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Abstract: Greenhouse gas emissions from ruminant livestock production systems contribute signifi-
cantly to the environmental footprint of agriculture. Emissions are lower for feedlot systems than for
grass-based systems primarily because of the extra time required for grass-finished cattle to reach
slaughter weight. In contrast, legume forages are of greater quality than grasses, which enhances
intake and food conversion efficiencies, leading to improvements in production and reductions in
environmental impacts compared with forage grasses. In addition, the presence of certain bioactives
in legumes such as condensed tannins (CT) enhance the efficiency of energy and protein use in
ruminants relative to grasses and other feeds and forages. Grazing tannin-containing legumes also
reduce the incidence of bloat and improve meat quality. Synergies among nutrients and bioactives
when animals graze diverse legume pastures have the potential to enhance these benefits. Thus,
a diversity of legumes in feeding systems may lead to more economically, environmentally, and
socially sustainable beef production than grass monocultures or feedlot rations.

Keywords: grass-fed beef; sustainable agriculture; forage diversity; tannin-containing legumes;
alfalfa; sainfoin; birdsfoot trefoil; condensed tannins; nitrogen excretion; methane emissions

1. Introduction

Emissions of greenhouse gases (GHG) from ruminants include methane (CH4), nitrous
oxide (N2O), and carbon dioxide (CO2) [1]. In a recent life cycle assessment of the beef
cattle industry in the United States, Rotz et al. [1] estimated that the GHG emissions,
considering animal outputs and direct emissions from soil (cultivated pastures, range,
and cropland) and the manufacturing of the operation’s inputs (fertilizers, pesticides,
electricity), were equivalent to 242.6 Tg CO2eq, which represent 3.8% of the 6457 Tg CO2eq
of total anthropogenic GHG emissions for the US in recent years [2]. Approximately, 142 Tg
CO2eq are directly emitted from cattle systems (CH4 and N2O from enteric fermentation
and manure management), which is nearly 60% of the total GHG emitted for beef cattle
production [1], or 2.1% of the total US anthropogenic GHG emissions [2]. When GHG
emissions are expressed per unit of product (GHG intensity), the US average for 2019 was
approximately 21 kg CO2eq/kg carcass weight. In beef production, the cow–calf phase is
the biggest contributor, contributing 70% of total GHG emissions [1]. These GHG intensity
values are in line with previous values reported by Beauchemin et al. [3] for Canadian beef
cattle systems of 22 kg CO2eq/kg BW, with the cow–calf system contributing approximately
80% of total GHG emissions.

The largest contributing source of GHG emissions from beef cattle production is
enteric CH4, accounting for 56% [1] to 63% [3] of all GHG from beef industry and 39%
of all GHG emissions from the livestock sector [4]; thus, reducing emissions from this
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source would have the most impact. Methane is a byproduct of the microbial fermentation
of feeds in the rumen and may also represent an energy loss to the animal that ranges
between 2 to 12% of the gross energy consumed with the diet [5]. The reduction of CO2 to
CH4 by methanogenic archaea acts as a hydrogen (H2) sink, removing H2 from the rumen
and avoiding the negative effects of H2 accumulation on microbial enzymatic activity
and degradation of plant material [6]. Methanogens use H2 as their main energy source,
producing CH4 in the process. Methane is accumulated in the rumen and eructated by the
ruminant to the atmosphere [7], resulting in negative implications for the environmental
sustainability of ruminant production systems.

Several comprehensive reviews have described different strategies proposed by
the scientific community to reduce enteric methane production and mitigate methane
emissions [8–12], but in order to be adopted by beef cattle producers, they should be cost-
effective and socially acceptable. Rumen defaunation, for instance, has been shown to
reduce CH4 emissions from ruminants by 50%, due to the fact that protozoans are large
producers of H2 with many methanogens among these microorganisms [13]; however, the
lack of persistent response due to rapid adaptation and recovery of protozoal numbers
along with impractical defaunation methods has limited its use [14]. On the other hand,
antimethanogen vaccines have reduced CH4 emissions up to 8% in sheep [15], but changes
in methanogen populations do not always lead to CH4 reductions [16]. In addition, the
development of a successful wide-spectrum immunization is still on the far horizon for
CH4 abatement programs, limiting the application of such strategies as alternatives to
reduce CH4 emissions. Selection of “low-CH4”-producing animals might also represent
a promising strategy for CH4 mitigation options [17], but the approach is still in an early
stage of development. The use of ionophores that inhibit protozoan growth [18], halo-
genated methane analogues that inhibit growth and enzymatic activity of archaea in the
rumen [19], or nitrate salts that have a greater affinity for H2 than CO2 [20] have been
discouraged due to consumer perception and potential negative effects on animal health,
as well as on the environment [21].

Finally, dietary manipulations such as feeding highly digestible feed components
such as grains [22] or feeding organic acids such as fumarate [23] or malate [24], which
promote propionate production in the rumen and redirect H2 to other reductive bacteria,
may reduce CH4 emissions from ruminants. The addition of lipids [25], condensed tannin
(CT) extracts [26,27], essential oils [28], exogenous enzymes and yeasts [29], among others—
which can be supplied through total mixed rations for confined livestock—are still the
most promising CH4 mitigation options in terms of practical application and acceptance by
farmers and consumers. Nevertheless, many ruminants consume forages as their sole diet
in pasture-based livestock systems, and the need to supply feed additives in meals might
constrain their practical implementation [21]. In this case, CH4 emissions may be reduced
by using highly digestible forage species with a low concentration of fiber [30,31], because
forages such as grasses with high fiber concentration reduce passage rate and increase
ruminal retention time [32,33], which enhances CH4 production per unit of forage intake
(CH4 yield). In this situation, the extent of rumen fermentation increases and there is more
H2 to be used as a substrate for methanogenic archaea [34]. In addition, a more fibrous diet
usually increases the proportion of acetate to propionate in the rumen, which increases the
production and release of CH4 [5,35].

2. The Use of Forage Legumes for Enteric Methane Abatement in Forage-Based Beef
Production Systems

Forage legumes in beef feeding systems can offer economic and environmental ad-
vantages relative to grass-fed systems. In contrast to grasses, forage legumes are lower in
neutral detergent fiber (NDF), higher in N concentrations [36,37], higher in nonstructural
carbohydrates [38,39], and are digested more rapidly by ruminants at similar stages of
maturity [37]. These characteristics lead to lower retention times in the rumen; thus, intake
and production are greater than in grass-fed systems [40]. This faster rate of digestion
of forage legumes is primarily attributed to the faster rates of particle breakdown and
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quicker fermentation rates in the rumen [41]. An increased passage rate of forage legumes
may also favor propionate production, which is considered a competitive pathway for H2
use in the rumen [34], contributing to reduced CH4 yield relative to other forages such
as grasses [42]. In support of this, Archimède et al. [43], in a meta-analysis of ruminants
fed C3 or C4 grasses and legumes, identified fiber structure and ruminal retention time
as the main factors influencing CH4 production, with 20% lower CH4 yields in animals
fed warm-season legumes than in those fed C4 grasses. Similarly, the enteric CH4 emis-
sions of beef cows grazing the forage legume birdsfoot trefoil (c) and cicer milkvetch
(Astragalus cicer) were approximately half of the emissions reported for the grass meadow
brome (Bromus biebersteinii) [44].

Alternatively, forages with high concentrations of nonfiber carbohydrates (NFC; solu-
ble carbohydrates plus pectin) that are rapidly fermented in the rumen, and with a low
proportion of structural carbohydrates (cellulose and hemicellulose), may yield levels of
microbial mass similar to those observed in grain-fed animals, increasing proportions
of potentially propionate-forming bacteria and reducing H2 production and CH4 emis-
sions, as was observed by Sun et al. [42] feeding forage rape (Brassica napus L.) to lambs.
Nonfiber carbohydrates represent a readily fermentable source of energy for microor-
ganisms in the rumen, providing energy in synchrony with the high concentrations of
protein availability typically observed in forage legumes that contribute to the synthesis of
microbial protein [45].

The high nutritional composition of legumes usually leads to greater DM intakes than
in animals offered grasses [37], resulting in greater liveweight gains (0.8 to 1.6 kg/d for beef
steers) [44,46–48]. For finishing animals, this benefit substantially decreases the number
of days to slaughter and the amount of CH4 emitted over the animal’s lifetime relative to
grass-fed systems [37]. It has been estimated that the number of cattle required to produce
1 billion kg of beef when finished on pure birdsfoot trefoil pastures is approximately
15% lower than when finished on grass (2.9 vs. 3.4 million animals, respectively; [48]),
suggesting that legume-finishing systems represent a realistic strategy to reduce enteric
CH4 emissions.

3. Constraints to the Use of Forage Legumes in Beef Cattle Grazing Systems

Alfalfa (Medicago sativa L.) has been one of the most important crops grown in the
western US, being the most high-yielding and nutritious forage available for feeding
high-producing ruminants [49]. Similarly, white clover (Trifolium repens) and red clover
(T. pratense) have been extensively used for grazing in Australia, New Zealand, and the
United Kingdom. However, the direct use of these legumes as grazing forage has been
limited due to the high risk of livestock losses caused by pasture bloat [50]. Pasture
bloat occurs when ruminants graze fresh, high-protein forages with a high rate of par-
ticle breakdown that results in rapid release of plant-soluble proteins and disruption of
chloroplasts, providing large quantities of gas and bacterial slime, which create a stable
foam that prevents eructation of fermentation gases (CO2 and CH4) [51]. Ultimately, the
rumen becomes distended, resulting in death from suffocation or cardiac arrest. Subclinical
bloat is another significant but often unnoticed cause of reductions in productivity, mostly
explained through reductions of intake [52]. Management techniques such as grazing
mature bloat-causing legumes might reduce the risk at the expense of reducing the overall
nutritive value of legume forages [53]. Grazing grass–legume mixtures still may impose
a risk of bloat if animals are able to select and ingest the preferred legume species in
high proportions.

A further issue with alfalfa and Trifolium spp. is that the high concentration of rumen-
degradable protein in forage legumes usually exceeds the capacity of microorganisms
for uptake of NH3 and synthesis of microbial protein due to a deficient energy supply
for N capture [54]. The excess of ruminal NH3 is absorbed across the rumen wall [55],
transformed to urea in the liver, and excreted in the urine with an energy cost for the
animal [56]. Consequently, only 10 to 40% of ingested N is retained as animal product
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(meat or milk) by ruminants [57], and in some cases, when NH3 detoxification capacity
of the liver is surpassed, NH3 accumulation in blood can be toxic for the ruminant and
induce negative internal states that constrain DM intake [58]. In addition, high blood urea
levels lead to high urinary N excretions [59] that increase the proportion of N excreted as
a highly labile form in the urine, contributing to pollution from agricultural sources that is
a major environmental concern [60].

Once urine is excreted and deposited on the soil surface, urea is rapidly hydrolyzed
by microbial urease to NH4

+, which may be nitrified later to nitrite (NO2
−) and nitrate

(NO3
−) [61]. Greater levels of urinary N excretions are associated with a greater and more

rapid NH3 volatilization and N losses as NO3
− that may be leached into groundwater or

in runoff to waterways [60], contributing to eutrophication [62,63] and the pollution of
drinking water. In addition, nitrous oxide (N2O) is produced as an obligate intermediary
during microbial nitrification and denitrification processes [64,65], being one of the most
important GHGs with a warming potential 265 times greater than CO2 in a 100-year time
horizon [66]. According to Bao et al. [67], an increment in urinary N excretion of growing
beef cattle from 29 to 50 g/d increases the estimated emission of N2O by 37% from 413 to
565 mg/d. Regardless of these conditions, reductions in the proportion of N partitioned to
urine in ruminants will be beneficial for the environment, since urinary N is much more
susceptible to gaseous losses than fecal N, which is in the form of covalently bound N and
needs a longer time to be mineralized to NH4

+ before being susceptible to volatilization or
available for nitrification [68].

4. Tannin-Containing Legumes in Forage-Based Livestock Systems

To counteract the high urinary N excretion that can result from the grazing of some tem-
perate legumes, legume species that contain moderate concentrations (i.e., 30–60 g/kg DM
basis) of the bioactive secondary compounds CT, including sainfoin (Onobrychis viciifolia)
and birdsfoot trefoil (Lotus corniculatus), are used. Sainfoin is a legume species that naturally
contains significant concentrations of CT (30 to 80 g CT/kg DM; [69]) distributed through-
out the aerial parts of the plant and restricted to the cell’s vacuoles [70]. Sainfoin can serve
either as an alternative or associate forage crop to alfalfa pastures in climate-adapted envi-
ronments. The yield and nutritive value of sainfoin are comparable to alfalfa [71], leading
to similar performance of sheep and cattle [72–74]. In fact, heifers grazing a 3-way choice
among sainfoin, birdsfoot trefoil, and alfalfa selected a varied diet, preferring sainfoin over
birdsfoot trefoil or alfalfa in a 46:27:27 ratio, and in a 70:30 ratio when cattle could choose
between sainfoin–birdsfoot trefoil or sainfoin–alfalfa, respectively [75].

Birdsfoot trefoil, on the other hand, is a legume species that presents a more prostrate
growth habit relative to alfalfa or sainfoin [76], with greater biomass per unit of area and
higher bulk density (i.e., herbage weight per unit of canopy volume), which is correlated
with a greater leaf area index [77]. It contains 10 to 40 g CT/kg DM [78] and yields
approximately two-thirds as much as alfalfa in pure stands in the northern Mountain
West [79], with a nutritional value similar to alfalfa [76]. Thus, the use of tanniferous
legumes in monocultures or associated with other nontanniferous legumes may reduce
ruminal protein degradability and alleviate malaise by inhibiting NH3 production in the
rumen. This strategy will increase the pool of high-quality protein that reaches the small
intestine [80], shifting N excretion from urine to feces while improving N utilization [81].

4.1. Condensed Tannin Structure

Condensed tannins are plant secondary compounds (PSCs) also known as proantho-
cyanidins, consisting of oligomers or polymers of flavan-3-ol monomers that differ due
to the hydroxyl groups and the stereochemistry (spatial orientation) of C-2 and C-3 in the
C-ring [82]. Most of the CT occurring in forage species are procyanidin (PC) (e.g., catechin
and epicatechin) and prodelphinidin (PD) subunits (e.g., gallocatechin and epigallocate-
chin), which possess an additional hydroxyl group at C-5 of the B-ring [83]. Epicatechin
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and epigallocatechin have a cisorientation of the C-2 and C-3 in the C-ring, while catechin
and gallocatechin possess a transorientation (see Zeller, [83]).

Monomers grow into oligomers and polymers through covalent linkages of the
C-4 in the C-ring of a flavan-3-ol to the C-8 or C-6 positions in the C-ring of another
monomer [84] (Figure 1). These oligomers and polymers in common forage plants are
typically present as mixtures of PC and PD subunits, which are distributed throughout the
CT molecule, linked at different positions, leading to many different chemical structures
within CT [83]. Molecules of CT also differ in the number of flavan-3-ol subunits they
contain (degree of polymerization), resulting in structures that can vary in MW between
1900 and 28,000 Da [82]. Thus, plants’ CT vary in degrees of polymerization and the com-
position of their subunits, and they can differ among plant species, cultivars within the
same species, and even organs (leaves, stems, roots) within the same plant [85]. In addition,
the concentration of CT varies with phenological stage, declining in concentration as ma-
turity progresses [86]. For instance, leaves of sainfoin have higher CT concentrations and
a greater biological activity and PD proportion than stems [87]; therefore, vegetative stages
contain higher concentration of CT than mature plants [88], and thus, a greater CT–protein
complexation potential [89].
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4.2. Condensed Tannin–Protein Complexes and Reductions in Urinary N Excretions

Once plant tissues are chewed or degraded during microbial digestion, CT are released
from vacuoles and bind to plant salivary and microbial proteins forming insoluble com-
plexes in the rumen [90]. These complexes reduce protein solubilization and protect dietary
proteins from microbial hydrolysis and deamination in the rumen, reducing the suscepti-
bility of forage protein to microbial degradation [91]. In addition, CT can form complexes
with extracellular and cell coat enzymes of proteolytic bacteria, inhibiting their activity and
reducing protein degradation [92]. As a result, there is an increased outflow of undegraded
plant protein to the intestines, and reductions in ruminal NH3 concentrations [93–95]. The
CT–protein complexes are stable over the pH range from 3.5 to 7.0 but can dissociate in
the abomasum and anterior duodenum at a lower pH [96], releasing proteins for gastric
and peptic digestion and increasing the proportion of plant amino acids available for
postruminal absorption [97], increasing the efficiency of N utilization by the ruminant.

The formation of the CT–protein complex is due to hydrogen bonding interactions
between the hydroxyl groups (–OH) of the CT molecule and the amino group (–NH2) of
peptides (Figure 2), or by hydrophobic interactions between the phenol ring and the car-
boxyl group (–COOH) of proteins [90]. These are weak associations involving noncovalent
CT–macromolecule interactions. The formation of such complexes depends on the structure
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of both the protein and the specific CT in the plant or plant part, the isoelectric point of the
protein, the pH in the gastrointestinal tract, and the tannin–protein molar ratios [85].
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Different studies have determined that as CT concentration or MW and mean degree
of polymerization increase, the protein precipitation capacity of CT also increases [98,99].
AufrèRe et al. [100] found a negative correlation between N solubility and CT concentration,
PD/PC ratio, mean degree of polymerization, and cis/trans ratio for three sainfoin varieties
at several harvests.

Biochemical mechanisms of bonding between polyphenols and macromolecules also
involve irreversible covalent interactions mediated by oxidation of phenolic compounds
with the formation of o-quinones or o-semi-quinones, or through the cleavage of proan-
thocyanidin bonds with the formation of carbocations [101]. Covalent interactions have
received less attention than noncovalent interactions, although they have been demon-
strated between polyphenols and individual amino-acids [101].

Condensed tannins in birdsfoot trefoil have average molecular weights of 4400 Da [102],
with a degree of polymerization in the range of 6 to 14 of predominantly PC type subunits [90],
while sainfoin’s CTs are predominantly constituted of PD monomers with a mean MW of
5100 Da [102], with polymer sizes that vary between 4–12 subunits [90]. Thus, differences
between the molecular structure of CT between birdsfoot trefoil and sainfoin may result
in different effects on protein degradability because they differ in binding capacities and
affinities for plant, microbial, and mammalian proteins during herbivory. This may explain
the higher protein precipitation capacity reported for sainfoin’s CT relative to CT from
birdsfoot trefoil [102].

