View Item
- xmlui.general.dspace_homeCentros e Institutos de InvestigaciónCIA. Centro de Investigaciones de AgroindustriaInstituto de Tecnología de AlimentosArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
- DSpace Home
- Centros e Institutos de Investigación
- CIA. Centro de Investigaciones de Agroindustria
- Instituto de Tecnología de Alimentos
- Artículos científicos
- View Item
High hydrostatic pressure improves protein solubility and dispersion stability of mineral-added soybean protein isolate
Abstract
The influence of ion type, ion concentration and pH on the effect of high hydrostatic pressure (HHP) on solubility and dispersion stability of soybean protein isolate (SPI) was analyzed. Solubilizing effect of HHP was detected for calcium-, magnesium- and iron- added SPI, the magnitude of this effect was dependent on ion type, ion concentration and pH. The solubilizing effect was highest for calcium, followed by magnesium and iron at pH 7.0. The pH value
[ver mas...]
The influence of ion type, ion concentration and pH on the effect of high hydrostatic pressure (HHP) on solubility and dispersion stability of soybean protein isolate (SPI) was analyzed. Solubilizing effect of HHP was detected for calcium-, magnesium- and iron- added SPI, the magnitude of this effect was dependent on ion type, ion concentration and pH. The solubilizing effect was highest for calcium, followed by magnesium and iron at pH 7.0. The pH value affected the levels of solubility and the range of calcium concentration where solubility was increased. HHP-denatured soybean proteins may coexist with different minerals and at different pHs in the form of soluble species. For a given calcium concentration, pH may affect the structure of HHP-induced aggregates, leading to different solubilities and dispersion stabilities. HHP improved the stability of insoluble proteins in calcium-added SPI dispersions, avoiding their settling. Our results confirm that thermal treatment and HHP differentially affect protein–protein interactions. A transient dissociation of calcium from proteins during HHP is postulated. This dissociation would play a role in the structure of aggregates. When calcium is present during denaturation, different aggregates may be formed if calcium is bound to (thermal treatment) or transiently dissociated from (HHP) SPI proteins
[Cerrar]
Author
Manassero, Carlos Alberto;
Vaudagna, Sergio Ramon;
Añón, María Cristina;
Speroni, Francisco;
Fuente
Food hydrocolloids 43 : 629-635. (January 2015)
Date
2015-01
ISSN
0268-005X
Formato
pdf
Tipo de documento
artículo
Palabras Claves
Derechos de acceso
Restringido
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)