2017)

Aegilops tauschii 46.3 4,224.9 85.9 Zhao et al. (2017)

Triticum turgidum 46.0 10,463.1 82.2 Maccaferri et al. (2019)

aGC, guanine–cytosine content

enrichment. Nevertheless, we found that Red repeats pref-
erentially overlapped four domains (enriched in three or
more genomes: reverse transcriptase-like, TIR, NB-ARC, and
integrase core domains). Similarly, RepMod repeats were
enriched in two protein kinase domains. In contrast, a few
Pfam domains were enriched in 10+ genomes in genes over-
lapping repeats annotated with REdat (153 domains) and
nrTEplants (87 domains)(see Supplemental Table S6).

As gene annotation is frequently performed after repeat
masking, we reasoned this could affect the Pfam enrichment
analyses. Therefore, we carried out a complementary analy-
sis where NLR genes were called de novo on the genomic
sequences instead of using the Ensembl gene annotation. The
results, summarized in Supplemental Table S7, confirm that
Red tends to mask fewer NLR genes than expected at genomic
scale, with only one species (Trifolium pratense L.) with an
odds ratio >1. In contrast, we obtained odd ratios greater than

1 for several species with REdat (n = 7), nrTEplants (n = 12),
and RepMod (n = 6 out of 10 species).

3.3 Annotating Red-masked repeats within
genomes with nrTEplants and minimap2

In the previous analyses, we showed that Red masking is an
effective way of calling repeats in plant genomes, compara-
ble with RepMod. Moreover, we observed that nrTEplants
behaved better than REdat in most cases. Therefore, we
wanted to check whether repeats called with Red could be
annotated and classified. For that, we aligned the repeat
sequences against the nonredundant nrTElibrary with min-
imap2. The results are plotted in Figure 4, where it can be
seen that in most species, more than half of the repeat space
could be annotated (median: 65.9%). As our library contained
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F I G U R E 1 Fraction of repeated sequences in plant genomes. Twenty genomes from release 49 (November 2020) of Ensembl Plants were
annotated with RepeatMasker (Smit et al., 2015) and the libraries REdat (Nussbaumer et al., 2013) and nrTEplants. The results for 10 genomes
masked with RepMod custom libraries are also shown (Flynn et al., 2020). The percentage of repeated sequences is plotted next to the values
reported in the literature for those genomes and the fraction of repeats provided by Repeat Detector (Red), based on k-mer enrichment (Girgis, 2015).
Species are sorted by genome size from smallest to largest

T A B L E 3 Summary of repeated sequences annotated with Repeat Detector (Red) (Girgis, 2015) and RepeatMasker (Smit et al., 2015) with the
libraries nrTEplants and REdat (Nussbaumer et al., 2013) and with custom libraries obtained for some species by RepeatModeler (Flynn et al., 2020).
Total repeats and N50 is the sequence length of the shortest contig at 50% of the total sequence length (N50) estimates of repeats are shown

Red nrTEplants REdat RepMod
Species Repeats N50 Repeats N50 Repeats N50 Repeats N50
Arabidopsis thaliana 172,935 445 48,144 1,779 28,797 2,211 72,138 1,178

Arabidopsis halleri 226,080 554 81,857 1,380 57,901 1,431 – –

Prunus dulcis 190,357 1,627 105,546 2,528 36,891 1,025 243,499 1,422

Brachypodium distachyon 150,191 4,986 74,215 6,260 67,632 6,665 222,710 2,125

Brassica rapa 348,258 642 160,157 1,046 69,345 777 303,119 628

Trifolium pratense 277,811 555 139,254 326 155,808 265 – –

Arabis alpina 279,129 1,040 146,057 2,245 98,017 1,050 –

Cucumis melo 305,083 1,939 148,925 3,141 51,833 1,338 407,579 1,819

Citrullus lanatus 323,894 2,596 151,980 1,020 52,941 1,103 – –

Oryza sativa 278,406 2,931 160,371 4,479 129,121 6,077 – –

Setaria viridis 247,732 3,124 116,459 1,727 105,088 1,722 – –

Vitis vinifera 423,876 1,753 185,204 3,369 69,315 1,550 496,352 1,604

Rosa chinensis 463,880 2,125 189,086 1,479 93,715 950 499,475 1,958

Camelina sativa 709,160 878 267,290 1,272 201,059 1,176 611,700 1,105

Malus domestica 531,496 2,416 211,929 4,729 126,487 1,268 – –

Olea europaea 901,519 3,153 291,445 1,956 375,614 1,218 – –

Zea mays 847,205 13,137 365,978 11,806 372,467 11,419 853,432 1,1380

Helianthus annuus 2,387,122 5,018 355,890 8,716 479,400 1,317 – –

Aegilops tauschii 1,506,690 10,133 777,962 9,973 847,592 9,431 1,758,407 7,894

Triticum turgidum 4,291,533 9,066 1,914,776 9,947 1,784,719 10,124 72,138 1,178
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F I G U R E 2 Fraction of exons, genes, and 500-bp upstream and downstream regions overlapping annotated repeats in plant genomes. Twenty
genomes from release 49 (November 2020) of Ensembl Plants were annotated by Red (Girgis, 2015) or RepeatMasker (Smit et al., 2015) with the
libraries REdat (Nussbaumer et al., 2013) and nrTEplants. The results for 10 genomes masked with RepMod custom libraries are also shown (Flynn
et al., 2020)

only TEs, we expected a fraction of the unmapped space to
contain simple repeats or satellite DNA. However, in some
species, only a small fraction of repeats could be classified.
We reasoned this was caused by a repeat consensus not repre-
sented in the library. This was confirmed in a separate exper-
iment, where the repeated sequences of olive and R. chinen-
sis obtained from their authors were mapped to Red repeats,
as seen in Figure 4 (control). Another positive control was
also carried out with sunflower repeated sequences in order to
confirm that no valuable repeats had been lost during the con-
struction of nrTEplants. These results indicated that in species
where a curated library did not work well, the repeats could
be classified by custom collection of repeated sequences for
that taxon. As we saw in the previous section, this can also be
achieved with species-specific libraries produced with Rep-

Mod; however, note that in our tests three-fourths of repeat
families discovered by RepMod remained unclassified (see
Supplemental Table S8).

The results in the previous paragraph were obtained with
the default map-ont setting of minimap2. Note that we also
tried the map-pab and asm20 settings, but obtained simi-
lar results. Red clover (Trifolium pratense) was reanalyzed
replacing minimap2 with the BLAST algorithms megablast,
dc-megablast, blastn, and rmblastn (Altschul et al., 1997).
Compared with the mapped fraction produced by minimap2
(0.4%), a maximum value of 6.1% was obtained with blastn.
This modest gain in sensitivity required 1,412 min. The algo-
rithm rmblastn, used by RM, yielded a mapped fraction of
0.7%. We concluded that the alternatives to minimap2 offered
little gain at the cost of spiralling computing time.
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F I G U R E 3 Enriched Pfam domains of protein-coding genes overlapping repeats. Twenty genomes from release 49 (November 2020) of
Ensembl Plants were annotated with Repeat Detector (Red) (Girgis, 2015) and RepeatMasker (Smit et al., 2015) with the libraries REdat
(Nussbaumer et al., 2013) and nrTEplants. The results for 10 genomes masked with RepMod custom libraries are also shown (Flynn et al., 2020)

F I G U R E 4 Fraction of Repeat Detector (Red) repeats mapped to nrTEplants sequences. Twenty genomes from release 49 (November 2020) of
Ensembl Plants were annotated with Red (Girgis, 2015). The resulting repeats were subsequently mapped to the library nrTEplants with minimap2
(Li, 2018), producing the genome fractions shown. Repeats from three species (R. chinensis, O. europaea, and H. annuus) were also mapped to
annotated repeats provided by the respective sequencing consortia as a control. Species are sorted by genome size from smallest to largest

Figure 5 shows the runtime and RAM required by the two-
step protocol presented in this paper, measured on a Cen-
tOS7.9 computer using four cores of a Xeon E5-2620 v4
(2.10 GHz) central processing unit. Panels A and B corre-
spond to the first step, Red masking. It can be seen that all
genomes tested take less than 40 min to run, with the excep-

tion of tetraploid Triticum turgidum L., which took 71 min.
The memory consumption was below 20 GB in most cases,
but climbed to 22.7 GB and 29.9 GB for Aegilops tauschii
Coss. and T. turgidum. Panel C illustrates the runtime of the
second step, the mapping of nrTEplants. It can be seen that
all plants required less than 27 min, except A. tauschii and
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F I G U R E 5 Runtime and memory requirements of a two-step
repeat annotation protocol based on the Repeat Detector (Girgis, 2015),
minimap2 (Li, 2018), and the nrTEplants library. The protocol was
tested on 20 genomes from release 49 (November 2020) of Ensembl
Plants. Similar values were measured on an Ubuntu box with four-core
i5-6600 (3.30 GHz) central processing unit cores

T. turgidum, which took 3 and 1 h respectively. The memory
consumed by minimap2 was ∼3.8 GB in all cases. A compar-
ison with the data in Supplemental Table S8 indicated that the
protocol presented in this paper was up to two orders of mag-
nitude faster than the combination of RepMod and RM, even
with only four central processing unit cores.

4 CONCLUSIONS

The hybrid two-step methodology presented in this paper was
tested on 20 angiosperms with genome sizes ranging from
0.12 to 10.46 Gbp. Overall, we observed that Red consis-
tently produced repeated fractions similar to the expected val-

ues from the literature. Comparable results were obtained for
10 species analyzed with RepMod custom libraries. The meta-
library nrTEplants, built by Pfam-informed sequence clus-
tering, also showed good performance in most species but
failed to recover the expected repeat fraction in cases such
as melon (Cucumis melo L.) or sunflower. This observation
highlights the problem of using repeat libraries that do not
include sequences similar to the genome of interest. This is the
most likely explanation for the low masking values observed
for REdat, as that library was produced before many of these
genomes were available. For that reason, separating the tasks
of calling and classifying repeats, as performed here, seems a
promising strategy.

On the one hand, Red k-mer masking does not have a
preference for masking particular protein-coding families,
in contrast to repeats annotated with RM using REdat and
nrTEplants. In fact, it also behaved better than custom Rep-
Mod libraries with respect to NLR genes annotated de novo .
On the other hand, Red appropriately masked plant genomes
for which no repeat libraries have been curated yet. If there
is a need to classify the repeats called by Red, a curated
repeat library can be obtained directly from Ensembl Plants
(see https://github.com/Ensembl/plant-scripts/blob/master/
repeats/get_repeats_ensembl.sh) or the INSDC archives
(see, for example, https://www.ebi.ac.uk/ena/browser/view/
CACTIH01), or by clustering repeats from different sources,
as demonstrated in this study. Our protocol took less than 2
h to run and up to 30 GB of RAM, and can use nrTEplants
or any repeat library in FASTA format. This is about two
orders of magnitude faster than building species-specific
custom libraries with RepMod for the species tested in this
benchmark. We thus conclude that the approach presented
here is an efficient way of annotating repeated sequences in
plant genomes.

D AT A A N D S O U R C E C O D E
AVA I L A B I L I T Y
The repeat library and the scripts used to mask and anno-
tate the plant genomes, together with the benchmark scripts
and data, can be obtained at https://github.com/Ensembl/
plant-scripts.
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