Sainfoin has been found to decrease urinary N losses by ruminants [87,103]. Several
in vitro [104] and in vivo studies [87,105,106] have reported reductions in ruminal protein
degradation, ruminal NH3 concentrations, and urinary N excretion of substrates incu-
bated with sainfoin or of sheep fed sainfoin relative to animals receiving polyethylene
glycol (PEG), a polymer that binds to CT more readily than protein [107]. Condensed tan-
nins in sainfoin may also enhance ruminant nutrition relative to other perennial legumes
such as alfalfa [69]. In an in vitro study, Williams et al. [108], found that NH3 concentra-
tions were lower when sainfoin was incubated in continuous cultures than when alfalfa
(a nontanniferous legume) was used as the substrate. However, NH3 was not different
between birdsfoot trefoil and alfalfa in this study. Similar results were obtained later by
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Grosse Brinkhaus et al. [109], who observed a 21% reduction in blood urea N and a 38%
lower urinary N when dairy cows were fed sainfoin than when they were fed alfalfa pellets;
and Lagrange et al. [74] reported that yearlings heifers consuming sainfoin or birdsfoot
trefoil showed a 40% reduction in urinary N concentration relative to those grazing al-
falfa, diverting more of the N to feces, thereby reducing the loss of N as ammonia into
the atmosphere. This study also demonstrated that the partial replacement of alfalfa by
sainfoin and birdsfoot trefoil in 2-way or 3-way choices was also effective in reducing the
urinary N concentrations of beef heifers. Similarly, Aufrère et al. [110] showed in vitro
that mixing sainfoin with alfalfa could be an efficient way to reduce the N solubility of
pure alfalfa. Finally, tannin-containing hays have also shown potential to reduce urinary
urea N excretion, increase N retention, and reduce enteric CH4 emissions from beef cattle,
suggesting that CTs remain active during the process of forage conservation [111]. Thus,
ecoregions around the world where legume supply is limited during certain times of the
year, such as spring or winter, could benefit from the provision of CTs through the use of
preserved forages.

However, when sainfoin is fed to ruminants, CT–protein complexes may not be
completely dissociated in the abomasum and continue intact through the small intes-
tine, preventing amino acid digestion and absorption [97,112]. The potential of these
complexes for being reversible is dependent on the type of bonding (noncovalent or cova-
lent) between CT and proteins [101]. Alternatively, CT may still be active under the pH
level (5.0) of the proximal small intestine and interfere with endogenous and microbial
proteolytic enzymes, increasing the proportion of protein in the feces [94]. In support
of this, Lagrange et al. [74] observed that beef cattle grazing sainfoin partitioned more
N to feces (30.1% vs. 22.7%, respectively) than animals grazing birdsfoot trefoil, and
sheep fed fresh sainfoin showed greater fecal N than sheep fed pure birdsfoot trefoil or
alfalfa (31.5% vs. 26.6%, respectively; [113]). This may reduce N retention, as observed for
sainfoin diets [114].

The prevalence of PC subunits in birdsfoot trefoil tannin may be associated with
a greater protein digestion in the abomasum and small intestine and improved amino
acid absorption [81,90]. A greater amino acid absorption has been linked to overall im-
provements in animal performance, including body weight gain, wool and milk produc-
tion, reproductive performance, and the ability to cope with gastrointestinal nematode
burdens [115]. For instance, Min et al. [116] reported increments of reproduction effi-
ciency and wool production in sheep fed birdsfoot trefoil relative to animals receiving
PEG, a polymer that binds and inactivates tannins. This response was produced without
increments in voluntary intake, but authors reported a greater concentration of plasma-
essential amino acids, suggesting a higher intestinal absorption. The unique CT produced
by birdsfoot trefoil, as well as its high fiber digestibility [117–119], also enhance the effi-
ciency of energy and protein use in ruminants relative to other nontanniferous legumes.
Sheep grazing birdsfoot trefoil had significantly improved performance compared with
sheep grazing alfalfa pastures, resulting in greater ewe and lamb weight gains, carcass
dressing-out percentage, and wool growth [120]. Harris et al. [121] found that dairy cows
grazing birdsfoot trefoil improved the efficiency of feed utilization and increased milk yield
by 10%, with increments in milk protein concentration relative to white clover (another
nontanniferous legume), and Lagrange et al. [74] reported 40% greater average daily gains
(ADG) in beef heifers grazing birdsfoot trefoil relative to animals grazing alfalfa.

