Show simple item record

resumen

Abstract
The genus Varicosavirus is one of six genera of plant-infecting rhabdoviruses. Varicosaviruses have non-enveloped, flexuous, rod-shaped virions and a negative-sense, single-stranded RNA genome. A distinguishing feature of varicosaviruses, which is shared with dichorhaviruses, is a bi-segmented genome. Before 2017, a sole varicosavirus was known and characterized, and then two more varicosaviruses were identified through high-throughput sequencing in 2017 [ver mas...]
dc.contributor.authorBejerman, Nicolas Esteban
dc.contributor.authorDietzgen, Ralf G.
dc.contributor.authorDebat, Humberto Julio
dc.date.accessioned2022-11-29T11:58:36Z
dc.date.available2022-11-29T11:58:36Z
dc.date.issued2022-09-29
dc.identifier.issn2076-0817
dc.identifier.otherhttps://doi.org/10.3390/pathogens11101127
dc.identifier.urihttp://hdl.handle.net/20.500.12123/13476
dc.identifier.urihttps://www.mdpi.com/2076-0817/11/10/1127
dc.description.abstractThe genus Varicosavirus is one of six genera of plant-infecting rhabdoviruses. Varicosaviruses have non-enveloped, flexuous, rod-shaped virions and a negative-sense, single-stranded RNA genome. A distinguishing feature of varicosaviruses, which is shared with dichorhaviruses, is a bi-segmented genome. Before 2017, a sole varicosavirus was known and characterized, and then two more varicosaviruses were identified through high-throughput sequencing in 2017 and 2018. More recently, the number of known varicosaviruses has substantially increased in concert with the extensive use of high-throughput sequencing platforms and data mining approaches. The novel varicosaviruses have revealed not only sequence diversity, but also plasticity in terms of genome architecture, including a virus with a tentatively unsegmented genome. Here, we report the discovery of 45 novel varicosavirus genomes which were identified in publicly available metatranscriptomic data. The identification, assembly, and curation of the raw Sequence Read Archive reads has resulted in 39 viral genome sequences with full-length coding regions and 6 with nearly complete coding regions. The highlights of the obtained sequences include eight varicosaviruses with unsegmented genomes, which are linked to a phylogenetic clade associated with gymnosperms. These findings have resulted in the most complete phylogeny of varicosaviruses to date and shed new light on the phylogenetic relationships and evolutionary landscape of this group of plant rhabdoviruses. Thus, the extensive use of sequence data mining for virus discovery has allowed us to unlock of the hidden genetic diversity of varicosaviruses, the largely neglected plant rhabdoviruses.eng
dc.formatapplication/pdfes_AR
dc.language.isoenges_AR
dc.publisherMDPIes_AR
dc.rightsinfo:eu-repo/semantics/openAccesses_AR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourcePathogens 11 (10) : 1127 (2022)es_AR
dc.subjectPlant Rhabdoviruseses_AR
dc.subjectTaxonomíaes_AR
dc.subjectRhabdovirus de las Plantas
dc.subjectTaxonomyeng
dc.subject.otherVaricosavirusese
dc.subject.otherGenome Architectureeng
dc.subject.otherVirus Taxonomyeng
dc.subject.otherMetatranscriptomicseng
dc.subject.otherTaxonomía de Viruses_AR
dc.titleUnlocking the Hidden Genetic Diversity of Varicosaviruses, the Neglected Plant Rhabdoviruseses_AR
dc.typeinfo:ar-repo/semantics/artículoes_AR
dc.typeinfo:eu-repo/semantics/articlees_AR
dc.typeinfo:eu-repo/semantics/publishedVersiones_AR
dc.rights.licenseCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.description.origenInstituto de Patología Vegetales_AR
dc.description.filFil: Bejerman, Nicolas Esteban. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; Argentinaes_AR
dc.description.filFil: Bejerman, Nicolas Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola (UFyMA); Argentinaes_AR
dc.description.filFil: Dietzgen, Ralf G. University of Queensland. Queensland Alliance for Agriculture and Food Innovation; Australiaes_AR
dc.description.filFil: Debat, Humberto Julio. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; Argentinaes_AR
dc.description.filFil: Debat, Humberto Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola (UFyMA); Argentinaes_AR
dc.subtypecientifico


Files in this item

Thumbnail

This item appears in the following Collection(s)

common

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess