ONLINE RESOURCES

The genetic diversity of wild rescuegrass is associated with precipitation levels

ROMINA CUYEU¹, ELBA PAGANO¹, BEATRIZ ROSSO², GABRIELA SOTO^{3,4} and NICOLÁS DANIEL AYUB^{1,4*}

¹Instituto de Genética Ewald A. Favret (CICVyA-INTA), De los reseros S/N, Castelar C25 (1712), Provincia de Buenos Aires, Argentina

²Estación Experimental Agropecuaria, INTA-Pergamino CC.31 (2700), Buenos Aires, Argentina

³Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Hector Torres, (INGEBI-CONICET),

Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina

⁴Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avda. Rivadavia 1917, C1033AAJ Cuidad Autónoma de Buenos Aires, Argentina

[Cuyeu R., Pagano E., Rosso B., Soto G. and Ayub N. D. 2014 The genetic diversity of wild rescuegrass is associated with precipitation levels. *J. Genet.* **93**, e29–e34. Online only: http://www.ias.ac.in/jgenet/OnlineResources/93/e29.pdf.]

Introduction

The genus *Bromus* belongs to the family *Poaceae*, contains over 160 annual and perennial species of grasses, varying in ploidy level from diploid (2n = 14) to dodecaploid (2n =70) (Fortune *et al.* 2008). One of the most relevant species of *Bromus* in agriculture is *Bromus catharticus* Vahl, also known as rescuegrass (Belesky *et al.* 2007). *B. catharticus* is a winter annual grass, widely grown throughout the humid temperate regions. This species plays a critical role in forage and livestock systems, forming the plant basis for beef and milk production worldwide. *B. catharticus* is generally considered as an autogamous species, with an outcrossing rate of only 1.8% (Newell 1973). Thus, the genetic diversity of rescuegrass could be low due to this reproductive behaviour. However, the real genetic variability of this species remains unclear.

B. catharticus is native to the Pampean region of Argentina (South America), and was introduced and used for winter pasture in the temperate regions of the world, including south-eastern USA before the mid-19th century (Newell 1973). Argentina ranks the sixth among the agricultural nations according to the area under cultivation (http://www.fao.org), and the Pampean region is almost completely covered with transgenic crops such as glyphosate-resistant soybean, maize and cotton. Under this scenario of extreme reduction of natural environments, the production of a public germplasm collection of wild rescuegrass and

the analysis of its genetic diversity seem to be essential to conserve this species and to evaluate the agronomic potential of this germplasm collection, respectively. In this work, we present the molecular analysis of a novel and publicly available germplasm collection of rescuegrass.

Materials and methods

Material consist of 67 rescuegrass accessions collected in the Pampean region, a region with sites of high variability in the annual precipitation (400-1100 mm), annual mean temperature (13-20°C) and elevation (3-995 m) (table 1). Each accession consisted of 2000 seeds from 50 individual plants. The latter are available in the Active Germplasm Bank (AGB) at the National Institute of Agricultural Technology (http://inta.gob.ar/). Sequence analysis of the ndhF gene (Aliscioni et al. 2012) showed that 67 accessions belong to the species B. catharticus Vahl (figure 1). For the analysis of genetic variability, genomic DNA (75 mg) was extracted from 30 young leaves of 60 plants (bulk) (Cuyeu et al. 2013). PCR amplification reactions were performed in a final volume of 20 μ L in the presence of 75 ng DNA, 1 U of Taq polymerase (Platinum Taq DNA Polymerase, Invitrogen, Buenos Aires, Argentina), 2.5 mM MgCl₂, 0.2 mM of each dNTP, 2 μ L 10× PCR Buffer (Invitrogen,) and 0.5 mM of each primer. The PCR conditions comprised: 1 cycle at 94°C for 3 min, 40 cycles at 94°C for 30 s, 50°C for 2 min and 72°C for 2 min. SSR fragments were detected by a Genetic Analyzer ABI 3130 (CICVyA, Castelar, Argentina). Genetic

^{*}For correspondence. E-mail: nayub@cnia.inta.gov.ar.

Keywords. SSR markers; genetic diversity; flow cytometry; rescuegrass; genetic resources.

Table 1. List of wild rescuegrass accessions analysed by SSR molecular markers.

Humid environments (>700 mm)				Semiarid environments (<700 mm)				
Accessions	G	PS	Pt	Accessions	G	PS	Pt	
ARBR0031	33°47′S	61°21′W	996	ARBR0051	36°30′S	63°43′W	693	
ARBR0013	31°49′S	$60^{\circ}10'W$	993	ARBR0046	36°39′S	64°16′W	609	
ARBR0034	32°43′S	62°06′W	983	ARBR0060	32°31′S	63°13′W	697	
ARBR0021	$34^\circ 10'S$	58°51′W	979	ARBR0050	36°52′S	63°40′W	659	
ARBR0019	$34^\circ 10'S$	58°51′W	976	ARBR0057	33°35′S	62°35′W	656	
ARBR0056	33°40′S	$62^{\circ}12'W$	973	ARBR0058	33°25′S	63°13′W	651	
ARBR0018	33°08′S	61°24′W	974	ARBR0059	32°53′S	63°14′W	645	
ARBR0039	35°27′S	$60^{\circ}05'W$	963	ARBR0064	33°06′S	64°50′W	640	
ARBR0008	31°27′S	61°53′W	962	ARBR0072	33°47′S	65°32′W	637	
ARBR0010	32°32′S	61°32′W	950	ARBR0074	33°50′S	65°14′W	638	
ARBR0009	30°23′S	61°44′W	946	ARBR0073	33°59′S	65 <u>a</u> 20′W	635	
ARBR0005	34°36′S	60°57W	945	ARBR0063	33°06′S	64°25′W	633	
ARBR0043	35°40′S	61°27′W	942	ARBR0061	32°53′S	63°59′W	632	
ARBR0011	31°48′S	$60^{\circ}30'W$	934	ARBR0055	36°10′S	63°56′W	631	
ARBR0040	35°10′S	$60^{\circ}30'W$	933	ARBR0055	36°10′S	63°56′W	631	
ARBR0006	34°34′S	60°53′W	933	ARBR0037	34° 56′ S	$60^{\circ}41'W$	630	
ARBR0007	31°29′S	62°08′W	932	ARBR0037	34° 56′ S	60°41′W	630	
ARBR0012	31°50′S	60°32′W	931	ARBR0038	35°27′S	60°03′W	630	
ARBR0001	34°11′S	59°04′W	927	ARBR0075	33°54′S	64°49′W	623	
ARBR0041	35°25′S	$60^{\circ}52'W$	926	ARBR0071	33°36′S	65°34′W	622	
ARBR0003	34°21S	59°00′W	925	ARBR0044	35°52′S	62°18′W	613	
ARBR0004	34°11′S	59°39′W	923	ARBR0053	35°43′S	64°16′W	603	
ARBR0042	35°23′S	$60^{\circ}51'W$	921	ARBR0070	33°24′S	65°29′W	593	
ARBR0036	32°54′S	62°09′W	921	ARBR0066	32°20′S	65°12′W	591	
ARBR0002	34°10′S	59°03′W	913	ARBR0062	32°59′S	64°21′W	583	
ARBR0020	34°07′S	58°47′W	910	ARBR0048	37°20′S	64°29′W	582	
ARBR0033	33°15′S	$61^{\circ}16'W$	906	ARBR0049	37°07′S	64°05′W	580	
ARBR0032	33°37′S	61°27′W	903	ARBR0047	36°56′S	64°17′W	569	
ARBR0045	36°11′S	62°46′W	898	ARBR0035	32°42′S	62°04′W	565	
ARBR0014	31°45′S	60°28′W	896	ARBR0065	32°20′S	65°07′W	563	
ARBR0016	$36^{\circ}10'S$	$61^{\circ}07'W$	856	ARBR0052	36°13′S	64°18′W	563	
ARBR0015	36°11′S	$61^{\circ}04'W$	753	ARBR0068	32°28′S	65°38′W	562	
ARBR0017	36°19′S	61°14′W	852	ARBR0054	35°49′S	63°56′W	560	
ARBR0022	39°24′S	62°37′W	760	ARBR0067	32°14′S	65°13′W	530	
				ARBR0069	32°57′S	65°37′W	469	

GPS, GPS coordinates; Pt, annual precipitation (mm).

diversity analyses were conducted using Genemapper 3.4 (Applied Biosystems, New York, USA).

Results and discussion

We selected 17 SSRs derived from different monocots species due to their high level of polymorphism in the wild

rescuegrass germplasm collection (table 2). The 17 SSRs selected showed 130 alleles, a band size of 86–300 bp, multiple products per SSR (ranging from 2 to 23) and an average 7.64 alleles per locus (table 2). In addition, we observed high polymorphic information content (PIC) values: 0.07–0.36 (table 2). In the dendrogram, *Bromus brevis* was used as an external control (outgroup) because this species is closely related to *B. catharticus*. As expected, *B. brevis* was the most divergent cluster showing a genetic distance of 0.75

Figure 1. Phylogenetic analysis of *ndhF* gene sequences using the neighbour-joining method. Genetic distances computed using Poisson correction model by using the following parameters: substitutions to include=all, gaps/missing data=pair-wise deletion, phylogeny test=bootstrap 500 replicates and root on midpoint. *** Nucleotide sequences analysed by Aliscioni *et al.* (2012).

Table 2.	SSR marker pro	operties follow	ving screeni	ing of 67	wild rescuegrass	accessions.
	1	1	0	<u> </u>	U U	

Locus (species)	Alleles per locus	Allele size (pb)	PIC	Primer sequences $(5'-3')$
Xgwm374	8	172–233	0.22	ATAGTGTGTTGCATGCTGTGTG
(Triticum aestivum)				TCTAATTAGCGTTGGCTGCC
Bnlg 1055	7	225-378	0.21	GCTGGATGGCAGGTACAGAG
(Zea mays)				TGCAATGGAGAAGCAACAAG
phi021	9	110-205	0.15	TTCCATTCTCGTGTTCTTGGAGTGGTCCA
(Zea mays)				CTTGATCACCTTTCCTGCTGTCGCCA
NFFa036	2	184–186	0.36	CCCTGGTACTCGTGGATGTT
(Festuca arundinacea)				AGAGGAAGAGCGAAAGAGCA
NFFa031	5	300-357	0.08	GCTGTAGACTCAGCCGAACC
(Festuca arundinacea)				ACGGTCTGTACCGTGGATGT
Xgwm 295	10	115-261	0.16	GTGAAGCAGACCCACAACAC
(Triticum aestivum)				GACGGCTGCGACGTAGAG
Xgwm319	9	107–186	0.19	GGTTGCTGTACAAGTGTTCACG
(Triticum aestivum)				CGGGTGCTGTGTGTGTAATGAC
Bt30	3	98-103	0.19	GCCACTTTTTTTCCGAACAGACACC
(Bromus tectorum)				AAAAGCAGAGTGCAGATGTAAATGAAATT
Bt 26	3	119–134	0.21	ATCCGTCCCTCTTTCTTTGCGCTGC
(Bromus tectorum)				GGAGGAAGAAGAATGACCGAGAGAG
LPSSRH03F03	8	86–101	0.15	CAGGGGTTACAAGGATGG
(Lolium perenne)				ACCGTCCCATAGGTTTGT
Xgwm403	14	110-324	0.16	CGACATTGGCTTCGGTG
(Triticum aestivum)				ATAAAACAGTGCGGTCCAGG
NFFa015	12	191–249	0.12	AGCAAGGCCAGCAAAAATTA
(Festuca arundinacea)				GCGTCCACTAACAACACCAA
NFFa030	2	203-205	0.12	ACAACTAGGGGGGCTGGTCA
(Festuca arundinacea)				AGTCGGTGGTGAAGCTGAAG
NFFa023	4	186-209	0.07	TACAACTAGGGGGGCTGGTCA
(Festuca arundinacea)				AGTCGGTGGTGAAGCTGAAG
NFFa024	3	186–209	0.22	AGCTTCCCCTTCATTCCACT
(Festuca arundinacea)				TGCCCACGAGGTCTATCTTC
Xgwm369	23	105-276	0.14	CTGCAGGCCATGATGATG
(Triticum aestivum)				ACCGTGGGTGTTGTGAGC
LPSSRK10F08	8	103–159	0.11	ACCCTGCCATACATAGCATGGTGC
(Lolium perenne)				CTGTTGTGGCTGAGGCTGGAAGAA