4.3. Effect of Condensed Tannins on Enteric Methane Emissions

Condensed tannins may inhibit CH4 production in the rumen, which is beneficial for
improving nutrient utilization and reducing dietary energy loss and GHG emissions for eco-
friendly animal production. Several studies have reported reductions (13–16%) either in the
gross emission of CH4 (g/d) or in CH4 yield (g/kg dry matter intake), using forages with
moderate concentrations of CT (20–50 g/kg DM) [122–124], or CT-containing plant extracts
supplied with the feed [125] or drenched directly to the animals [27]. A meta-analysis from
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15 in vivo experiments showed that increasing tannin concentration in the diet decreased
CH4 production linearly when expressed relative to dry matter intake (DMI) or digestible
OM intake [126]. Thus, low concentrations of CT (<20 g/kg DM) may not affect CH4
production in ruminants relative to control diets [82].

Chemical structure of CT may also be an important factor affecting enteric CH4 pro-
duction, as was demonstrated in vitro by Hatew et al. [127], who found differences in CH4
emissions among CT extracts from four different sainfoin accessions. Sainfoin is a legume
species that has been shown to reduce CH4 production in in vitro studies [128–130]. As
mentioned previously for the protein precipitation capacity of CT, as the degree of poly-
merization of CT increases, greater reductions in CH4 production have been reported
for in vitro studies [131]. Likewise, higher molecular weight fractions of CT significantly
decreased total methanogen numbers in vitro compared with lower molecular weight
CT fractions [132].

The effect of CT on enteric CH4 emissions has been attributed to a direct effect
on methanogenic archaea and/or their enzymatic activity [131–133], or more likely, to
an indirect effect on fiber digestion, adversely affecting cellulolytic bacteria and conse-
quently reducing the amount of forage substrate fermented in the rumen (reduced di-
gestion) [126,134,135]—a process that may be subsequently compensated in the lower
digestive tract by colonic fermentation [40]. The bacteria that digest cellulose produce both
acetate and H2. However, accumulation of H2 inhibits fermentation, so Archaea dispose of
H2 by using it to reduce CO2 to CH4 [34]. Condensed tannins likely inactivate extracellular
microbial enzymes through the formation of CT–enzyme complexes, subsequently reduce
their digestive activity [136], and/or directly inhibit cellulolytic bacteria [137]. In addition,
formation of cell-associated protein–tannin complexes on the cell surface may interfere
with microbial attachment to fiber and prevent microbial digestion [138]. In support of this,
Wang et al. [69] and Barry and McNabb suggested that concentrations of CT in forages
greater than 50 g/kg might decrease DM digestibility in ruminants, and Chung et al. [139]
observed a lower NDF digestibility in sainfoin than in alfalfa (45.3 vs. 55.3%), even with CT
concentration in sainfoin as low as 2.45%. Reduced fiber digestion due to an increased CT
ingestion may also slow clearance of forage residues from the rumen, reducing voluntary
DMI [81]; thus, reductions in enteric CH4 emissions due to a decreased fiber digestibility
would not be a viable strategy.

Ciliate protozoa also produce H2; reducing their numbers with rumen defaunation
by supplying CT with the ingestion of tropical legumes [140] could indirectly affect CH4
emissions, as mentioned previously, either by reducing methanogens symbiotically as-
sociated with protozoal populations or by reducing fiber digestion and H2 supply to
methanogenic archaea [141].

Rumen microbiome adaptation to plant secondary compounds is possible, which
could influence long-term bioactivity and, thus, enteric CH4 production, although infor-
mation on this topic is still limited [142,143]. Such adaptation may be influenced by the
specific chemical structure of the phenolic compound in question. For instance, rumen mi-
crobes have been reported to adapt to chemicals such as carvacrol and thymol to a greater
extent than to phenolics in garlic oil [144]. Further research is needed to determine if the
duration of feeding tannin-containing legumes influences the rumen microbiome and if
methanogenic adaptation occurs.

5. Other Beneficial Effects of Tanniferous Legumes in Grazing Beef Production Systems

Another advantage of grazing tanniferous legumes is a reduction of the risk of
bloat [50], which allows cattle to graze forage legumes at the greatest nutritional value.
Tanniferous legumes such as birdsfoot trefoil and sainfoin are nonbloating and can there-
fore be grazed in pure stands. Complexes between CT and proteins prevent the plant
protein from being solubilized into ruminal fluid, inhibiting the formation of proteinaceous,
gas-trapping foam [145]. It has been calculated that CT concentrations as little as 1 to 5 g/kg
DM should prevent bloat [146]. Adding a source of CT to highly digestible alfalfa could
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reduce the availability of soluble protein and the rate of gas production and proliferation
of ruminal microbial populations, preventing the formation of persistent foam [50]. In
support of this, the inclusion of sainfoin into alfalfa pastures has reduced the incidence of
bloat [147] and may therefore be a practical and effective means of controlling this disorder.
McMahon et al. [128] reported a marked reduction in pasture bloat when as little as 10%
sainfoin was included in fresh alfalfa diets.

