Mostrar el registro sencillo del ítem

resumen

Resumen
Biotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not [ver mas...]
dc.contributor.authorArnillas, Carlos Alberto
dc.contributor.authorBorer, Elizabeth T.
dc.contributor.authorSeabloom, Eric William
dc.contributor.authorAlberti, Juan
dc.contributor.authorBaez, Selene
dc.contributor.authorBakker, Jonathan D.
dc.contributor.authorBoughton, Elizabeth H.
dc.contributor.authorBuckley, Yvonne M.  
dc.contributor.authorBugalho, Miguel Nuno
dc.contributor.authorDonohue, Ian
dc.contributor.authorDwyer, John
dc.contributor.authorFirn, Jennifer
dc.contributor.authorPeri, Pablo Luis
dc.contributor.authorCadotte, Marc W.
dc.date.accessioned2022-01-05T10:24:38Z
dc.date.available2022-01-05T10:24:38Z
dc.date.issued2021-11-22
dc.identifier.citationArenillas C.A.;Borer, E.; Seabloom E.; Alberti J.; Baez S.; Bakker J.; Boughton E.; Buckley Y.; Bugalho M.; Donohue I.; Dwyer J.; Firn J.; Gridzak R.; Hagenah N.; Hautier Y.; Helm A.; Jentsch A.; Knops J.; Komatsu K.J.; Laanisto L.; Laungani R.; Mcculley R.; Moore J.; Morgan J.; Peri P.L.; Power S.; Price J.; Sankaran M.; Schamp B.; Speziale K.; Standish R.; Virtanen R. Cadotte M. Opposing community assembly patterns for dominant and non-dominant plant species in herbaceous ecosystems globally. Ecology and Evolution 11(24): 17744-17761.es_AR
dc.identifier.issn2045-7758
dc.identifier.otherhttps://doi.org/10.1002/ece3.8266
dc.identifier.urihttp://hdl.handle.net/20.500.12123/11052
dc.identifier.urihttps://onlinelibrary.wiley.com/doi/full/10.1002/ece3.8266
dc.description.abstractBiotic and abiotic factors interact with dominant plants—the locally most frequent or with the largest coverage—and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.eng
dc.formatapplication/pdfes_AR
dc.language.isoenges_AR
dc.publisherWiley Ecology and evolutiones_AR
dc.rightsinfo:eu-repo/semantics/openAccesses_AR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourceEcology and Evolution 11 (24) : 17744-17761 (December 2021)es_AR
dc.subjectPastureseng
dc.subjectPastizaleses_AR
dc.subjectPhylogenyeng
dc.subjectFilogeniaes_AR
dc.subjectDominant Specieseng
dc.subjectEspecies Dominanteses_AR
dc.subjectAbiotic Factorseng
dc.subjectFactores Abióticoses_AR
dc.subjectBiotic Factorseng
dc.subjectFactores Bióticoses_AR
dc.subjectNutrientseng
dc.subjectNutrienteses_AR
dc.subject.otherCommunity Assembly Patternseng
dc.subject.otherPatrones de Ensable de Comunidadeses_AR
dc.titleOpposing community assembly patterns for dominant and non-dominant plant species in herbaceous ecosystems globallyes_AR
dc.typeinfo:ar-repo/semantics/artículoes_AR
dc.typeinfo:eu-repo/semantics/articlees_AR
dc.typeinfo:eu-repo/semantics/publishedVersiones_AR
dc.rights.licenseCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.description.origenEEA Santa Cruzes_AR
dc.description.filFil: Arnillas, Carlos Alberto. University of Toronto Scarborough. Department of Physical and Environmental Sciences; Canadá.es_AR
dc.description.filFil: Borer, Elizabeth T. University of Minnesota; Estados Unidoses_AR
dc.description.filFil: Seabloom, Eric W. University of Minnesota; Estados Unidoses_AR
dc.description.filFil: Alberti, Juan. Universidad Nacional de Mar del Plata. Instituto de Investigaciones Marinas y Costeras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Marinas y Costeras; Argentina.es_AR
dc.description.filFil: Baez, Selene. Escuela Politécnica Nacional. Department of Biology; Ecuador.es_AR
dc.description.filFil: Bakker, Jonathan D. University of Washington. School of Environmental and Forest Sciences; Estados Unidoses_AR
dc.description.filFil: Boughton, Elizabeth H. Archbold Biological Station. Venus, Florida; Estados Unidoses_AR
dc.description.filFil: Buckley, Yvonne M. Trinity College Dublin. School of Natural Sciences, Zoology; Irlandaes_AR
dc.description.filFil: Bugalho, Miguel Nuno. University of Lisbon. Centre for Applied Ecology Prof. Baeta Neves (CEABN-InBIO). School of Agriculture; Portugal.es_AR
dc.description.filFil: Donohue, Ian. Trinity College Dublin. School of Natural Sciences, Zoology; Irlandaes_AR
dc.description.filFil: Dwyer, John. University of Queensland. School of Biological Sciences; Australia.es_AR
dc.description.filFil: Firn, Jennifer. Queensland University of Technology (QUT); Australia.es_AR
dc.description.filFil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.es_AR
dc.description.filFil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina.es_AR
dc.description.filFil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.es_AR
dc.description.filFil: Cadotte, Marc W. University of Toronto Scarborough. Department of Biological Sciences; Canadá.es_AR
dc.description.filFil: Cadotte, Marc W. University of Toronto. Department of Ecology and Evolutionary Biology; Canadá.es_AR
dc.subtypecientifico


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

common

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess