View Item
- xmlui.general.dspace_homeCentros Regionales y EEAsCentro Regional Santa FeEEA OliverosArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
- DSpace Home
- Centros Regionales y EEAs
- Centro Regional Santa Fe
- EEA Oliveros
- Artículos científicos
- View Item
Relative importance of biological nitrogen fixation and mineral uptake in high yielding soybean cultivars
Abstract
Backgrounds and aims: Soybean yield depends on total N uptake, N use efficiency, and harvest index. Nitrogen uptake relays on biological fixation (BNF) and soil absorption. Usually, BNF is considered a yield-related process. However, there is limited information on whether maximizing percent BNF (%BNF) is actually required to maximize N uptake and yield.
Methods: Seventy cultivars were evaluated for total N uptake, N use efficiency, and harvest index.
[ver mas...]
Backgrounds and aims: Soybean yield depends on total N uptake, N use efficiency, and harvest index. Nitrogen uptake relays on biological fixation (BNF) and soil absorption. Usually, BNF is considered a yield-related process. However, there is limited information on whether maximizing percent BNF (%BNF) is actually required to maximize N uptake and yield.
Methods: Seventy cultivars were evaluated for total N uptake, N use efficiency, and harvest index. Biological N fixation was determined in a subset of cultivars. The harvest index of N derived from atmosphere and from soil was also assessed.
Results: Yield was positively associated with total N uptake. Highest N uptake was not linked to increased %BNF. An inverse relationship between the amount of BNF (kgBNF) and soil N absorption was observed. Harvest index of N derived from BNF was 85%, while it was 77% for N derived from soil.
Conclusions: Highest total N uptake was attained by different combinations of kgBNF and mineral soil N absorption. This showed that maximizing %BNF is not required to maximize yield. High %BNF played a pivotal role in determining neutral soil N balance. This is so even though N derived from BNF was more partitioned to seeds than N derived from soil.
[Cerrar]
Author
Santachiara, Gabriel;
Borrás, Lucas;
Salvagiotti, Fernando;
Gerde, José Arnaldo;
Rotundo, José Luis;
Fuente
Plant and Soil 418 (1–2) : 191–203 (September 2017)
Date
2017-09
ISSN
0032-079X
1573-5036
1573-5036
Formato
pdf
Tipo de documento
artículo
Palabras Claves
Derechos de acceso
Restringido
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)