In addition to their positive effects at attenuating bloat and reducing environmental
impacts, the use of forage legumes for finishing beef cattle also results in greater carcass
weight, dressing percentage, backfat thickness, and intramuscular fat percentage in the
longissimus muscle compared with grass-finished beef (4.4% vs. 2.9%, respectively),
approaching values observed for grain-based finishing systems (5.8%; [148]). This outcome
might be related to the high concentration of NFC present in forage legumes. Likewise,
tenderness, fattiness, juiciness, and overall liking of legume-finished beef did not differ from
grain-finished beef, and both types of beef presented greater scores for these characteristics
than grass-fed beef [148]. In addition to these results, the omega-6 to omega-3 fatty
acid ratio observed in legume-finished beef was much lower than that observed with
concentrate diets and similar to grass-fed diets (2.41, 5.74, and 3.44, respectively), with
greater omega-3 as well as reduced omega-6 in legume-finished beef [148], maintaining the
benefits for human health of the consumption of healthy fatty acids [149–151]. Furthermore,
as CTs reduce the activity of specific rumen bacteria responsible for biohydrogenation of
dietary fatty acids [152], tanniferous legumes such as sainfoin may promote increments in
conjugated linoleic acid and polyunsaturated fatty acids and reductions in saturated fatty
acids in meat relative to animals consuming diets without CT [153]. In support of this, beef
carcasses from cattle that were fed sainfoin had greater marbling scores, quality grades,
and backfat thicknesses than alfalfa-fed cattle, and steaks were redder in color than steaks
from cattle finished on alfalfa and contained more unsaturated fatty acids [73].

In contrast to both cereal grains and pasture grasses, perennial legumes form symbiotic
associations with soil bacteria (Rhizobia spp.) and fix their own N, being productive for
multiple years without the need of N fertilization [154,155]. Finishing cattle on N-fixing
forages reduces costs and enhances ranch profitability while reducing environmental
impact associated with the use of N fertilizers, as they increases nitrate production and
water eutrophication [61–63]. Additionally, GHG emissions related to the production,
transport, and use of N-based fertilizers [37] decrease in forage legume systems. Moreover,
direct emissions of nitrous oxide (N2O) are negligible from biological N fixation [156].

Therefore, legume-fed beef production systems give producers a sustainable alter-
native forage-based livestock production program while maintaining high animal perfor-
mance and high-quality beef that is comparable to grain-finishing programs. In addition,
the use of tannin-containing legumes either as pure forages or in association with CT-free
legumes offer a feasible solution to the problems of low N utilization and high risk of bloat
for cattle grazing nontanniferous legume monocultures, increasing the efficiency of N use
and improving the health of ruminants, humans, and the environment.

6. Forage Diversity in Beef Cattle Production Systems

A diversity of forages and biochemicals available in pasturelands may enhance the
benefits described above because the complementary relationships among multiple food
resources in nature improves the fitness of herbivores [157], which in turn, can reduce
environmental impacts. Herbivores have evolved grazing in diverse plant communities,
consuming arrays of feeds with different chemical and physical characteristics [158]. Di-
verse diets offer ruminants a variety of nutrients and PSCs, which allow for a more balanced
diet with greater medicinal benefits than single forage species in monocultures [159,160].
In addition, complementarities among nutrients and PSCs may lead to more efficient use
of feeds, with improvements in animal welfare and productivity [161], and reduced carbon
and N emissions to the environment [115,162]. For instance, the consumption of different
forage species with contrasting chemical compositions (different concentrations of NFC,
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fiber, and proteins) and the presence of CT may lead to associative effects, such as protein
degradability lower than the average of the individual forages, as it has been demonstrated
in in vitro conditions by Niderkorn et al. [163] for a mixture of sainfoin and cocksfoot
(Dactylis glomerata).

Some bioactive secondary metabolites in forage legumes can cause digestive inter-
actions, so that the rumen fermentation pattern of a mixture of forages can differ from
the average values of its components [164], resulting in positive (synergistic) or negative
(antagonistic) effects on ruminant nutrition. It may therefore be preferable to use more
than one CT source so that individual sources are ingested at a lower dosage to avoid
potential antinutritional effects of high concentrations of single CT [164]. As described
previously, tannins produced by different forage species, cultivars, plants, plant parts, or
during different seasons may have contrasting physical and chemical properties that may
impact herbivores in different ways [161]. Thus, mixtures between legumes with different
CT chemical structures may produce associative effects that enhance the effect relative
to a single CT. This was demonstrated by Lagrange et al. [74] in an in vivo study where
yearling heifers grazing a choice of tanniferous legumes (birdsfoot trefoil and sainfoin)
showed lower levels of urinary N concentration than animals grazing the same legumes
in monoculture, suggesting a synergism between different CT sources. In addition, this
study showed that heifers grazing the tanniferous legumes (birdsfoot trefoil and sainfoin)
in association with a non-tannin-containing legume (alfalfa) reduced urinary N excretion
(40.7 vs. 50.6%) and retained more N (36.1 vs. 25.2%) relative to control animals grazing the
same species as monocultures on average, respectively [74]. Previously, Aufrère et al. [165]
had demonstrated that CT from sainfoin could bind and precipitate protein from alfalfa.

Interactions among CT may also influence the total amount of food a herbivore can
ingest [166,167]. It has been observed that the DMI of sheep increases as the number of
tanniferous shrubs in the diet increases, relative to single-shrub diets [167]. Food diversity
may also provide ruminants a positive stimulus that increases their motivation to eat [168].
A diversity of forages allows animals to incorporate different species into their diets, which
may delay the onset of satiety [169]. In contrast, animals constrained to monocultures
may reach satiety at lower levels of feed intake due to the nutritional disbalances or
excessive orosensory exposure to limited stimuli. In support of this, Lagrange et al. [74]
observed a 33% greater dry matter intake (DMI) and 30 to 50% greater ADG in heifers that
grazed a 3-way choice among alfalfa, sainfoin, and birdsfoot trefoil relative to the average
DMI and ADG from animals grazing the same three species in monocultures, suggesting
a synergism among pasture species when these were consumed together. Similarly, sheep
that were offered a choice of different legumes and selected 50% alfalfa, 35% sainfoin,
and 15% birdsfoot trefoil had 10% greater DMI and DM digestibility than for the average
DMI value calculated from the same proportions of these forages when they were fed
separately [113]. On the other hand, Wang et al. [147] observed similar feed intakes in beef
steers grazing pure alfalfa or mixed alfalfa–sainfoin pastures containing up to 35% sainfoin;
Christensen [170], when feeding a mixture of alfalfa–birdsfoot trefoil hays to dairy cows,
did not find differences in DMI relative to feeding pure alfalfa.

Animals that are motivated to eat different species (i.e., a choice of legumes) could
also incur greater energy expenditures in order to gather different forages and achieve the
challenge of building a balanced diet [171]. The spatial aggregation of forage species in
contiguous swards as opposed to an intermingled mixture may reduce search time allowing
animals being more efficient in diet selection [172]. In a finely intermingled mixed pasture,
animals may have a reduced intake rate due to time spent searching for the preferred
plant species [173] and reduces daily voluntary intake relative to grazing monocultures.
Moreover, some less competitive species such as sainfoin may be outcompeted in a mixture
with better adapted species such as alfalfa, or the most preferred herbage species could be
overgrazed, leading to resource degradation [174,175]. In contrast, when three different
forage legumes were established in side-by-side patches, beef heifers grazing the choice
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treatments did not invest extra time in walking, searching, or patch switching activities
relative to heifers grazing monocultures [75].

Finally, giving choices to ruminants and allowing them to solve problems of nutrient
imbalances or excess exposure to a single PSC may elicit positive emotional states and
ultimately improve their welfare relative to animals limited to monocultures [176]. Animals
exposed to a diverse array of foods have lower indicators of stress relative to animals ingest-
ing single rations [177] and have the opportunity to learn the postingestive consequences
of foods and how to meet their needs through selecting a varied diet [178]. Diversity also
allows animals to select a diet that is a function of their specific and dynamic needs. In
contrast, rations designed for the “average” individual may not satisfy all animals’ needs
given the inherent individual differences that exist among animals [179].

7. Conclusions

Today’s beef producers are challenged by growing consumer demand for environ-
mentally, economically, and socially sustainable food [180,181], and consumer attention to
production sources, animal welfare, and human health is on the rise [182,183]. In the US
and other beef-producing countries, wetlands and grasslands have been converted to crop-
land that is used for the production of annual cereal grains, the majority of which are fed
to livestock rather than consumed by humans. The ecosystem services of annually cropped
farmland are compromised by reduced organic matter, periods of bare soil, and frequent
application of inorganic soil nutrients. At the other extreme, grass-finished production
systems provide a food source of relatively low quality that reduces productivity, increasing
time to slaughter and related environmental impacts. In contrast to grasses, perennial
legumes fix their own nitrogen and are digested more rapidly than grasses by ruminants;
thus, the intake, production, and efficiency of feed conversion to red meat or milk are
higher than for forage grasses, resulting in reduced environmental impacts compared with
grass-fed cattle. The unique tannins produced by some legumes such as birdsfoot trefoil
and sainfoin, as well as the high fiber digestibility of temperate forage legumes, enhance
the efficiency of energy and protein use in ruminants relative to non-tannin-containing
legumes such as alfalfa. Synergisms achieved by a diversity of legumes with beneficial
PSCs may further enhance the benefits observed for single species, contributing to the
development of beef production systems that improve overall sustainability with reduced
environmental impacts while satisfying human food needs.
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