(figure 2). The genetic distances among the 67 accessions of wild rescuegrass ranged from 0.10 to 0.66, suggesting a wide genetic diversity of this genetic resource for future breeding programmes (figure 2). Interestingly, the dendrogram showed two main groups related to different annual precipitation levels: humid (>700 mm) and semi-arid (<700 mm) (figure 2). These groups were not associated with a region or other environmental conditions such as temperature (table 1; figure 2). Thus, our results support the existence of two distinct rescuegrass populations adapted to humid and semi-arid environments. In addition, the accession derived from the humid environments contributed 96.1% of alleles suggesting

a humid origin of rescuegrass. Moreover, in agreement with the use of rescuegrass as a forage crop in humid temperate regions of the world, the Martin Fierro cultivar from INTA (http://inta.gob.ar/) clustered with the humid group (figure 2). In addition, all alleles except one were identical in c.v. Martin Fierro and BRCA6 from USDA (http://plants.usda.gov), suggesting an extremely low variability and a common origin of the current commercial cultivars

The novel germplasm collection of wild rescuegrass opens the way to improve the performance of this crop in humid temperate regions and to extend its cultivation to new climates such as water deficit environments.

Figure 2. UPGMA dendrogram showing the relationship among 67 accessions of wild rescuegrass. Accession number (state). Bootstrap percentages are indicated at the branch points. Tree topology obtained using UPGMA. Neighbour-joining. Minimum evolution and maximum parsimony methods were identical.

References

- Aliscioni S., Bell H.L., Besnard G., Christin P.A., Columbus J., Duvall M.R. *et al.* 2012 New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. *New Phytol.* **193**, 304–312.
- Belesky D.P., Ruckle J.M. and Abaye A.O. 2007 Seasonal distribution of herbage mass and nutritive value of Prairiegrass (Bromus catharticus Vahl). *Grass Forage Sci.* **62**, 301.
- Cuyeu R., Rosso B., Pagano E., Soto G., Fox R. and Ayub N.D. 2013 Genetic diversity in a world germplasm collection of tall fescue. *Genet. Mol. Biol.* **36**, 237–242.
- Fortune P.M., Pourtau N., Viron N. and Ainouche M.L. 2008 Molecular phylogeny and reticulate origins of the polyploid *Bromus* species from section Genea (Poaceae). *Am. J. Bot.* **95**, 454–464.
- Newell L.C. 1973 Smooth bromegrass. In *Forages: the science of grassland agriculture* (ed. M. E. Heath, D. S. Metcalfe and R. F. Barnes), 3rd edition, pp. 254–262. Iowa State University Press, Ames, USA.

Received 1 October 2013, in revised form 12 November 2013; accepted 20 November 2013 Published on the Web: 24 April 2014